In this paper, we demonstrate the existence and uniqueness a semianalytical solution of an inverse heat conduction problem (IHCP) in the form: ut = uxx in the domain D = {(x, t)| 0 < x < 1, 0 < t T}, u(x, T) = f(x), u(0, t) = g(t), and ux(0, t) = p(t), for any 0 t T. Some numerical experiments are given in the final section.
[1] Atkinson Kendal, E., An Introduction to Numerical Analysis, New York, 1964. [2] Beck J.V. and Well, B.B., Inverse heat Conduction, Ill-posed Problems, Wi-ley Interscience, New York, 1985. [3] Burggraf, O.R., An exact solution of the inverse problem in heat conduction theory and application, J. of Heat Transfer 86(1964), 373-382. [4] Cannon, J.R., The One-Dimensinal Heat Equation, Addison-Wesley New York, 1984.
Shidfar, A., & Zakeri, A. (2008). A numerical solution for an inverse heat conduction problem. Iranian Journal of Numerical Analysis and Optimization, 1(1), 51-58. doi: 10.22067/ijnao.v1i1.619
MLA
Abdollah Shidfar; Ali Zakeri. "A numerical solution for an inverse heat conduction problem", Iranian Journal of Numerical Analysis and Optimization, 1, 1, 2008, 51-58. doi: 10.22067/ijnao.v1i1.619
HARVARD
Shidfar, A., Zakeri, A. (2008). 'A numerical solution for an inverse heat conduction problem', Iranian Journal of Numerical Analysis and Optimization, 1(1), pp. 51-58. doi: 10.22067/ijnao.v1i1.619
VANCOUVER
Shidfar, A., Zakeri, A. A numerical solution for an inverse heat conduction problem. Iranian Journal of Numerical Analysis and Optimization, 2008; 1(1): 51-58. doi: 10.22067/ijnao.v1i1.619
Send comment about this article