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Abstract

Many real-world problems occur under uncertainty. In this paper, we
consider interval linear programming (ILP) which can be used to tackle un-
certainties. Several methods have been proposed by researchers, such as
the best and worst cases, Two-step method (TSM), improved TSM, ILP, im-

proved ILP, three-step method, and robust two-step method. First, we define
feasibility and optimality conditions in ILP models and review some solving
methods shortly, and then show that some solutions of the TSM method

are not feasible. Therefore, we propose an updated TSM method (namely,
UTSM) by considering the feasibility and optimality conditions. In this pa-
per, the UTSM method was applied to identify the reduction of aerosols by
using two controllers with a minimized cost to demonstrate its application

under uncertainty. Compared with other methods, the solutions obtained
through ILP were presented as interval, which can provide intervals for the
decision variables, objective function, and decision-makers. Therefore, the
decision-makers can make the best decision based on the obtained solutions

through ILP, and then identify desired plans for aerosol-emission control un-
der uncertainty.
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1 Introduction

Interval linear programming (ILP) is described as the lower and upper
bounds, which is used as a powerful tool to deal with optimization prob-
lems under uncertainty. Some researchers have been working on solving
methods of ILP. In the best and worst cases (BWC) method proposed by
Tong [30], the ILP model was converted into two submodels: the best and
worst submodels, which they, respectively, have the largest and the smallest
feasible regions. A given point is feasible for the ILP model if it satisfies the
constraints of the best problem, and it is optimal for the ILP model if it is op-
timal for at least one characteristic model. The BWC method was extended
by Chinneck and Ramadan for ILP models with equality constraints; see [7].
A novel ILP method was proposed by Huang and Moore [18], and Huang and
Cao [17] also proposed their analyzed principals of two-step method (TSM).
Some solutions obtained through the BWC, ILP, and TSM may be infeasible.
New solving methods named three-step method (ThSM) and robust two-step
method (RTSM) have been developed for solving ILP models; see [10, 17].
To guarantee that the given solutions of ILP method are completely feasible,
Zhou et al. [33] proposed the modified ILP method (MILP) in which an ex-
tra constraint is added to the second submodel. Since the resulting solutions
from the MILP may be nonoptimal, two improved ILP and MILP (IILP and
IMILP) methods for solving ILP problems have been proposed; see [4]. The
solutions of these methods are completely feasible and optimal; see [3]. Also,
there are other methods for solving ILP models including IThSM, a new al-
gorithm by Ashayerinasab et al. and a method proposed by Garajov et al.;
see [2, 5, 12].

In this paper, we update the TSM (namely, UTSM) by considering the
feasibility and optimality conditions. Following that, a numerical example is
solved to demonstrate the effectiveness of UTSM. The air pollution caused
by polluted resources, which cause pollution emissions in many sources, re-
ceptors, and artificial factors, including emissions of dangerous gases from
factories and coal-fired power plants which pose serious threats to humans.
These can have a greater impact under stable atmospheric conditions and in-
creased pollution emissions. Pollution control and the reduction in the levels
of atmospheric pollution are very important. These would approach the lev-
els of atmospheric stability and prevent the destructive effects of pollutants.
The proposed models can identify pollution sources and atmospheric weather
conditions. These methods suggest pollution control using efficient methods
for the study area. In this case, the levels of emissions of pollutants and
environmental loading capacity need to be considered. Using optimization
models, the costs should be reduced by controlling methods.

Another aim of the study is to check air pollution management under
uncertainty as a range in the ILP model. The suggested methods will be
analyzed to show the control and the reduction of dust by mulching and
green belt controllers. However, the suggested methods are common methods



G
al
le
y
P
ro
of

An updated two-step method for solving interval linear programming ... 209

for dust and aerosol control. Now, to assess the effectiveness of the two
controllers (mulching and green belts), the ILP model will be used and solved
by the BWC, ITSM, and UTSM methods. The aim of this model is to
minimize the costs in order to reduce aerosols by using two controllers.

2 Interval linear programming

In this section, we define the ILP model and some solving methods. An
interval number [X−, X+] is shown as X± where X− ≤ X+. If X− = X+,
then X± is degenerate. If A− and A+ are two matrices in Rm×n such that
A− ≤ A+, then the set of matrices A± = [A−, A+] = {A |A− ≤ A ≤ A+ }
is called an interval matrix, and the matrices A− and A+ are called bounds
of A. Center and radius matrices are defined as ∆A± = 1

2 (A
+ −A−) and

Ac = 1
2 (A

− +A+). A special case of an interval matrix is an interval vector
x± = {x|x− ≤ x ≤ x+}, where x−, x+ ∈ Rn; see [1]. If A± is a square interval
matrix and each A ∈ A± is nonsingular, then A± is called regular. Consider
the following ILP model:

max f± =
n∑

j=1

c±j x
±
j

s.t.
n∑

j=1

a±ijx
±
j ≤ b±i , i = 1, 2, . . . ,m,

0 ≤ x−
j ≤ x+

j , j = 1, 2, . . . , n.

(1)

The characteristic model of ILP model (1) is

max f =
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi, i = 1, 2, . . . ,m,

xj ≥ 0, j = 1, 2, . . . , n,

where aij ∈ a±ij , cj ∈ c±j , and bi ∈ b±i . The feasible solution set of the ILP
is defined as

x ∈ Rn :
n∑

j=1

a−ijxj ≤ b+i , xj ≥ 0, i = 1, . . . , m, j = 1, . . . , n

 .

Also, the optimal solution set of the ILP is defined as the set of all optimal
solutions over all the characteristic models. Some methods for solving ILP
models are BWC, TSM, ITSM methods (see [16,30,31]), which are presented
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in Table 1. Also f−
opt and f+

opt are the best and worst optimal values of the

objective function and the optimal solution is x±
j opt =

[
x−
j opt, x

+
j opt

]
.

We also have∣∣a±ij∣∣− =

{
a−ij , a±ij ≥ 0,

−a+ij , a±ij < 0,

∣∣a±ij∣∣+ =

{
a+ij , a±ij ≥ 0,

−a−ij , a±ij < 0,

Sign(a±ij ) =

{
1, a±ij ≥ 0,

−1, a±ij < 0.

Note that in all methods, for the objective functions, the notations “+”
and “-” are always used for the first submodel and the second submodel,
respectively. But for the variables, in the TSM and ITSM methods, the
notation “+” for xj , j = 1, . . . , k, in the first submodel and j = k+1, . . . , n
in the second submodel is used. Also, the notation “-” for xj , j = k+1, . . . , n
in the first submodel and j = 1, . . . , k in the second submodel is used. In
the BWC method, these notations are not used.

Remark: If a decision-maker wants to minimize the costs, then the BWC
method can provide the lower and upper bounds of the cost. Now, an exam-
ple is solved and then the results are compared. Consider the ILP model as
follows:

max f± = [3.5, 4]x±
1 − [1.5, 1.7]x±

2

s.t.
[1.1, 1.2]x±

1 + [1.7, 1.9]x±
2 ≤ [11.7, 12.1] ,

[4, 5]x±
1 − [3, 4]x±

2 ≤ [5, 7] ,
0 ≤ x−

1 ≤ x+
1 ,

0 ≤ x−
2 ≤ x+

2 .

(2)

The results obtained through the BWC, TSM, and ITSM are given in
Tables 2 and 3 and Figure 1.

Some points of the solution space obtained by the BWC and TSM are
infeasible. For example, the point (5.3839, 4.0076) in the BWC and the
point (5.1417, 4.3388) in the TSM are infeasible because they do not satisfy
the inequality 1.1x+

1 + 1.7x−
2 ≤ 12.1, which is the first constraint of the best

problem. The solution space obtained by the ITSM is feasible.

In the next subsection, we will define optimality condition and show that
some points of the BWC, TSM, and ITSM are nonoptimal, and then we
propose a new method, which we call an updated TSM method.
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Table 1: submodels of BWC, TSM, and ITSM
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Table 2: submodels of BWC, TSM, and ITSM for ILP model (2).

Methods The first submodel The second submodel

BWC

max f+ = 4x1 − 1.5x2

s.t.
1.1x1 + 1.7x2 ≤ 12.1
4x1 − 4x2 ≤ 7
x1, x2 ≥ 0

max f− = 3.5x1 − 1.7x2

s.t.
1.2x1 + 1.9x2 ≤ 11.7
5x1 − 3x2 ≤ 5
x1, x2 ≥ 0

TSM

max f+ = 4x+
1 − 1.5x−

2

s.t.
1.1x+

1 + 1.9x−
2 ≤ 12.1

4x+
1 − 4x−

2 ≤ 7
x+
1 , x

−
2 ≥ 0

max f− = 3.5x−
1 − 1.7x+

2

s.t.
1.2x−

1 + 1.7x+
2 ≤ 11.7

5x−
1 − 3x+

2 ≤ 5
x−
1 ≤ x+

1 opt → x−
1 ≤ 5.1417

x+
2 ≥ x−

2 opt → x+
2 ≥ 3.3917

x−
1 , x

+
2 ≥ 0

ITSM

max f+ = 4x+
1 − 1.5x−

2

s.t.
1.1x+

1 + 1.9x−
2 ≤ 12.1

4x+
1 − 4x−

2 ≤ 7
x+
1 , x

−
2 ≥ 0

max f− = 3.5x−
1 − 1.7x+

2

s.t.
1.2x−

1 + 1.7x+
2 ≤ 11.7

5x−
1 − 3x+

2 ≤ 5
1.1x+

1 opt + 1.7x+
2 ≤ 12.1

4x+
1 opt − 4x+

2 ≤ 7

x−
1 ≤ x+

1 opt

x+
2 ≥ x−

2 opt

x−
1 , x

+
2 ≥ 0

Table 3: Solutions of BWC, TSM, ITSM for ILP model (2).

Methods x±
1 x±

2 z±

BWC [3.4046,5.3839] [3.6339,4.0076] [5.1031,16.0848]
TSM [3.6033,5.1417] [3.3917,4.3388] [5.2355,15.4792]
ITSM [3.2744,5.1417] [3.3917,3.7906] [5.0162,15.4792]
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Figure 1: Solutions of ILP model (2)

2.1 A new method: An updated TSM

In this subsection, we suggest an updated TSM by considering both feasibility
and optimality conditions. At first we review basis stability, and then obtain
two feasibility and optimality conditions.

Definition 1 (see [15]). The problem max
{
cTx : Ax = b, x ≥ 0

}
, where c ∈

C± ⊆ Rn, A ∈ A± ⊆ Rm×n and b ∈ b± ⊆ Rm is called B-stable with basis B,
if B is an optimal basis for each characteristic model. The ILP model is called
(unique) nondegenerate B-stable if each characteristic model has a (unique)
nondegenerate optimal basic solution with the basis B. Let B ⊆ {1, 2, . . . , n}
be an index set such that (the restriction of A to the columns indexed by
B) is nonsingular. Similarly, N = {1, 2, . . . , n} \B denotes the index set of
nonbasic variables and AN is the restriction of A to the columns indexed by
N . Also, B can be computed by solving an arbitrary characteristic model.
We now review the conditions for B-stability.
Regularity: AB is regular.
Feasibility: The solutions set of the interval system ABxB = b are nonneg-
ative.
Optimality: AB is optimal, that is, cTBA

−1
B AN − cTN ≥ 0T .

Theorem 1. [27] If ρ
(∣∣∣(Ac)

−1
B

∣∣∣∆AB

)
< 1, then AB is regular, where ρ(.)

denotes the spectral radius.

Theorem 2. [27] If max1≤i≤n

(∣∣∣(Ac)
−1
B

∣∣∣∆AB

)
ii
≥ 1, then AB is not regu-

lar.
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Some conditions for the regularity of interval matrices have been proposed
in [29].

Theorem 3. [28] The interval vector r is an enclosure to the solution set
of a system ABxB = b, where

r−i = min
{
−x∗

i + (xc
i + |xc

i |)Mii) +
1

2Mii−1 (−x∗
i + (xc

i + |xc
i |)Mii

}
,

r+i = max
{
x∗
i + (xc

i − |xc
i |)Mii) +

1
2Mii−1 (x

∗
i + (xc

i − |xc
i |)Mii

}
,

M = (I −
∣∣∣(Ac)

−1
B

∣∣∣∆AB
)−1, xc = (Ac

B)
−1bc,

x∗ = M(|xc|+
∣∣∣(Ac)

−1
B

∣∣∣∆b),

with Ac
B is nonsingular and ρ

(∣∣∣(Ac)
−1
B

∣∣∣∆AB

)
< 1.

Theorem 4. [15] Let y be an enclosure to the solution set of ABy = cB. If((
AT

N

)
y
)− ≥ c+N , then the optimality condition holds.

Theorem 5. [15] Let diag(q) denote the diagonal matrix with entries
q1, . . . , qm. For each q ∈ {±1}m, if the solution set of the system ((Ac

B)
T − (∆AB )

T
diag(q)) y ≤ c+B ,

−((Ac
B)

T
+ (∆AB )

T
diag(q)) y ≤ −c−B ,

diag(q)y ≥ 0,

lies in the solution set of the system

{
((Ac

N )
T − (∆AN

)
T
diag(q)) y ≤ c+N ,

diag(q)y ≥ 0,

then the optimality condition holds.

Theorem 6. [15] Let the ILP model be unique, nondegenerate B-stable,
where B = (1, . . . , m). Then the optimal solution set of the ILP model is
equal to the solution set of the interval system

ABxB = b, xB ≥ 0, xN = 0, or A+
B
xB ≥ b−, A−

B
xB ≤ b+, xB ≥ 0, xN = 0.

Now, we introduce two submodels of UTSM. Firstly, we solve the sub-
model corresponding to f− ,which is the second submodel of the TSM. Sec-
ondly, we add two extra constraints in order to ensure that the resulting solu-
tion space is completely feasible and optimal in the submodel corresponding
to f+. Submodel 1 is as follows.

Submodel 1
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max f− =
k∑

j=1

c−j x
−
j +

n∑
j=k+1

c−j x
+
j

s.t.
k∑

j=1

|aij |+Sign(a±ij )x
−
j +

n∑
j=k+1

|aij|−Sign(a±ij )x
+
j ≤ b−i , i = 1, . . . m,

x−
j ≥ 0, j = 1, . . . , k,

x+
j ≥ 0, j = k + 1, . . . , n,

(3)

For Submodel 2, x−
j opt for j = 1, . . . , k and x+

j opt for j = k+1, . . . , n are the
optimal solutions of the first submodel.

max f+ =
k∑

j=1

c+j x
+
j +

n∑
j=k+1

c+j x
−
j ,

s.t.
k∑

j=1

|aij |−Sign(a±ij )x
+
j +

n∑
j=k+1

|aij|+Sign(a±ij )x
−
j ≤ b+i , i = 1, . . . m,

0 ≤ x−
j opt ≤ x+

j , j = 1, . . . , k,

0 ≤ x−
j ≤ x+

j opt, j = k + 1, . . . , n,

Now, we obtain an extra constraint to ensure that the solutions are opti-
mal.

Theorem 6 implies that
n∑

j=1

a+ijxj ≥ b−i , i = 1, . . . , m, or

k−p∑
j=1

a+ijxj +
k∑

j=k−p+1

a+ijxj+
n−q∑

j=k+1

a+ijxj+
n∑

j=n−q+1

a+ijxj ≥ b−i , i = 1, . . . , m.

Since a±ij ≥ 0 for j = 1, . . . , k − p, a±ij ≤ 0 for j = k − p + 1, . . . , k +

1, . . . , n− q and a±ij ≥ 0 for j = n− q + 1, . . . , n, therefore

k−p∑
j=1

a+ijxj +
k∑

j=k−p+1

a+ijxj+
n−q∑

j=k+1

a+ijxj+
n∑

j=n−q+1

a+ijxj

≥
k−p∑
j=1

a+ijx
−
j opt+

k∑
j=k−p+1

a+ijx
+
j +

n−q∑
j=k+1

a+ijx
+
j opt+

n∑
j=n−q+1

a+ijx
−
j .

Therefore, for optimality, it is sufficient that
k−p∑
j=1

a+ijx
−
j opt +

k∑
j=k−p+1

a+ijx
+
j +

n−q∑
j=k+1

a+ijx
+
j opt+

n∑
j=n−q+1

a+ijx
−
j ≥ b−i ,

or

n∑
j=1

a+ijx
′′
j ≥ b−i , x′′

j =


x−
j opt if Sign(a±ij ) = Sign(c±j ), j = 1, . . . , k,

x+
j if Sign(a±ij ) ̸= Sign(c±j ), j = 1, . . . , k,

x+
j opt if Sign(a±ij ) = Sign(c±j ), j = k + 1, . . . , n,

x−
j if Sign(a±ij ) ̸= Sign(c±j ), j = k + 1, . . . , n,

To ensure that the solutions are feasible, let us obtain an extra constraint:
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Theorem 6 implies that
n∑

j=1

a−ijxj ≤ b+i , i = 1, . . . , m, or

k−p∑
j=1

a−ijxj +
k∑

j=k−p+1

a−ijxj+
n−q∑

j=k+1

a−ijxj+
n∑

j=n−q+1

a−ijxj ≤ b+i , i = 1, . . . , m.

Since a±ij ≥ 0 for j = 1, . . . , k−p, a±ij ≤ 0 for j = k−p+1, . . . , k+1, . . . , n−q
and

a±ij ≥ 0 for j = n− q + 1, . . . , n, therefore
k−p∑
j=1

a−ijxj +
k∑

j=k−p+1

a−ijxj+
n−q∑

j=k+1

a−ijxj+
n∑

j=n−q+1

a−ijxj

≤
k−p∑
j=1

a−ijx
+
j +

k∑
j=k−p+1

a−ijx
−
j opt+

n−q∑
j=k+1

a−ijx
−
j +

n∑
j=n−q+1

a−ijx
+
j opt

Therefore, for feasibility, it is sufficient that
k−p∑
j=1

a−ijx
+
j +

k∑
j=k−p+1

a−ijx
−
j opt+

n−q∑
j=k+1

a−ijx
−
j +

n∑
j=n−q+1

a−ijx
+
j opt ≤ b+i or

n∑
j=1

a−ijx
′
j ≤ b+i , x′

j =


x+
j if Sign(a±ij ) = Sign(c±j ), j = 1, . . . , l,

x−
j opt if Sign(a±ij ) ̸= Sign(c±j ), j = 1, . . . , l,

x−
j if Sign(a±ij ) = Sign(c±j ), j = l + 1, . . . , n,

x+
j opt if Sign(a±ij ) ̸= Sign(c±j ), j = l + 1, . . . , n,

Finally, we have f±
opt =

[
f−
opt, f

+
opt

]
, x±

j opt =
[
x−
j opt, x

+
j opt

]
. Therefore,

the second submodel is as follows.
Submodel 2

max f+ =
k∑

j=1

c+j x
+
j +

n∑
j=k

c+j x
−
j

s.t.
k∑

j=1

|aij |−Sign(a±ij )x
+
j +

n∑
j=k+1

|aij|+Sign(a±ij )x
−
j ≤ b+i , i = 1, . . . m,

0 ≤ x−
j opt ≤ x+

j , j = 1, . . . , k,

0 ≤ x−
j ≤ x+

j opt, j = k + 1, . . . , n,

n∑
j=1

a+ijx
′′ ≥ b−i , x′′

j =


x−
j opt if Sign(a±ij ) = Sign(c±j ), j = 1, . . . , k,

x+
j if Sign(a±ij ) ̸= Sign(c±j ), j = 1, . . . , k,

x+
j opt if Sign(a±ij ) = Sign(c±j ), j = k + 1, . . . ,n,

x−
j if Sign(a±ij ) ̸= Sign(c±j ), j = k + 1, . . . ,n,

n∑
j=1

a−ijx
′ ≤ b+i , x′

j =


x+
j opt if Sign(a±ij ) = Sign(c±j ), j = 1, . . . , l,

x−
j if Sign(a±ij ) ̸= Sign(c±j ), j = 1, . . . , l,

x−
j opt if Sign(a±ij ) = Sign(c±j ), j = l + 1, . . . , n,

x+
j if Sign(a±ij ) ̸= Sign(c±j ), j = l + 1, n.

Therefore, the constraints
n∑

j=1

a−ijxj
′ ≤ b+i and

n∑
j=1

a+ijx
′′
j ≥ b−i are feasibil-

ity and optimality conditions, respectively.
Note that, since the solution regions obtained through the UTSM method

is completely optimal, the union of these regions will be closer to the exact
optimal solution region of the ILP model.
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Now, consider ILP model (2), again. Given Figure 1, the points
(3.4046, 3.6330), (3.6033, 3.3917), and (3.2744, 3.3917) obtained by the BWC,
TSM, and ITSM respectively, are nonoptimal, because they do not satisfy
inequality 1.2x1+1.9x2 ≥ 11.7, which is the first constraint of the worst prob-
lem with the reverse sign. Model (2) is equivalent to the following model:

max z± = [3.5, 4]x±
1 − [1.5, 1.7]x±

2

s.t.
[1.1, 1.2]x±

1 + [1.7, 1.9]x±
2 + x±

3 = [11.7, 12.1] ,
[4, 5]x±

1 − [3, 4]x±
2 + x±

4 = [5, 7] ,
0 ≤ x−

1 ≤ x+
1 ,

0 ≤ x−
2 ≤ x+

2 ,
0 ≤ x−

3 ≤ x+
3 ,

0 ≤ x−
4 ≤ x+

4 .

According to Theorems 1, 3, and 4, ILP model 3 is B-stable, where B =
(1, 2). Now, we solve the model by the UTSM.

submodel 1
max z− = 3.5x−

1 − 1.7x+
2

s.t.
1.2x−

1 + 1.7x+
2 ≤ 11.7,

5x−
1 − 3x+

2 ≤ 5,
x−
1 , x

+
2 ≥ 0,

submodel 2
max z+ = 4x+

1 − 1.5x−
2

s.t.
1.1x+

1 + 1.9x−
2 ≤ 12.1,

4x+
1 − 4x−

2 ≤ 7,
x+
1 ≥ x−

1 opt = 3.6033,

x−
2 ≤ x+

2 opt = 4.3388,{
1.1x+

1 + 1.7x+
2 opt ≤ 12.1,

4x+
1 − 4x−

2 ≤ 7,{
1.9x−

2 ≥ 1.7x+
2 opt,

5x+
1 − 3x−

2
≥ 5x−

1 opt − 3x+
2 opt,

x+
1 , x

−
2 ≥ 0.

Now, the results obtained by the UTSM have been given in Table 4 and
Figure 2.

Table 4: Solutions of UTSM for ILP model (2).

Methods x±
1 x±

2 z±

UTSM [3.6033,4.2945] [3.8820, 4.3388] [5.2355,11.3550]

As shown in Figure 2, the UTSM introduces a feasible and optimal space. All
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points satisfy the constraints 1.1x1 + 1.7x2 ≤ 12.1 and 4x1 − 4x2 ≤ 7 (feasi-
bility conditions) and the constraints 1.2x1+1.9x2 ≥ 11.7 and 5x1−3x2 ≥ 5
(optimality conditions).

Figure 2: The solution region obtained by the UTSM for ILP model (2)

3 Application to air quality management

Atmospheric conditions can be affected by many factors, including SO2, CO,
aerosols, dust, and so on. Aerosols have a very high diversity. As one of the
greatest pollutants, this phenomenon occurs in arid, semiarid regions, and
deserts, such that their sizes are different according to the concentrations in
air. These can have destructive effects on health, nature, and the environ-
ment and create numerous economic problems for local people. It can be said
that sandstorms and dust-storms are natural events with significant concen-
trations of particulate matter, which depend on the wind speeds. When the
wind speed is almost more than 8 meters per second (and sometimes based
on the region, which is stable or not, the wind speed is more than 6 me-
ters/seconds), it can get into the air flow and the earth’s atmosphere based
on the roughness, particulate size, soil texture, soil moisture, and vegetation;
see [9, 32]. The suggested methods are mulching and green belt that should
be analyzed to control and reduce dust. These suggested methods are con-
ventional methods for dust control, and many studies have been conducted
in this area.
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Mulch is a non-life coverage used for sand dune fixation in the desert
lands. A variety of organic and inorganic mulches are available that can be
used to accelerate production, reduce erosion, and even help control weeds.
In Iran, oil mulch is usually used to cover. Most of the causes of oil mulching
are the immediate effect, using them is provided in a short time, material
source is available in the country, and there is no need for foreign resources.

Vegetation can have a major impact on air pollution and climate quality.
It can also directly or indirectly decrease the temperature, increase moisture
and dust absorption, and affect urban air pollution control. Studies on this
subject have concluded that trees can greatly control air pollution, prevent
harmful pollutants like PM10, SO2, NO2 and CO, and particulate matter
in the atmosphere. Studies have shown that a lot of PM10 and PM2.5 is
destroyed by trees, such that the efficiency and effectiveness of this factor
plays a very important role in social and human health, and air quality
control. In many countries nowadays, trees are being planted to reduce costs
and harmful factors in the atmosphere; see [19,21,22].

Figure 3: Trees as air quality buffer.

Figure 4: Trees as air quality buffer.

It has been well-documented that the plants destroy air pollutants, in-
cluding hydrogen fluoride, sulfur dioxide, and some combinations of photo-
chemical reactions in the air. It can be said that the green belt efficiency in
the reduction of pollution defined by the following formula:

E =
R

R+A
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As E is the relative reduction effect by trees (percent), R is amount re-
moved by trees (kg), and A is the amount of pollution in the atmosphere (kg).

3.1 Methodology and overview of the study system

The Sistan and Baluchestan region in Iran is located in the southeast, with
arid and semi-arid weather. The Sistan plain covers a wide range of the
western part of the province, and almost a wide catchment area. In addition
to Iran, it has expanded into two countries Afghanistan and Pakistan. The
border areas between Iran, Pakistan, and Afghanistan are the main dust
source region in southwest of Asia; generating some 81 dust storms over
Sistan; see [13, 24–26]. The Sistan region is one of the richest regions of
Iran in terms of wind, and this sometimes creates difficulties for its people.
Dust storms generate great waves, especially in Sistan. Figure 6 shows the
geographical location of the Sistan and Baluchestan region.

Figure 5: Geographical location of the Sistan and Baluchestan region

The Sistan’s 120-day winds are the most famous local winds of Iran,
blowing from mid-May to mid-September, over a large area in the northern
part of Sistan-Baluchestan. The strong “Levar” winds in summer favor the
uplift of large quantities of dust from the Hamoun basin, which is located in
the northern part of Sistan; see [25]. The 120-day winds of Sistan–in terms
of time and local distribution and wind speed–have a high variety. In Sistan,
the strong winds above eight nodes start in May and continue till November.
In Sistan, winds are severe in summer, but can be slowed down in other
seasons. Therefore, in this section, we focus on the optimization of an air
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quality management model and PM10 emissions control in the Sistan region
in a source through controllers, as mentioned in the previous section.

The aim of an air quality management model is to control effects on health
by air pollution. These effects are directly related to pollutant concentration.
Now, we establish the relationship between air pollution emissions and load-
ing concentrations. The ground concentration at each downwind location
(x, y) can be estimated as follows [14]:

C (x, y) =
Q

πuσyσz
exp

[(
−y2

2σz
2

)
−
(

H2

2σz
2

)]
,

where C (x, y) is the ground-level concentration of pollutants (mg/m3) at
point (x, y); x is the downwind distance from the source; Q denotes pollu-
tant emission rate (mg/sec); u is average wind speed (m/ sec) along x direc-
tion; and σy and σz represent horizontal and vertical dispersion coefficients of
plume versus(against) downwind distance x from the pollution source. Gen-
erally, σy and σz can be approximated by the following equations [8, 23]:

σy = γ1x
β1 , σz = γ2x

β2 .

Figure 6: Dust-plume geometry

where γ1 and β1 are constants along the y direction and γ2 and β2 are
the coefficients along the z direction, respectively. The values of γ1, β1, γ2,
and β2 are related to atmospheric stability classes defined for different me-
teorological situations through wind speed, solar radiation (during the day),
and cloud cover during the night [14,23].
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Figure 7: Typical visibility within a dust-storm

A transfer factor tp can then be determined as follows [14]:

tp =
1

πuσyσz
exp

[(
−y2p
2σ2

y

)
−
(
H2

2σ2
z

)]
,

where tp represents the contributions of pollutant emission rate at the Sistan
area to the ground concentration of receptor zone p; the index p indicates
different receptors influenced by air pollution emissions; H indicates the ef-
fective height of the air pollution plume from the Sistan region [6].

3.2 ILP model for air quality management modeling

The optimization model of air quality management has been presented as
fuzzy linear programming [11,20]. Now, we consider the following ILP model:
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Min
2∑

j=1

5∑
k=1

LkTC
±
jkX

±
jk

s.t.
X±

jk ≤ FC±
jk , for all j, k,

2∑
j=1

X±
jk ≥ S±

k , for all k,

2∑
j=1

(
1− η±j

)
X±

jk ≤ e±k , for all k,

2∑
j=1

tp
(
1− η±j

)
X±

jk ≤ θ±kp, for all k, p,

0 ≤ X−
jk ≤ X+

jk, for all j, k,

(4)

where i is the PM10 emission source, j is the type of PM10 control method
(j = 1, 2, respectively, denotes mulching and green belt), and k is the plan-
ning period. The planning horizon is five years. Decision variables are the
amount of PM10 allocated to control measure j for the reduction from source
i in the period k (t/day). It has been shown by the symbol Xijk. The ob-
jective is to minimize the total cost for the abatement of PM10. Now, the
model describes the study area according to particulate reduction methods
in this article.
Also Lk is length of period k (day), TCjk is operating cost of control mea-
sure j during period k ( Rials/t), FCjk is maximum mitigation capacity of
measure j in period k, ? is PM10 generation amount of emission source in pe-
riod k (tonne/day); ηj is efficiency of control measure j, ek is PM10-emission
allowance for Sistan during period k (tonne/day), tp is transfer factor from
emission area to receptor zone p (day/m3), and θkp is environmental loading
capacity of receptor zone during period (mg/m3). Note i = 1 represents the
emission source of PM10 in the Sistan region. All the parameters in model
(4) are presented as interval numbers. In this case, the parameters of TCjk,
FCjk, Sk, ηj , ek, and θkp are assumed to be estimated as interval numbers.
Particulate matter in the Sistan region is discussed over four-month periods
(the maximum amount of dust and particulate matter) during five years. We
estimate-according to two methods, mulching and green belts-the tables are
related to the costs of each method, efficiencies, and permitted amounts of
dust in the region, and show their reduced values by using the two methods in
the respective tables. Here, Sk is the aerosol generation amount of emission
sources in period k in Sistan, which has been shown in Table 5.

The parameters related to the model in the Sistan region are now de-
scribed. Tcjk represents mulching costs per hectare with respect to the in-
flation rate (million). If we require 10 tonnes mulchs for every hectare and
is equal to 20,000 Rials per liter of mulch, then the amount calculated using
the inflation rate will be equal to Table 6.
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Table 5: Sk-emission rate for ILP model (4)

Months 2012 2013 2014 2015 2016

May [55,1345] [76.6,4985] [62.5,4983.6] [15.3,460.1] [45.6,4985]

June [130.7,1384.8] [60.1,2570.4] [140.2,4985] [17.2,452.4] [49.1,630.8]

July [315.6,9985] [64.6,3044.6] [4979.4,4985] [10.5,4985] [56.2,2489.4]

August [100,1455.7] [280.2,3553.5] [130.2, 4985] [880.9,4840] [92.2,4983.6]

Table 6: Costs of different pollution controls for ILP model (4)

Tcjk 2012 2013 2014 2015 2016
Mulching [8.9,18] [12.1,24.1] [15,30] [16.8,33.8] [16.6,37.3]
Green belt [2.5,6] [3,6] [3,7] [4,8] [5,10]

Figure 8: Dust precipitation

where eik denotes the aerosol (PM10) emission allowance for the source
(Sistan) during period k (t/day) . If FCjk is the maximum mitigation ca-
pacity of measure j at area in period k, then the amount of the reduction by
the mulching and green belts methods can be seen in Tables 8 and 9.

Table 7: ek for ILP model (4)

PM10-emission allowance PM10
Good 0-54
Average (allowance) 55-154
Unhealthy for sensitive groups 155-254
Unhealthy 255-354
Very Unhealthy (crisis) 355-424
Dangerous (emergency) 425-604
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Table 8: The value of PM10 emissions controlled by mulching

Months 2012 2013 2014 2015 2016

May [44,1076] [61.3,3988] [50,3986.9] [12.24,368.08] [36.48,3988]

June [104. 6,1108] [48.08,2056.3] [112.2,3988] [13.76,361.9] [39.28,504.6]

July [252.5,7988] [51.68,2435.9] [4979.4,3989.1] [8.4,3988] [44.96,1991.5]

August [80,1164.6] [224.16,2842.8] [104.16, 3988] [704.72,3872] [73.76,3986.9]

FCjk [120,2834.1] [96.3,2830.7] [1311.4,3988] [184.8,2147.5] [48.62,2617.8]

Table 9: The value of PM10 emissions controlled by green belt

Months 2012 2013 2014 2015 2016

May [34.4,840.6] [47.875,3115.6] [39.06,3114.7] [9.56,287.6] [28.5,3115.6]

June [ 81.7,865.5] [37.6,1606.5] [87.625,3115.6] [10.7,282.7] [30.687,394.2]

July [197.3,6240.6] [40.375,1903.1] [3111.9,3115.6] [6.56,3115.6] [35.125,1555.9]

August [62.5,909.8] [175.1,2220.9] [81.375,3115.6] [550.56,3025] [57.625,3114.7]

FCjk [193.9,2214.1] [75.2,2211.5] [829.98,2336.5] [144.345,1677.7] [37.98,2045.1]

Particulate reduction-with an efficiency of 75%-and relative reduction ef-
fect impact 0.2 and efficiency 40%, and the relative reduction effect impact
0.375 have been shown by a green belt. θkp = [45, 55] denotes environmen-
tal loading capacities at area p in period k; transfer factor tp from source
to area p is 1.1587 × 10−26. The minimum and maximum wind speeds are
[6 m/s, 15 m/s] during the 120 days; ek = [55, 154] shows the PM10 emis-
sion allowance during the period k (t/day) in Sistan.

Table 10: PM10 efficiencies of different control measures

Methods efficiency Interval efficiency
Mulching method η1 [0.4, 0.6]
Green belt method η2 [0.40, 0.75]

We now solve the air pollution control model using the methods mentioned
in Section 2. The results are given in Table 11.

Table 11: Results obtained from solving ILP model (4)

BWC ITSM UTSM

Z × 107 [0.1490,6.0239] [2.19050165304,5.16560105314] [2.50191551199,7.7566276346]
x1opt [ 0.0,3348.7] [3634.1,3834.1] [3834.1 , 6795.9]
x2opt [0.0,3463.2] [3730.7, 4830.7] [4830.7 , 8152.3]
x3opt [136.0,4963.8] [4988,5348] [5071.4 , 8480]
x4opt [0.0, 2540.1] [3307.5,4147.5] [4147.5 , 7222.4]
x5opt [0.0,3234.3] [3317.8,4117.8] [4117.8 , 7181.9]
x6opt [150.3,194.0] [193.95,663.7] [240.6 , 240.6]
x7opt [75.2,120.4] [75.2,521.3] [46.8 , 46.8]
x8opt [20.9,1192.0] [16.2,447.4] [1.1044e-11 , 2.7188e-07]
x9opt [144.3,231.0] [144.4,618.9] [179.6 , 179.6]
x10opt [379.0,60.8] [3798,623.2] [185.4 , 185.4]
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Results and analysis
Tables related to the reduction of particulates are given in the previous sec-
tion, using two controllers as mulching and green belt. It can be said that the
Sistan region aerosols were considered over four months in five-year periods,
such that the lower bound is the lowest amount of the particulate matter
PM10 and upper bound represent the most amount of the particulate matter
PM10 in Sistan. Now, using the two above mentioned controller, the reduc-
tion of aerosols is calculated according to efficiencies in every method and
these estimations are presented in Tables 8–11. Notably, the costs associated
with each method can be considered based on the funding in the environ-
mental section and different covering lands. Inflation in the country has been
considered over the years according to variable data of costs and inflations
as well as other parameters studied in the Sistan region. The greatest re-
ductions in the particulate matter were calculated by the ILP model and the
presented formulas.

For greater reliability and accuracy of calculations, the ILP would be
solved by three methods: BWC, ITSM, and UTSM. The variations in the
reduction of aerosols are studied. The results show that if the aim is to min-
imize the cost for decision-makers and officials, then the BWC method could
be the best method because it can calculate the minimum and maximum
of the costs under the two optimistic and pessimistic models (the best and
worst) for finding the best answer. For example, the cost per hectare–using
mulching–the minimum cost is estimated ∼ 0.1490 × 107 and the maximum
cost is estimated ∼ 6.0239×107; Therefore, these are provided as an interval
under the upper and lower bounds.

In the BWC method, as mentioned in Section 2, the resulting solution
does not exactly hold into the constraints. For example, in the first con-
straint, the amount of reduction in particulates in every period may be more
than the greatest reduction in particulates in each period. Therefore, UTSM
and ITSM methods are used. In this case, maybe because of the reduction
area which is created by the solutions, the model cannot be considered good
enough in order to estimate the reduction of costs. It can make changes in
the costs in some parts to find the best answer and increasing them because
the constraints are not violated. Hence, we can say to find the best answer
for the reduction of particulate matter, ITSM and UTSM methods are more
suitable. In Table 11, 10 optimal solutions are given which are shown with the
symbol xopt. The first five numbers represent xopt according to the mulching
and the second set of five numbers is xopt according to the green belt over
five years. As seen in the ITSM method, the changes are: [3634.1, 3834.1] in
2012; in that year, the minimum value is 55 and the maximum value is 9985,
which show the most amount of particulate matter in July. The above models
considered all solutions in a feasible area for one another and the maximum
value is 9985, which estimated the changes in the reduction of particulates
[3634.14, 3834.14].
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ITSM method enabled shows a reduction in the intervals. Using the
UTSM method, which can be said to be one of the best methods, it seeks
to find the best solution in the feasible area. Optimally, the reduction of
particulates is [3834.14, 6795.9128], which has obtained good results, and
further reductions are anticipated. Also, in 2013, the minimum value is 62.5
for the entire year and the maximum value is 4985, such that the reduction of
the particulate matter has been estimated at [3730.7, 4830.7]. This indicates
that in 2013, according to the amount of particulates, [3730.7, 4830.7] can
undergo a decrease. It can be said that the obtained values from the model
show a strong reaction over the years, according to the highest amount of
the particulate matter and using the above analysis, we have the amount of
particulates [4830.7 , 8152.3416] in the UTSM method similarly. It seeks to
solve and attempts to reduce it, but according to the obtained numbers, the
reduction is less in some years, it is because of the amount of particulate
matter which is very large in all months of the year. However, there are the
powerful and useful methods to control particulate matter, those may not
be able to greatly reduce particulates, and many environmental factors can
cause fewer reductions. The other numbers are explained similarly.

4 Conclusion

In this paper, some methods for solving the ILP models have been reviewed,
such as the BWC, TSM, and improved TSM (ITSM). Besides, an updated
two-step method (UTSM) has been proposed. This method improves the
TSM by considering two feasibility and optimality conditions. The solutions
comparison for the BWC, TSM, ITSM, and UTSM methods based on the
feasibility and optimality conditions shows that some points of the BWC and
TSM may be infeasible. Also, some solutions of the ITSM method may be
non-optimal. The advantage of the UTSM is that, two constraints have been
added in the second submodel which guarantees the feasibility and optimality
conditions, and so the obtained region by the UTSM will be feasible and
optimal. Also, a case study related to air quality management has been
done.
For solving many uncertain problems in the real-world, different models are
used. The ILP model which is one of the models under uncertainty can be
used for modeling these problems. In this paper, we consider an ILP model
related to minimizing the costs in order to control aerosols and solve it by
the BWC, ITSM, and UTSM methods. The results show that the lower and
upper bounds of the costs obtain by the BWC method. The reduction of
particulates can be clearly seen in two ITSM and UTSM methods.
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