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A modified flux-wave formula for the
solution of one-dimensional Euler
equations with gravitational source
term

H. Mahdizadeh*

Abstract

In this paper a novel Godunov-type finite volume technique is presented
for the solution of one-dimensional Euler equations. The numerical scheme
defined herein in is well-balanced and approximates the solution by propa-
gating a set of jump discontinuities from each Riemann cell interface. The
corresponding source terms are then treated within the flux-differencing of
the finite volume computational cells. First, the capability of the numerical
solver under gravitational source term is examined and the results are val-
idated with reference solution and higher-order WENO scheme. Then, the
well-balanced property of the scheme for the steady-state is tested and finally
the proposed method is employed for the modeling small and large amplitude
perturbation imposed to the polytropic atmosphere. It is found out that the
defined well-balanced solver provides sensible prediction for all of the given
test cases.

Keywords: Wave propagation algorithm, Flux wave formula, Riemann
solver, Well-Balanced, Euler equations.

1. Introduction

The Euler equations with gravitational source terms have been extensively
used in many scientific aspects such as aerospace, astrophysics, and shock
tube problems. Prediction models should be able to capture sharp gradi-
ent shocks as well as rarefaction waves that appear within the solution in
particular with existence of source terms. Generally, two different class of
finite volume methods have been used to model Euler equations in recent

*Corresponding author

Received 14 October 2016; revised 31 January 2018; accepted 28 February 2018
H. Mahdizadeh

Department of Civil Engineering, University of Birjand, Iran.

e-mail: hossein.mahdizadeh@birjand.ac.ir

25



26 H. Mahdizadeh

years mainly reviewed by LeVeque [8,7]and [TG]. The first method is upwind
method, which basically uses the Godunov scheme. Despite the complexity
of upwind schemes in particular in dealing with associated Jacobian matrix
they provide very accurate results for the shock capturing problems [I7].
The second approach is central schemes, which applies Lax—Friedrichs or
Lax-Wendroff methods. However, they produce rather high diffusion, which
eventually affects the methods stability unless a refined mesh is used [7].

Previously, significant attentions have been paid for the solution of the
Euler equations with the gravitational source terms mostly based on the finite
volume methods. LeVeque and Bale [8] have developed a quasi-state wave
propagation algorithm for the solution of the Euler equations. In another
work Botta et al. [?] defined a well-balanced finite-volume methods, which
maintain certain class of steady states for the nearly hydrostatic flows. A well-
balanced approach on the basis of the gas-kinetic scheme has been proposed
by Luo et al. [I0] for an isolated gravitational hydrodynamic system. Kéappeli
and Mishra [5] have introduced a second-order well-balanced finite volume
scheme for the isentropic hydrostatic equilibrium. Chandrashekar and Klin-
genberg [B] implemented a well-balanced second-order Godunov-type finite
volume method for the Euler equations with gravitation. More recently, Li
and Xing designed a high-order well-balanced finite volume WENO (weighted
essentially oscillatory) scheme for the Euler equations with gravitational field,
which preserves both isothermal equilibrium and the polytropic hydrostatic
balance state.

The main purpose of this work is to develop a version of Godunov-type
wave propagation algorithm for the solution of one dimensional Euler equa-
tions. The proposed method extends the a modified flux-wave solution pro-
vided in [i,02] for the shallow water equations (SWEs) to the one dimen-
sional Euler equations. This approach is well-balanced and treats any source
terms within the flux-differencing of the finite-volume computational cells.
Additionally, the defined numerical scheme utilizes the advantage of com-
bination both approximate and exact Riemann speeds, which enables the
method to avoid non-negative pressure fields for the Euler equations. To
the best of author’s knowledge no development of the modified flux-wave
approach defined in [I1,07] is used for the solution of the one dimensional
Euler equations with gravitational source term. The rest of this paper is
organized as follows: In the next section the mathematical equations for the
one dimensional Euler equations consisting of gravitational source terms are
provided. Then in the second section, the wave propagation algorithm with
both first-order and high-resolution accurate terms is expressed. In the third
section, the flux-wave formula comprising different choice of wave speeds for
the one dimensional Euler equations is described. Fourth section states the
validation of the introduced numerical method with the reference solutions
and other numerical results available in literature. Finally, the paper ends
with the summary of numerical results and conclusions of findings.
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2. Governing equations

The one dimensional Euler equations including source terms can take the
conservation law form as

U+FU), =
p pu 0
U=|pu| ,FU)=| pu®>+P | ,S=| —po. |,
E (E+ P)u —pus

where U is the vector of unknowns, F(U) is the flux-term, S shows cor-
responding source term, p is density,u denotes the particle velocity, P is
pressure,¢ is an time independent gravitational potential, and finally E is
the total energy, which can be obtained as

P 1
E=—+ pu
v—1
where v represents the ratio of specific heat. The relevant eigenvalues and
eigenvectors for the defined system of equations are expressed as

Al=u—c¢, Ag=u, \3g =u+c.

1 1 1
rr=|(u—c|,re= U , r3= | u+c |,
¢ —uc u?/2 ¢ +uc

where in the above equations ¢ and ( are called sound speed and the total
specific enthalphy, respectively, which can be computed as

o P C_E;P

In order to solve the above system of equation the wave propagation algorithm
described in the next section is used.

3. Wave propagation algorithm

The one dimensional Godunov-type wave propagation algorithm can be given

s [B,17]

At At ~n
U™ =U" = T (ATAU 1o+ AT DU i) = 5 (Fiaps = Fil ),
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where U™ is the vector of unknowns at the next time step, ATAU,_, /2 and

A" AU,_, , provide the right- and left-going fluctuations, and finally F?ﬂ
shows the second-order correction terms required to obtain high-resolution
scheme, which can be used with different choice of limiters. If F = 0, the
first-order Godunov-type wave propagation algorithm is achieved. The right
and left-going fluctuations are then computed, using the following formula-
tions

A+AUz’—1/2 = Z 5]@,1'71/2; A_AU'L—l/2 = Z fk,zel/za

k:\i_1/2>0 k:Xi_1/2<0

where &£ ;_;/, is called the kth flux-wave propagating from cell interface
i — 1/2 and can be obtained by multiplying particular coefficients into its
corresponding eigenvector, say,

Eiim1/2 = Bri-1/2Tk,i—1/2-

4. Flux-wave formula

The flux-wave approach has been first introduced by [0] for the acoustic
problem. This approach has been later modified by Mahdizadeh et al. [I1,1Z]
for the SWEs with modeling wet/dry front abilities. In this section this
modified version of flux-wave approach is extended for the solution of one
dimensional Euler equations with gravitational source term .The original flux-
wave formula including the treatment of source term can take the form [f]

M,
FU;)-FU;-1)— Si_1p0z = ZSk,i—um

k=1
where F(U;) and F(U;_1) are the fluxes at the left and right side of cell in-
terface i —1/2 and M,, denotes the number of waves, which for the prescribed
Euler equations is equal to three and Az implies finite-volume cell length.
To expand the flux-wave approach for the one dimensional Euler equations
it is only required that the differences between neighboring fluxes minus the
source terms is equalized with the summation of the relevant fluxes . This
can be accomplished as

Woodward—Coella

il Pi—1Ui—1 0
pitii + P | — | picti g +Pir | =Dz | —pi(di — ¢i)/Dx | (1)
(Es + P;)u; (Bi—1 + Pim1)ti —piui(bir1 — ¢i)/ D
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1 1 1
=P | Ui—C | +P2| Ui | +P3| witéi |,
G — Ui a2 Gi + Uic;

where @ and ¢ are the velocity and total specific enthalphy again, which can
be obtained through the combination of exact and approximate Riemann
wave speeds fully explained in [[1], where the approximate Riemann solver
utilized herein is based upon the Roe solver [i4] . For the Euler equations
the approximate velocity and total specific enthalphy can be givens as

VPi—1Ui—1 + \/Pit; i VPi—1Gi—1 + /PG
Vhici+ i Voici+ P

and the sound speed ¢; can take the form

ﬂ:

&=/ - DG - 1/2a).

The systems mentioned in equation (O) can be rewritten as

1 11 8, 5
Ui—c U Ut G Ba| = |02, (2)
G — e U3 /2 G+ e | | B3 3

where d1, 02, and 03 are

01 Pty — Pi—1Ui—1
b | = | (pitui +P;) — (pic10?_y + Pic1) + pi(dis1 — i)
3 (Ei + P)t; — (Ei—1 4+ Pi_1)ti—1 + piwi(diy1 — &)

By solving the linear system provided in equation (B), the coefficients 51, 32,
and (3 are computed, which can be later used to calculate the flux-wave
&p,i—1/2 required for obtaining the left- and right-going fluctuations for the
first-order Godunov-type wave propagation algorithm. It should be stressed
for the solution of linear system given above the LU decomposition algorithm
with partial pivoting defined in [I3] at each time-step.

4.1 Stability conditions

To ensure the method’s stability, the Courant—Friedrichs-Lewy condition
(CFL) [d] similar to the SWEs is used. This condition can be given as the
following equation for the one dimensional Euler equations:

max():)

CFL = N,

Az,
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where A = maz (A1, A2, A3) is the maximum amount of wave speeds, where
each wave speed is obtained as

A= — G, Ao =U;, A3 = Uj + G;.

Generally, the wave propagation algorithm uses values of CFL number close
to one, which ultimately reduces the computational setup time compared to
other Riemann solvers provided in literature.

5. Numerical results

In order to examine the effectiveness of modified flux-wave approach (MFW)
for the solution of the one dimensional Euler equations, in this section sev-
eral numerical test cases are provided. The suitability of the proposed MFW
approach in dealing with the gravitational source terms is first investigated,
and the obtained numerical results are compared with both reference solu-
tions and available numerical data borrowed from literature. Then, the well-
balanced property of the defined method with the existence gravitational
field for the isothermal equilibrium is verified, and the calculated numerical
results are validated with the nonwell-balanced WENO scheme. Finally, the
capability of the proposed well-balanced model in capturing small and large
amount of amplitude perturbation is tested. It should be expressed that the
MFW model defined herein was solved, using an in-house FORTRAN code
on an Intel Core (i7-4790) 3.6 GHz processor with 16GB of RAM. Addition-
ally, the solver employs high-resolution wave propagation algorithm based on
the monotonized centered (MC) limiter. The number of computational finite
volume cells is defined separately for each test-case.

5.1 Shock tube problem with gravitational field

The purpose of this test case is to assess the performance of the proposed
numerical solver for the solution of the one dimensional Euler equations with
the existence of gravitational source term. For this problem the Sod test case
is considered with the initial condition as

(.l P — { (1,0,1) if 2 <05,

(0.125,0,1) otherwise,
where p°, u°, and P are again the initial data for the defined Riemann prob-
lem at time ¢t = 0. As the boundary conditions the extrapolation boundary
conditions were imposed for both left and right boundaries. In order to con-
sider the effect of gravitational source term a constant exhibit gravitational
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field ¢, = 1 is used within the source term. The computation is implemented
until time ¢ = 0.2s with 100 uniform cells and the CFL number equal to 0.9.
Figure B shows numerical predictions for the density, pressure, energy and ve-
locity obtained based on the MFW approach. The validations are performed
with the reference solution achieved using 2000 numerical cell and also with
a novel higher-order WENO scheme defined by [d] with the same computa-
tional volumes. For the density field a left-going rarefaction wave along with
the contact discontinuity and shock wave are created within solution and the
obtained results are in qualitative agreement with both reference solution and
the WENO approach. Additionally, due to the effect of gravitational source
term the density is pulled upward for the left boundary.

Figure (b) demonstrates the numerical results for the pressure field. As
can be observed, a left-going rarefaction waves as well as right-moving shock
are appeared within solution and again the agreement between the obtained
numerical results and the reference solution are quite well. Figures D(c) and
m(d) exhibit the numerical results for the energy and velocity, respectively.
In terms of the energy field a rather similar shape to the pressure is seen. For
the velocity distributions a negative velocities in some regions are appeared,
which is mainly caused by gravitational term.

5.2 One dimensional gas-falling into fixed external
potential

This test case was originally introduced in [I5,[&] and utilized to verify the
well-balanced property of the proposed MFW approach for the isothermal
equilibrium within gravitational field. The initial conditions of the problem
can be given as

P = Poexp <;}> u=0,and p = RT (;}) (3)

where gravitational field is expressed as
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Figure 1: Numerical solution of the shock tube problem with gravitational source term
performed at ¢ = 0.2s. (a) Density, (b) pressure,(c) energy,(d) velocity

whereL is the computational domain set equal to 64 and other parame-
ters are: pg = 1, v =5/3, T = 0.6866 and ¢y = .02. The solution was then
performed in double precision using 200 and 400 computational cells until
time ¢=50s, where the steady-state condition is reached. Table I demon-
strates the Euclidean norm achieved for the conserved variables p, pu and F
at the steady-state condition. As can be seen for all variables relatively small
amount of error is obtained, which clearly state that the initial conditions
have been preserved during the simulations.

In order to compare the performance of the defined MFW approach with
the unbalanced scheme a small perturbation was imposed into the steady-
state solution provided in (B).Therefore the initial condition related to pres-
sure becomes

p=RT <I;;“> +0.001lexp (—10(x — 32)?).
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Table 1: Euclidean error norm computed based on the MFW approach for the steady-
state

Number of Cells o U E
200 2.6493E-04 9.7563E-05 4.3708E-04
400 6.8740E-05 2.2979E-05 8.9109E-05

The simulation was implemented up to time ¢ = 179980.53s, which is much
larger than the reference sound crossing time approximated as 7 = 120s. Fig-
ure B illustrates the numerical results obtained based upon the second-order
MFW approach in comparison with non-well-balanced WENO scheme bor-
rowed from [U]. As can be observed the initial condition for the velocity pro-
file was maintained during computation in contrast to the non-well-balanced
scheme, which was not able to properly neutralize the effect of gravitational
source terms with the flux gradient for the isothermal equilibrium state.

5.3 Small and large amplitude wave propagation

The final test case employed herein was introduced in [5] and investigates the
performance of the well-balanced MF'W approach in dealing with small and
large disturbances for the polytropic atmosphere in the gravitational field
¢(x) = gz. In doing so, the polytropic steady state solution is defined as

plo) = (47" - 52) ) = 0. pla) = Koplo)”.

with the constants: g = 1,7 =5/3, po = 1, po = 1, and Ko = po/(pg)-
The computational domain of the polytropic atmosphere was set equal to
[0,2] and the following periodic velocity perturbation was imposed at the
bottom boundary

u(0,t) = Asin(4rt), (4)
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In the first numerical study the amount of A in above equation was chosen
to 10~ %which provides a small perturbation into the solution and the simu-
lation was run until time ¢ = 1.5s. In Figure B the pressure perturbation and
velocity profiles calculated based upon the second-order MFW approach with
400 numerical cells for the small disturbance were shown. Theses results have
been also compared with the reference solution with 8000 numerical cells to-
gether with the higher-order WENO scheme given in [d]. It is clear that the
results are in good agreement with both reference solution and the higher-
order WENO scheme, which confirms that even for a small-perturbation the
effect of gravitational source term has been accurately treated within the
flux-differences of the neighboring cells for the finite volume method.
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Figure 3: Numerical results obtained based on the MF'W approach for the small perturba-
tion imposed for the polytropic steady-state solution in comparison with the higher-order
WENO scheme and reference. solution (a) Pressure perturbation,(b) velocity

Eventually the amount of A in the equation (@) was set to 0.1, which
creates rather large amplitude disturbance into the solution. The simulation
based on the second-order MFW approach with 200 computational cells and
CFL=0.9 was then implemented until t=1.5s . Figure @ shows plots for the
pressure perturbations and velocity along with the results calculated using
reference solution with 2000 cells and higher-order WENO scheme. As can be
observed the large amplitude perturbation was also captured by the defined
MFW approach and the results are in qualitative agreement with the higher-
order WENO method.

—e MFW ——MW
< Higher-Order-WENO »  Higher-Order-WENO
Reference Sohution .2} =—Reference Solution
£
g o 01
H F
] ]
H b
E L™ y
i

A1F

Figure 4: Numerical results obtained based on the MFW approach for the large perturba-
tion imposed for the polytropic steady-state solution in comparison with the higher-order
WENO scheme and reference. solution (a) Pressure perturbation, (b) velocity
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Conclusions

In this paper a modified flux-wave formula is presented for the solution one
dimensional Euler equations including gravitational source term. The nu-
merical solver defined herein is well-balanced and deals with gravitational
source terms inside the differences between fluxes for the finite volume com-
putational cells. In order to cope with difficulties with nonphysical results,
a combination of exact and approximate Riemann solution was utilized. A
modification for the Sod problem was first considered with the gravitational
source term and the validations was made with the higher-order WENO
scheme and rather identical results was achieved. Then, the well-balanced
property of the scheme was tested and the ability of the method in model-
ing the perturbation applied into the steady-state equilibrium in comparison
with unbalanced scheme was demonstrated. For the problem with small and
large amplitude of perturbations, the MFW approach gave the same results
equal to higher-order WENO scheme and accurately captured disturbances
imposed to the polytropic atmosphere.
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