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A computational method for solving
weakly singular Fredholm integral

equation in reproducing kernel spaces

D. Hamedzadeh and E. Babolian∗

Abstract

In the present paper, we propose a method to solve a class of weakly
singular Fredholm integral equations of the second kind in reproducing ker-
nel spaces. The Taylor series of the unknown function is used to remove

the singularity and bases of reproducing kernel spaces are used to solve this
equation. Efficiency of the proposed method is investigated through various
examples.

Keywords: Weakly singular kernel; Fredholm integral equations; Taylor se-
ries; Reproducing kernel space.

1 Introduction

The Fredholm integral equation with weakly singular kernel arises in differ-
ent problems of mathematical physics such as potential problem, variational
equilibrium, fracture mechanics, infrared radiation, and elastic contact prob-
lems [5,20,21]. Although in [11,16,17,22] authors obtained analytical solution
for integral equations with weakly singular kernel in special cases, but gen-
erally this is not an easy task. So the numerical analysis standpoint plays
major role for solving such equations.

In this paper, we consider Fredholm singular integral equation
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µ(x)u(x) + λ(x)

∫ 1

−1

k(x, y)u(y)

(y − x)α
dy = f(x), |x| < 1 and 0 < α ≤ 1, (1)

in which µ(x) ̸= 0 and λ(x) ̸= 0, for all x ∈ [−1, 1], and µ, λ, f, and k are
known smooth functions and u is the solution of equation (1) to be deter-
mined. We assume that problem has a unique smooth solution u. Several au-
thors considered the numerical solutions of Fredholm integral equations with
weakly singular kernel. In [12] Jiang and Cui considered integral equation of

first or third kind with weakly singular kernel of the form k(x, y) = G(x,y)
xαyβ ;

they solved the problem in reproducing kernel spaceW 1[0, 1]. Chen and Zhou
considered second kind Fredholm integral equation with Hilbert type singu-
larity [8]. They used transform to remove singularity and solved problem
in W [0, 2π] using reproducing kernel method. In [2] Babolian and Arzhang
Hajikandi solved (1) with k(x, y) = 1. Du, Zhao, G., and Zhao, C. consid-
ered integro-differential equation with logarithmic kernel and Kalman ker-
nel with boundary values [10]. They used smooth transform to remove
singularity, solving the converted equation with reproducing kernel method
in W 3[0, 1]. Chen and Cheng in [7] used piecewise homotopy perturbation
method (PHPM), for solving integro-differential equation with weakly sin-
gular kernel. In [3] authors solved (1), using Taylor series of the unknown
function u to remove singularity, and then Taylor expansion of k together
with Legendre polynomials as bases to implement Galerkin method. The
Sinc-collocation method is studied by Maleknejad, Mollapourasl, and Os-
tadi, to solve nonlinear Fredholm integral equations with weakly singular
kernel [15]. Beyrami, Lotfi, and Mahdiani solved Fredholm integral equa-
tion of the second kind with Cauchy kernel [6]; they removed singularity by
smooth transform and used reproducing kernel Hilbert space (RKHS) method
to solve problem inW 3

o [0, 1]. Nili and Dastjerdi in [18] solved weakly singular
Volterra–Hammerstein integral equation with operational Tau method. We
use Taylor series expansion of u(y), at point y = x, to remove singularity;
then by use of reproducing kernel space Wm[−1, 1] we convert this equation
to a system of linear equations. We demonstrate the method with conver-
gence rate O(hm); so when we increase m and move from one reproducing
kernel space to other, the rate of convergence will increase.

The rest of the paper is organized as follows. In section 2 we present
definitions and some useful properties of reproducing kernel spaces. In section
3 we remove singularity, by use of reproducing kernel space to implement our
method. Section 4 is devoted to error estimate and convergence analysis
of our method. Section 5 contains some numerical examples illustrating the
application of the proposed method. We end the paper with some conclusions.
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2 Preliminaries and notations

In this section we briefly review reproducing kernel properties of the Hilbert
spaceWm[a, b] and also fix notations used in this paper. The Hilbert function
space, Wm[a, b], is defined as the linear function space

Wm[a, b] = {f |f, f (′), . . . , f (m−1)are absolutely continuous, f (m) ∈ L2[a, b]},

which is equipped with the following inner product

⟨f, g⟩Wm =

m−1∑
i=0

f (i)(a)g(i)(a) +

∫ b

a

f (m)(x)g(m)(x)dx. (2)

The inner product (2) induces the following Hilbert norm

∥f∥Wm =
√

⟨f, f⟩Wm .

The following theorem presents an interesting property of the Hilbert space
Wm[a, b].

Theorem 1. [9]The Hilbert function space Wm[a, b] is a reproducing ker-
nel space with the conjugate symmetric reproducing kernel Rm(x, y), that is
given by

Rm(x, y) =


lRm(x, y) =

∑2m
i=1 ci(y)x

i−1, x < y,

rRm(x, y) =
∑2m

i=1 di(y)x
i−1, x ≥ y,

in which coefficients ci(y) and di(y) are the solutions of the following system
of differential equations

(−1)m∂2mR(x,y)
∂x2m = δ(x− y),

∂iR(a,y)
∂xi − (−1)m−i−1 ∂2m−i−1R(a,y)

∂x2m−i−1 = 0,
∂2m−i−1R(b,y)

∂x2m−i−1 = 0, i = 0, 1, . . . ,m− 1,

(3)

where δ(x− y) is the Dirac delta function.

Remark 1. [9] According to system (3), by use of the Dirac delta function
properties, the equation

(−1)m
∂2mR(x, y)

∂x2m
= δ(x− y)

is convert to
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∂i lRm(x,y)
∂xi

∣∣∣∣
x=y

= ∂i rRm(x,y)
∂xi

∣∣∣∣
x=y

, i = 0, 1, . . . , 2m− 2,

∂2m−1 lRm(x,y)
∂x2m−1

∣∣∣∣
x=y+

− ∂2m−1 rRm(x,y)
∂x2m−1

∣∣∣∣
x=y−

= (−1)m.

(4)

By solving the system (4) with boundary condition of (3) with Mathematica,
the coefficients ci(y) and di(y) are computed.

In particular, each function f ∈Wm[a, b] satisfies the following reproduc-
ing property

f(y) = ⟨f(.), Rm(., y)⟩Wm ∀y ∈ [a, b].

Theorem 2. [9]Let R(x, y) be a reproducing kernel of Wm[a, b]; then

∂i+jR(x, y)

∂xi∂yj
∈ L2[a, b], i+ j = 2m− 1

with respect to x and y and

∂i+jR(x, y)

∂xi∂yj
, 0 ≤ i+ j ≤ 2m− 2,

are absolutely continuous functions in [a, b], with respect to x and y; so we
have

∂i+jR(x, y)

∂xi∂yj
∈Wm[a, b], i+ j = m− 1.

Lemma 1. Let f be a smooth function of order m on [a, b]; then, for k =
1, 2, . . . ,m, we have f ∈W k[a, b].

Proof. Let f be a smooth function of order m on [a, b]; thus f (k), for k =
0, 1, . . . ,m, are continuous functions on [a, b]. Therefore f (k) ∈ L2[a, b], for
k = 1, 2, . . . ,m, beside the real constants Mk exist which we have

|f (k)(x)| ≤ Mk ∀x ∈ [a, b];

trivially f (k), for k = 0, 1, . . . ,m−1, are absolutely continuous functions, and
proof is complete.
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3 Removing the singularity and implementation of our
method

Throughout this section, we use the Taylor series to remove singularity of (1);
then by use of reproducing kernel space property, we construct our method.
With Taylor series of the unknown function u(y), at x ∈ [a, b], we have

u(y) = u(x) + (y − x)u
′
(x) +

(y − x)2

2!
u

′′
(x) + · · ·+ (y − x)k

k!
u(k)(x)

+
(y − x)k+1

(k + 1)!
u(k+1)(ξx,y), (5)

in which ξx,y is between x and y. Using (5), thus equation (1) converts to

µ(x)u(x) + λ(x)

( k∑
i=0

u(i)(x)

i!

∫ 1

−1

k(x, y)(y − x)i−αdy

+

∫ 1

−1

u(k+1)(ξx,y)

(k + 1)!
k(x, y)(y − x)k+1−αdy

)
= f(x),

and singularity is removed; now we are in position to define operator L :
Wm[−1, 1] →Wm[−1, 1],

L(u(.)) = µ(.)u(.) + λ(.)

( k∑
i=0

u(i)(.)

i!

∫ 1

−1

k(., y)(y − .)i−αdy

+

∫ 1

−1

u(k+1)(ξ.,y)

(k + 1)!
k(., y)(y − .)k+1−αdy

)
.

By use of operator L, the equation (1) is convert to Lu(x) = f(x). It is
easy to prove that, for 0 ≤ α < 1, operator L is a bounded linear operator on
[−1, 1] and that, for α = 1, L is a bounded linear operator on [−1 + ϵ, 1− ϵ]
for ϵ > 0. Let {xi}∞i=1 be a dense subset of interval [a, b], for i = 1, 2, . . .; take
y = xi, in Rm(x, y), and define φi(.) = Rm(., xi). Moreover, assume that
ψi = L∗φi, where L

∗ is the adjoint operator of L.

Theorem 3.Let {xi}∞i=1 be a dense set in [−1, 1]; then the functions ψi ∈
Wm[−1, 1], and {ψi}∞i=1 is complete in Wm[−1, 1].

Proof. By using the reproducing kernel properties of Wm[−1, 1], we have
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ψi = L∗φi = ⟨L∗φi(y), Rm(y, .)⟩Wm

= ⟨φi(y), LyRm(y, .)⟩Wm

= ⟨φi(y), LyRm(., y)⟩Wm

= ⟨LyRm(., y), φi(y)⟩Wm = LyRm(., y)

∣∣∣∣
y=xi

.

Therefore, we get

ψi = µ(xi)Rm(., xi) + λ(xi)

2m−1∑
i=0

1

i!

∂iRm(., s)

∂si

∣∣∣∣
s=xi

∫ 1

−1

k(xi, s)(xi − s)i−αds;

hence ψi ∈Wm[−1, 1]. Let u ∈Wm[−1, 1], and i ∈ N. Then we have

⟨u, ψi⟩Wm = ⟨u, L∗φi⟩Wm

= ⟨Lu, φi⟩Wm

= Lu(xi) = 0.

Since {xi}∞i=1 is dense in [−1, 1], we have Lu = 0. By the uniqueness of the
solution of (1), we get u = 0. Hence, {ψi}∞i=1 is complete in Wm[−1, 1].

As a consequence of Theorem 3, we can expand each function as the
following. Let {xi}∞i=1 be dense in [−1, 1], and let u be the solution of (1).
Since u ∈Wm[−1, 1], we get

u(x) =
∞∑
i=0

aiψi(x).

In what follows, we use un as approximate solution of equation (1) which is
defined by

um,n(x) =

n∑
i=0

aiψi(x), x ∈ [−1, 1],

and by use of operator L, we get

n∑
i=0

ai Lψi(x) ≃ f(x), (6)

and with inner product of equation (6), with φj , we have

n∑
i=0

ai ⟨Lψi, φj⟩Wm ≃ ⟨f, φj⟩Wm .
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Thus by replacing ≃ by =, the singular integral problem converts to the
linear system of equations Ba = F , in which the coefficient matrix B =
[bi,j ] = [Lψi(xj)], and the right hand side vector is F = [Fj ] = f(xj).

4 Error estimate and convergence analysis

In this section first the convergence of the method is investigated, and then
the error estimate of proposed method is studied.

Theorem 4.Let {xi}∞i=1 be dense in [−1, 1], and let {ψi}∞i=1 be the orthonor-
mal basis of Wm[−1, 1] produced by Gram–Schmidt process on {ψi}∞i=1. Then
um,n, the approximate solution of equation (1), and its derivatives are con-
vergent uniformly to u; that is, the exact solution of equation (1), and its
derivatives, respetively.

Proof. With the Gram process we have

ψi(x) =
i∑

k=1

βikψk(x),

and hence we get

u(x) =

∞∑
i=0

i∑
k=1

aiβikψk(x).

Therefore the approximate solution of equation (1) is

um,n(x) =
n∑

i=0

i∑
k=1

aiβikψk(x),

and clearly we have limn→∞ ∥u− um,n∥Wm[−1,1] = 0. On the other hand, we
have

u(x) = ⟨u(.), Rm(., x)⟩ =
m−1∑
i=0

u(i)(1)R(i)
m (1, x) +

∫ 1

−1

u(m)(z)R(m)
m (z, x)dz.

Differentiating j times with respect to x, we get

u(j)(x) =
m−1∑
i=0

u(i)(1)
∂jR

(i)
m (1, x)

∂xj
+

∫ 1

−1

u(m)(z)
∂jR

(m)
m (z, x)

∂xj
dz

= ⟨u(y), ∂
jRm(y, x)

∂xj
⟩Wm .

Thus we have
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| u(i)(x)− u(i)m,n(x) | = ⟨u(.)− um,n(.),
∂iRm(., x)

∂xi
⟩Wm

≤∥ u− um,n ∥Wm[−1,1]∥
∂iRm(., x)

∂xi
∥Wm[−1,1] .

Since ∂iRm(.,x)
∂xi ∈ Wm[−1, 1] and ∥ ∂iRm(.,x)

∂xi ∥Wm[−1,1], is continuous with
respect to x, on [−1, 1]. For some M > 0, we have

∥ ∂
iRm(., x)

∂xi
∥Wm[−1,1]≤M,

which completes the proof.

Let {xi}ni=1 be a subset of [−1, 1], and let −1 < x1 < x2 < · · · <
xn < 1. We define hj := xj+1 − xj , j = 1, 2, . . . , n − 1, and also put
h := max1≤j≤n−1 hj .

Theorem 5. [4]Let u ∈ Wm[−1, 1] be a smooth solution, and let um,n be
the approximate solution of the equation (1). Then

∥u− um,n∥∞ ≤ chm,

where c is a constant.

5 Numerical examples

We examine accuracy and convergence of the proposed method through four
examples, which indicate efficiency of the method. The errors were defined
as

Em,n = ∥u− um,n∥∞ ≃ max
1≤i≤n

| u(xi)− um,n(xi) | m = 1, 2, . . . .

Example 1. [3] Consider the following integral equation

u(x) +

∫ 1

−1

(1 + xy + 2y3)u(y)

(y − x)
3
5

dy = f(x),

where f is chosen such that

u(x) = x5, x ∈ [−1, 1],

is the exact solution. The numerical results are given in Table 1. In Table 1,
for fix n, by increasing m, the absolute errors converge to zero. In Figures 1,
for m = 6, 8, 10, when n = 8 the absolute errors of u and its derivatives are
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Table 1: Values of Em,n, for Example 1.

m n = 8 n = 16 n = 32

6 1.72675× 10−1 1.34164× 10−1 1.06141× 10−1

8 9.37476× 10−4 3.09832× 10−4 2.91592× 10−5

10 6.73973× 10−6 2.6006× 10−6 3.41363× 10−6

Table 2: Values of Em,n, for Example 2.

m n = 8 n = 16 n = 32

4 2.21811× 10−2 2.89879× 10−2 7.6194× 10−2

6 4.92002× 10−4 7.14302× 10−4 1.95649× 10−3

8 2.02376× 10−5 1.07565× 10−5 2.91592× 10−5

10 3.13506× 10−6 1.2141× 10−7 2.02656× 10−7

shown.

Example 2. Consider the following integral equation

u(x) + (x+ 2)

∫ 1

−1

ex+yu(y)

(y − x)
dy = f(x),

where f is chosen such that

u(x) = xex, x ∈ [−1, 1],

is the exact solution. The numerical results are given in Table 2. In Table 2,
for fixed n, by increasing m, the absolute errors converge to zero. In Figures
2, for m = 6, 8, 10, when n = 8 the approximate solutions and its derivatives
have high accuracies.

Example 3. [1, 3, 13, 14]Consider the following integral equation

u(x)−
∫ 1

0

u(y)

| x− y | 12
dy = f(x),

where f is chosen such that

u(x) = x, x ∈ [0, 1]

is the exact solution. For m = 4, 6, 8, when n = 8, the absolute errors of u
and its derivatives are shown in Figures 3. In Table 3, the numerical results
of proposed method are compared with [1, 3, 13]. where the Max Error is
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-0.5 0.0 0.5 1.0

1´10-7

5´10-71´10-6

5´10-61´10-5

5´10-51´10-4

5´10-4

(a) Absolute error for u8(.).

-0.5 0.0 0.5 1.0

5´10-61´10-5

5´10-51´10-4

5´10-40.001

0.005

(b) Absolute error for u
(1)
8 (.).

-0.5 0.0 0.5 1.0

5´10-51´10-4

5´10-4
0.001

0.005
0.010

0.050

(c) Absolute error for u
(2)
8 (.).

-0.5 0.0 0.5 1.0

5´10-4
0.001

0.005
0.010

0.050
0.100

0.500

(d) Absolute error for u
(3)
8 (.).

Figure 1: Example 1, m = 6(blue dotted), m = 8(red dash), m = 10(Gray line).
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-0.5 0.0 0.5 1.0

10-8

10-7

10-6

10-5

10-4

(a) Absolute error for u8(.).

-0.5 0.0 0.5 1.0

10-7

10-6

10-5

10-4

0.001

(b) Absolute error for u
(1)
8 (.).

-0.5 0.0 0.5 1.0

10-6

10-5

10-4

0.001

0.01

(c) Absolute error for u
(2)
8 (.).

-0.5 0.0 0.5 1.0

10-6

10-5

10-4

0.001

0.01

(d) Absolute error for u
(3)
8 (.).

Figure 2: Example 2, m = 6(blue dotted), m = 8(red dash), m = 10(Gray line).
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Table 3: The Max Error result of Example 3.

n n = 16 n = 32

Babolian’s method [3] 1.59× 10−16

proposed method for m = 10 5.29781× 10−11 4.75211× 10−11

Lakestani’s method [13] 1.27× 10−6 2.71× 10−8

Product integration method [1] 1.5× 10−5 9.39× 10−7

Lagrangian interpolant [1] 2.12× 10−5 1.94× 10−6

Table 4: The Max Error result of u(.), Example 4.

m n = 8 n = 16 n = 32

4 3.17985× 10−4 4.44036× 10−4 4.24008× 10−4

6 2.38288× 10−6 2.63628× 10−6 2.23585× 10−6

8 2.93877× 10−9 7.58042× 10−9 3.42293× 10−8

defined as Max Error = max0≤x≤1 | u(x)− um,n(x) | .

Example 4. [13, 19]Consider the following integral equation

u(x)− 1

10

∫ 1

0

u(y)

| x− y | 13
dy = f(x),

where f is chosen such that

u(x) = x2(1− x2), x ∈ [0, 1],

is the exact solution. Form = 4, 6, 8, when n = 8, the absolute errors of u and
its derivatives are shown in Figures 4. In Tables 4, 5, and 6 the numerical
results of proposed method are given. where the Max Error is defined as

Max Error = max0≤x≤1 | u(i)(x)− u
(i)
m,n(x) | .

Table 5: The Max Error result of u(1)(.), Example 4.

m n = 8 n = 16 n = 32

4 2.10369× 10−1 7.59437× 10−3 7.61556× 10−2

6 8.89262× 10−6 2.43063× 10−6 1.37019× 10−6

8 3.66355× 10−7 2.21809× 10−7 1.20238× 10−7
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0.2 0.4 0.6 0.8 1.0

10-13

10-12

10-11

10-10

(a) Absolute error for u8(.).

0.2 0.4 0.6 0.8 1.0

5´10-111´10-102´10-105´10-101´10-92´10-95´10-9

(b) Absolute error for u
(1)
8 (.).

0.2 0.4 0.6 0.8 1.0

10-11

10-10

10-9

10-8

(c) Absolute error for u
(2)
8 (.).

0.2 0.4 0.6 0.8 1.0

1´10-92´10-95´10-91´10-82´10-85´10-81´10-72´10-75´10-7

(d) Absolute error for u
(3)
8 (.).

Figure 3: Example 3, m = 4(green line), m = 6(blue dotted), m = 8(red dash).

Table 6: The Max Error result of u(2)(.), Example 4.

m n = 8 n = 16 n = 32

4 4.6866× 10−1 3.45622× 10−1 3.75916× 10−1

6 1.18157× 10−3 1.25931× 10−4 1.20977× 10−3

8 1.3664× 10−5 2.79569× 10−7 1.67734× 10−5
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0.2 0.4 0.6 0.8 1.0

5´10-101´10-9
5´10-91´10-8
5´10-81´10-7
5´10-7

(a) Absolute error for u8(.).

0.2 0.4 0.6 0.8 1.0

10-9

10-8

10-7

10-6

10-5

(b) Absolute error for u
(1)
8 (.).

0.2 0.4 0.6 0.8 1.0

5´10-71´10-6

5´10-61´10-5

5´10-51´10-4

5´10-4

(c) Absolute error for u
(2)
8 (.).

0.2 0.4 0.6 0.8 1.0

5´10-61´10-5

5´10-51´10-4

5´10-40.001

0.005

(d) Absolute error for u
(3)
8 (.).

Figure 4: Example 4, m = 4(green line), m = 6(blue dotted), m = 8(red dash).
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6 Conclusion

Different problems have been solved by researchers using reproducing kernel
Hilbert spaces (RKHS). They assume the unknown solution belongs to spe-
cial fix Wm

2 and use Gram–Schmidt process to implement RKHS method.
In this paper, we attempted to solve Fredholm integral equations of the sec-
ond kind with weakly singular kernel. We used the Taylor series to remove
the singularity. According to the problem, we investigated the problem in
reproducing kernel spaces Wm[−1, 1]. In the proposed method by use of re-
producing kernel space property, the problem was converted to a system of
linear equations. In the proposed method we do not use Gram process, we
use RKHS property and use Wm

2 for different m. Though we suppose the
unknown solution is smooth, but this is a very strong assumption, and it
is enough for the solution to be in Wm

2 for some m. In this method for fix
m, when the number of bases n increases the coefficient matrix of the linear
system will be ill-conditioned; so we increase m and move from one reproduc-
ing kernel to other instead, to find approximate solution with high accuracy.
Several test examples were used to show the efficiency and applicability of
the method.
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