A study on efficient chaotic modeling via fixed-memory length fractional Gauss maps

Document Type : Research Article

Authors

1 Laboratory of Mathematics and their Interactions, Department of Mathematics, Abdelhafid Boussouf University Center, Algeria.

2 Department of Applied Mathematics, Abdelhafid Boussouf University Center, Mila ,R.P 26, Mila, 43000, Algeria.

Abstract

This paper investigates the dynamic behavior of the fractional Gauss map with fixed memory length, highlighting its potential for efficient chaotic modeling. Unlike classical fractional systems that require the full history of states, the proposed approach introduces a memory-limited ver-sion, significantly reducing computational cost while preserving complex dynamical features. Through bifurcation analysis, Lyapunov exponents, and the $0 − 1$ test for chaos, the study demonstrates that the system ex-hibits a rich variety of behaviors, including periodic, quasi-periodic, and chaotic regimes, depending on the fractional order and memory size. A comparative evaluation with the classical Gauss map reveals that the fixed-memory model retains similar chaotic characteristics, but with improved computational efficiency. These findings suggest that fixed-memory frac-tional maps offer a practical alternative for simulating chaotic systems in
real-time applications. 

Keywords

Main Subjects


[1] Abdeljawad, T. On Riemann and Caputo fractional difference, Comput. Math. Appl., 62 (2011), 1602–1611.
[2] Abdelouahab, M.S. and Hamri, N. The Grünwald–Letnikov fractional-order derivative with fixed memory length, Mediterr. J. Math., 13(2) (2016), 557–572.
[3] Abdlaziz, M.A.M., Ismail, A. I., Abdullah, F.A. and Mohd, H.M. Bifur-cations and chaos in a discrete SI epidemic model with fractional order, Adv. Differ. Equ., 2018 (2018), 1–19.
[4] Almatrafi, M.B. and Berkal, M. Stability and bifurcation analysis of predator-prey model with Allee effect using conformable derivatives, J. Math. Comput. Sci., 36(3) (2025), 299–316.
[5] Baleanu, D., Jajarmi, A., Defterli, O., Wannan, R., Sajjadi, S.S. and Asad, J.H. Fractional investigation of time-dependent mass pendulum, J. Low Freq. Noise Vib. Act. Control, 43(1) (2024), 196–207.
[6] Baleanu, D., Jajarmi, A., Sajjadi, S.S. and Mozyrska, D. A new frac-tional model and optimal control of a tumor-immune surveillance with non-singular derivative operator, Chaos, 29(8) (2019).
[7] Baleanu, D., Shekari, P., Torkzadeh, L., Ranjbar, H., Jajarmi, A. and Nouri, K. Stability analysis and system properties of Nipah virus trans-mission: A fractional calculus case study, Chaos Solitons Fractals, 166 (2023), 112990.
[8] Bellout, A., Bououden, R., Houmor, T. and Berkal, M. Nonlinear dynamics and chaos in fractional-order cardiac action potential duration mapping model with fixed memory length, Gulf J. Math., 19(2) (2025), 369–383.
[9] Bemporad, A. and Morari, M. Control of systems integrating logic, dynamics, and constraints, Automatica, 35(3) (1999), 407–427.
[10] Berkal, M. and Almatrafi, M.B. Bifurcation and stability of two-dimensional activator-inhibitor model with fractional-order derivative, Fractal Fract., 7(5) (2023), 344.
[11] Berkal, M. and Navarro, J.F. Qualitative behavior of a chemical reaction system with fractional derivatives, Rocky Mt. J. Math., 55(1) (2025), 11–24.
[12] Bischi, G.I., Gardini, L. and Kopel, M. Analysis of global bifurcations in a market share attraction model, J. Econ. Dyn. Control, 24 (2000), 855–879.
[13] Bououden, R. and Abdelouahab, M.S. On efficient chaotic optimization algorithm based on partition of data set in global research step, Nonlinear Dyn. Syst. Theory, 18 (2018), 42–52.
[14] Bououden, R. and Abdelouahab, M.S. Chaos in new 2-d discrete mapping and its application in optimisation, Nonlinear Dyn. Syst. Theory, 20 (2020), 144–152.
[15] Bououden, R. and Abdelouahab, M.S. Chaotic optimization algorithm based on the modified probability density function of Lozi map, Bol. da Soc. Parana. de Mat., 39 (2021), 9–22.
[16] Bououden, R., Abdelouahab, M.S. and Jarad, F. Non linear dynamics and chaos in a new 2D piecewise linear map and its fractional version, Electron. Res. Arch., 28 (2020), 505–525.
[17] Bououden, R., Abdelouahab, M.S., Jarad, F. and Hammouch, Z. A novel fractional piecewise linear map regular and chaotic dynamics, Int. J. General Syst., 50 (2021), 501–526.
[18] Bourafa, S., Abdelouahab, M.S. and Lozi, R. On Periodic Solutions of Fractional-Order Differential Systems with a Fixed Length of Sliding Memory, J. Innov. Appl. Math. Comput. Sci., 1(1) (2021), 64–78.
[19] Bouzeraa, S.E.I., Bououden, R. and Abdelouahab, M.S. Fractional logistic map with fixed memory length, Int. J. Gen. Syst., 52 (2023), 653–663. 
[20] Chen, F., Luo, X. and Zhou, Y. Existence Results for Nonlinear Fractional Difference Equation, Adv. Differ. Equ., 2011 (2011), 1–12. 
[21] Crampin, M. and Heal, B. On the chaotic behaviour of the Tent map, An Inter. J. of IMA, 13 (1994), 83–89.
[22] Dai, W., Zhou, R., Lin, Y. and Liu, Y. Lightweight cryptography for embedded systems—A survey, Sensors, 23(2) (2023).
[23] Donato, C. and Grassi, G. Bifurcation and chaos in the fractional-ordre Chen system via a time-domain approach, Int. J. Bifurcat. Chaos, 10 (2008), 1845–1863.
[24] Ebrahimzadeh, A., Jajarmi, A. and Baleanu, D. Enhancing water pollution management through a comprehensive fractional modeling frame-work and optimal control techniques, J. Nonlinear Math. Phys., 31(1) (2024), 48.
[25] Gümüş, M. and Türk, K. Dynamical behavior of a hepatitis B epidemic model and its NSFD scheme, J. Appl. Math. Comput., 70(4) (2024), 3767–3788.
[26] Gümüş, M. and Teklu, S.W. Cost-Benefit and dynamical investigation of a fractional-order corruption population dynamical system, Fractal Fract., 9(4) (2025) 207.
[27] Gümüş, M. and Türk, K. Global analysis of a monkey-pox virus model considering government interventions, Phys. Scr., 100(4) (2025), 045216.
[28] Hénon, M. A two dimensional mapping with a strange attractor, Com-mun. Math. Phys., 50 (1976), 69–77.
[29] Hilborn, R.C. Chaos and nonlinear dynamics: an introduction for scientists and engineers, Oxford Univ. Press, New York, 2011.
[30] Hu, T. Discrete chaos in fractional Henon map, Appl. Math., 5 (2014), 2243–2248.
[31] Jan, C. and Nechvatel, L. Local bifurcations and chaos in the fractional Rossler system, Int. J. Bifurcat. Chaos, 28 (2018), 1850–098. 
[32] Jianping, S., He, K. and Fang, H. Chaos, Hopf bifurcation and control of a fractional-order delay financial system, Math. Comput. Simulat., 194 (2022), 348–364.
[33] Khennaoui, A.A., Ouannas, A., Bendoukha, S., Wang, X. and Pham, V.T. On chaos in the fractional-order discrete-time unified system and its control synchronization, Entropy, 20 (2018), 530–540.
[34] Li, T.Y. and Ismail, J.A. Period three implies chaos, Am. Math. Mon., 82 (1975), 985–992.
[35] Lozi, R. Un attracteur étrange du type attracteur de Hénon, J. Phys., 39 (1978), 9–10.
[36] Magin, R.L. Fractional calculus in bioengineering, Begell House Publishers, 2006.
[37] May, R. Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459–467.
[38] Miller, K.S. and Ross, B. Fractional difference calculus, Proc. of the In-ternational Symposium on Univalent Functions, Koriyama, Japan, 1989, 139–152.
[39] Sarmah, H.K., Das, M.C., Baishya, T.K. and Paul, R. Chaos in Gaussian map, Int. J. Adv. Sci. Techn. Res., 6 (2016), 160–172.
[40] Sun, H., Chen, W. and Chen, Y. Variable-order fractional differential models of cardiac action potential, Commun. Nonlinear Sci. Numer., 69 (2019), 354–370.
[41] Wu, G.C. and Baleanu, D. Discrete fractional logistic map and its chaos, Nonlinear Dyn., 75 (2014), 283–287.
CAPTCHA Image