[1] Boor, C., DeVore, R.A. and Ron, A. On the construction of multivariate (pre) wavelets, Constr. Approx. 9 (1993) 123–166.
[2] Brahimi, M., Melkemi, K. and Boussaad, A. Design of nonstationary wavelets through the positive solution of Bezout’s equation, J. Interdiscip. Math. 24(3), (2021) 553–565.
[3] Daubechies, I. Ten lectures on wavelets, SIAM. 1992.
[4] Gasquet, C. and Witomski, P. Analyse de Fourier et applications: fil-trage, calcul numérique, ondelettes, Elsevier Masson, 1990.
[5] Lee, Y.J. and Yoon, J. Analysis of compactly supported nonstationary biorthogonal wavelet systems based on exponential B-splines,In Abstract
and Applied Analysis, vol. 2011, no. 1, p. 593436. Hindawi Publishing Corporation, 2011.
[6] Mallat, S.G. Multiresolution approximations and wavelet orthonormal bases of L2(R), Trans. Am. Math. Soc. 315(1) (1989) 69–87.
[7] Mazure, M.L., and Melkemi, K. Orthonormality of Cardinal Cheby-shev B-spline Bases in Weighted Sobolev Spaces, Constr. Approx. 18(3) (2002) 387–415.
[8] Melkemi, K. Orthogonalité des B-splines de Chebyshev cardinales dans un espace de Sobolev pondéré, PhD diss., University Joseph-Fourier-Grenoble I, 1999.
[9] Soman, K. P. Insight into wavelets: from theory to practice, PHI Learn-ing Pvt. Ltd, 2010.
[10] Vonesch, C., Blu, T., and Unser, M. Generalized Daubechies wavelet families, IEEE Trans. Signal Process. 55(9) (2007) 4415-4429.
[11] Zhang, B., Zheng, H., Zhou, J., and Pan, L. Construction of a family of non-stationary biorthogonal wavelets, J. Inequ. Appl. 1 (2019) 1–15.
Send comment about this article