[1] Al-sawalha, M.M. Synchronization of different fractional-order chaotic systems using modify adaptive sliding mode control, Adv. Diff. Equ. 1 (2020), 417.
[2] Bensimessaoud, S. and Kaouache, S. A general fractional control scheme for compound combination synchronization between different fractional-order identical chaotic systems, Aust. J. Math. Anal. Appl. 20 (2) (2023), Art. 12, 9 pp.
[3] Bensimessaoud, S., Kaouache, S. and Abdelouahab, M.-S. Chaos combi-nation anti-synchronization (CCAS) of some fractional-order uncertain chaotic systems by some random noise, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 31 (2024), 199–211.
[4] Bhalekar, S. and Daftardar-Gejji, V. Synchronization of different fractional-order chaotic systems using active control, Commun. Non-linear Sci. Numer. Simul. 15 (2010), 3536–3546.
[5] Bhat, M. A. and Shikha. Complete synchronization of non-identical frac-tional order hyperchaotic systems using active control, Int. J. Autom. Control, 13(2) (2019), 140–157.
[6] Boiko, I., Fridman, I., Iriarte, R., Pisano, A. and Usai, E. Parameter tuning of second-order sliding mode controllers for linear plants with dynamic actuators, Automatica, 42 (2006), 833–839.
[7] Bouzeriba, A., Boulkroune, A. and Bouden, T. Projective synchroniza-tion of two different fractional-order chaotic systems via adaptive fuzzy control, Neural. Comput. Appl. 27 (2016), 1349–1360.
[8] Bowonga S., Kakmenib, M. and Koinac, R. Chaos synchronization and duration time of a class of uncertain systems, Math. Comput. Simul. 71(3) (2006), 212–228.
[9] Chai, Y., Chen, L., Wu, R. and Dai, J. Q − S synchronization of the fractional-order unified system, Pramana, 80 (2013), 449–461.
[10] Cook, A.E. and Roberts, P.H. The Rikitake two disk dynamo system, Math. Proc. Cambridge, 68(2), (1970), 547–569.
[11] Danca, M.F. and Kuznetsov, N. MATLAB code for Lyapunov expo-nents of fractional-order systems, Int. J. Bifurcat. Chaos, 28 (5) (2018) 1850067.
[12] Diethelm K. and Ford, N.J. Analysis of fractional differential equations, J. Math Anal. Appl. 265(2) (2002), 229–248.
[13] Dong, C. and Wang, J. Hidden and coexisting attractors in a novel 4 − D hyperchaotic system with no equilibrium point, Fractal Fract. 6(6) (2022), 306.
[14] Du, C., Liu, L. and Shi, S. Synchronization of fractional-order complex chaotic system using active control method, IEEE UEMCON. (2019), 0817–0823.
[15] El-Shahed, M. MHD of a fractional viscoelastic fluid in a circular tube, Mech. Res. Commun. 33(2) (2006), 261–268.
[16] Flores-Tlacuahuac, F. and Biegler, L.T. Optimization of fractional-order dynamic chemical processing systems, Ind. Eng. Chem. Res. 53(13) (2014), 5110–5127.
[17] Hartley, T.T., Lorenzo, C.F. and Qammar, H.K. Chaos in a fractional order Chua system, IEEE Trans. Circuits Syst. I, 42(8) (1996), 485–490.
[18] Jesus, I.S. and Machado, J.T. Fractional control of heat diffusion sys-tems, Nonlinear Dyn. 54(3) (2008), 263–282.
[19] Kaouache, S. Projective synchronization of the modified fractional-order hyperchaotic Rossler system and its application in secure communication, Univ. J. Math. Appl. (4) (2021), 50–58.
[20] Kaouache, S. General method for hybrid projective combination synchro-nization of a class of nonlinear fractional-order chaotic systems, Int. J. Appl. Math. 36(4) (2023), 509–520.
[21] Kaouache, S. and Abdelouahab, M.S. Modified projective synchroniza-tion between integer order and fractional order hyperchaotic systems, JARDCS 10(5) (2018), 96–104.
[22] Kaouache, S. and Abdelouahab, M.S. Generalized synchronization be-tween two chaotic fractional non-commensurate order systems with dif-ferent dimensions, Nonlinear Dyn. Syst. Theory. 18 (2018), 273–284.
[23] Kaouache, S. and Abdelouahab, M.S. Inverse matrix projective syn-chronization of novel hyperchaotic system with hyperbolic sine function non-linearity, Dyn. Contin. Discrete Impuls. Syst. Ser. B: Appl. Alg. 27 (2020), 145–154.
[24] Kaouache, S., Abdelouahab, M.S. and Bououden, R. Reduced generalized combination synchronization between two n-dimentional integer-order hyperchaotic systems and one m-dimentional fractional-order chaotic system, Aust. J. Math. Anal. Appl. 17(2) (2020), Art. 19, 8 pp.
[25] Kaouache, S. and Bouden, T. Modified hybrid synchronization of iden-tical fractional hyperchaotic systems with incommensurate order, Dyn. Contin. Discrete Impuls. Syst. Ser. A: Math. Anal. 28 (2021), 25–36.
[26] Kaouache, S., Hamri, N.D., Hacinliyan, A.S., Kandiran, E., Deruni, B. and Keles, A.C. Increaszd order generalized combination synchronization of non identical dimensional fractional-order systems by introducing dif-ferent observable variable functions, Nonlinear Dyn. Syst. Theory, 20 (2020), 307–315.
[27] Kiani-B, A., Fallahi, L., Pariz, K. and Leung, H. A chaotic secure com-munication scheme using fractional chaotic systems based on an ex-tended fractional Kalman filter, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 863–879.
[28] Kilbas, A., Srivastava H. and Trujillo J. Theory and applications of fractional differential equations, Elsevier, 2006.
[29] Labed, B., Kaouache, S. and Abdelouahab, M.S. Control of a novel class of uncertain fractional-order hyperchaotic systems with external disturbances via sliding mode controller, Nonlinear Dyn. Syst. Theory, 20(2) (2020), 203–213.
[30] Li, C. and Chen, G. Chaos in the fractional order Chen system and its control, Chaos Solitons Fract. 22(3) (2004), 549–554.
[31] Li, C. and Chen, G. Chaos and hyperchaos in the fractional-order Rossler equations, Phys. A, 341(1) (2004), 55–61.
[32] Li, C. and Deng, W.H. Chaos synchronization of fractional-order differ-ential systems, Int. J. Mod. Phys. B, 20(7) (2006), 791–803.
[33] Lin, J., Yan, J. and Liao, T. Chaotic synchronization via adaptive sliding mode observers subject to input nonlinearity, Chaos Solitons Fract. 24 (2005), 371–381.
[34] Lin, L., Zhuang, Y., Xu, Z., Yang, D. and Wu, D. Encryption algo-rithm based on fractional order chaotic system combined with adaptive predefined time synchronization, Front. Phys. 11 (2023), 1202871.
[35] Lu, J. Chaotic dynamics of the fractional-order Lu system and its syn-chronization, Phys. Lett. A, 354(4) (2006), 305–311.
[36] Lu, L. Synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal, Chaos Solitons Fract. 27 (2006), 519–525.
[37] Muthukumar, P., Balasubramaniam, P. and Ratnavelu, K. Synchro-nization of a novel fractional order stretch-twist-fold (STF) flow chaotic system and its application to a new authenticated encryption scheme (AES), Nonlinear Dyn. 77(4) (2014), 1547–1559.
[38] Pecora, L.M. and Carroll, T.L. Synchronization in chaotic systems, Phys. Rev. Lett. 64(8) (1990), 821–824.
[39] Pham, V.T., Rahma, F., Frasca, M. and Fortuna, L. Dynamics and synchronization of a novel hyperchaotic system without equilibrium, Int. J. Bifurcat. Chaos, 24(6) (2014), 1450087.
[40] Pikovsky, A.S., Rosenblum, M.G., Osipov, G.V. and Kurths, J. Phase synchronization of chaotic oscillators by external driving, Phys. D, 104(3) (1997), 219–238.
[41] Rikitake, T. Oscillations of a system of disk dynamos, Math. Proc. Cam-bridge, 54(1) (1958), 89–105.
[42] Rossler, O. An equation for hyperchaos, Phys. Lett. A, 71(2-3) (1979), 155–157.
[43] Sau, N.H., Binh, T.N., Thanh, N.T. and Thuan, M.V. Event-triggered H∞ controller design for uncertain fractional-order systems with time-varying delays, J. Appl. Math. Comput. 70(3) (2024), 1813–1835.
[44] Shao, S. and Chen, M. Fractional-order control for a novel chaotic system without equilibrium, J. Autom. Sin. 6(4) (2016), 1000–1009.
[45] Sheu, L. A speech encryption using fractional chaotic systems, Nonlinear Dyn. 65 (2011), 103–108.
[46] Tabasi, M., Hosseini, S.A. and Houshmand, M. Stability analysis of two fractional-order Duffing-Holmes chaotic systems using a generalized pre-dictive controller, Int. J. Dyn. Control. (2024), 1–12.
[47] Vafaei, V., Jodayree Akbarfam, A. and Kheiri, H. A new synchronisa-tion method of fractional-order chaotic systems with distinct orders and dimensions and its application in secure communication, Int. J. Syst. Sci. 52(16) (2021), 3437–3450.
[48] Vaidyanathan, S., Dolvis, L. G., Jacques, K., Lien, C. H. and Sambas, A. A new five-dimensional four-wing hyperchaotic system with hidden attractor, its electronic circuit realisation and synchronisation via inte-gral sliding mode control, Int. J. Model. Identif. Control, 32(1) (2019), 30–45.
[49] Vaidyanathan, S., Volos, Ch.K. and Pham, V.T. Analysis, control, syn-chronization and SPICE implementation of a novel 4 − D hyperchaotic Rikitake Dynamo system without equilibrium, J. Eng. Technol. Rev. 8(2) (2015), 232–244.
[50] Volos, Ch.K., Kyprianidis, I.M. and Stouboulos, I.N. Image encryption process based on chaotic synchronization phenomena, Signal Proc. 93(5) (2013), 1328–1340.
[51] Wang, Z., Cang, S., Ochola, E.O. and Sun, Y. A hyperchaotic system without equilibrium, Nonlinear Dyn. 69 (2012), 531–537.
[52] Wei, J., Zhang, C., Guo, Y. and Wang, F. Cluster synchronization of stochastic two-layer delayed neural networks via pinning impulsive con-trol, J. Appl. Math. Comput. 70(2) (2024), 1193–1210.
[53] Wu, X. and Lu, Y. Generalized projective synchronization of the fractional-order Chen hyperchaotic system, Nonlinear Dyn. 57 (2009), 25–35.
[54] Yang, N. and Liu, C. A novel fractional-order hyperchaotic system sta-bilization via fractional sliding-mode control, Nonlinear Dyn. 74 (2013), 721–732.
[55] Zhang, C., Zhang, C., Zhang, X. and Liang, Y. Sampling-based event-triggered control for cluster synchronization in two-layer nonlinear net-works, J. Appl. Math. Comput. 69(5) (2023), 3969–3986.
[56] Zhang, R. and Yang, S. Adaptive synchronization of fractional-order chaotic systems via a single driving variable, Nonlinear Dyn. 66 (2011), 831–837.
[57] Zhang, S. and Zeng, Y. A simple Jerk-like system without equilibrium: Asymmetric coexisting hidden attractors, bursting oscillation and double full Feigenbaum remerging trees, Chaos Solitons Fract. 120 (2019), 25–40.
[58] Zhou, J. and Bao, H. Fixed-time synchronization for competitive neural networks with Gaussian-wavelet-type activation functions and discrete delays, J. Appl. Math. Comput. 64(1) (2020), 103–118.
Send comment about this article