[1] Abdullah Malik, S., Qureshi, I., Amir, M., and Haq, I.Numerical solution of Lienard equation using hybrid heuristic computation, World Appl. Sci. J. 28 (2013), 636−643.
[2] Adel, W. A fast and efficient scheme for solving a class of nonlinear LEs, Math. Sci. 14 (2020), 167−175.
[3] Feng, Z. On explicit exact solutions for the Lienard equation and its applications, Phys. Lett. A. 239 (2002), 50−56.
[4] Heydari, M., Hooshmandasl, M. and Ghaini, F. Good approximate solu-tion for Lienard equation in a large interval using block pulse functions, J. Math. Ext. 7 (2013), 17−32.
[5] Horadam, A.F. New Aspects of Morgan–Voyce Polynomials, Applications of Fibonacci Numbers, (1998), 161−176.
[6] Jianyu, L., Siwei, L., Yingjian, Q. and Yaping, H. Numerical solution of elliptic partial differential equation using radial basis function neural networks, Neural Network, 16 (2003), 729−734.
[7] Kaya, D. and El-Sayed, S. A numerical implementation of the decom-position method for the Lienard equation, Appl. Math. Comput., 171 (2005), 1095−1103.
[8] Keshavarz, E., Ordokhani, Y. and Razzaghi, M. The Taylor wavelets method for solving the initial and boundary value problems of Bratu-type equations, Appl. Numer. Math. 128 (2018), 205−216.
[9] Kiltu, G. and Duressa, G. Accurate numerical method for Liénard non-linear differential equations, J. Taibah Univ. Sci. 13 (2019), 740−745.
[10] Kong, D. Explicit exact solutions for the Lienard equation and its appli-cations, Phys. Lett. A. 196 (1995), 301−306.
[11] Kumar, D., Agarwal, P., and Singh, J. A modified numerical scheme and convergence analysis for fractional model of Lienard’s equation, J. Comput. Appl. Math. 339 (2018), 405−413.
[12] Kumbinarasaiah, S. and Adel, W. Hermite wavelet method for solving nonlinear Rosenau-Hyman equation, Partial Partial Differ. Equ. Appl. Math. 4 (2021), 100062.
[13] Li´enard, A. Etude des oscillations entretenues, Rev. Gen. Electr. 23(901-912) (1928), 946−954.
[14] Malek, A. and Beidokhti Shekari, R. Numerical solution for high or-der deferential equations, using a hybrid neural network-Optimization method, Appl. Math. Comput. 183 (2006), 260−271.
[15] Mall, S. and Chakraverty, S. Numerical solution of nonlinear singular initial value problems of Emden-Fowler type using Chebyshev neural net-work method, Neurocomputing, 149 (2015), 975−982.
[16] Masood, Z., Majeed, K., Samar, R. and Raja, M.A.Z. Design of Mexican Hat wavelet neural networks for solving Bratu type nonlinear systems, Neurocomputing, 221 (2017), 1−14.
[17] Matinfar, M., Bahar, S. and Ghasemi, M. Solving the Lienard equa-tion by differential transform method, World J. Model. Simul. 8 (20112), 142−146.
[18] Matinfar, M., Hosseinzadeh, H. and Ghanbari, M. A numerical imple-mentation of the variational iteration method for the Lienard equation, World J. Model. Simul. 4(2008), 205−210.
[19] Matinfar, M., Mahdavi, M. and Raeisy, Z. Exact and numerical solution of Lienard’s equation by the variational homotopy perturbation method, J. Inf. Comput. Sci., 6 (2011), 73−80.
[20] Meade Jr, A.J. and Fernandez, A.A. Solution of nonlinear ordinary differential equations by feedforward neural networks, Math. Comput. Model. 20 (1994), 19−44.
[21] Meade Jr, A.J. and Fernandez, A.A. The numerical solution of linear ordinary differential equations by feed forward neural networks, Math. Comput. Model. 19 (1994), 1−25.
[22] Rahimkhani, P. Numerical solution of nonlinear stochastic differential equations with fractional Brownian motion using fractional-order Genoc-chi deep neural networks, Commun. Nonlinear Sci. Numer. Simul. 126 (2023), 107466.
[23] Rahimkhani, P. Deep neural network for solving stochastic biological Systems, Iran. J. Sci. Technol. Trans. A: Sci. 48 (2024), 687−696.
[24] Rahimkhani, P. and Heydari, M.H. Fractional shifted Morgan–Voyce neural networks for solving fractal-fractional pantograph differential equations, Chaos Solit. Fractals. 175 (2023), 114070.
[25] Rahimkhani, P. and Ordokhani, Y. Orthonormal Bernoulli wavelets neu-ral network method and its application in astrophysics, Comput. Appl. Math. 40(30) (2021), 1−24.
[26] Rahimkhani, P. and Ordokhani, Y. Chelyshkov least squares support vec-tor regression for nonlinear stochastic differential equations by variable fractional Brownian motion, Chaos Solit. Fractals. 163 (2022), 112570.
[27] Rahimkhani, P., Ordokhani, Y. and Sabermahani, S. Hahn hybrid func-tions for solving distributed order fractional Black-Scholes European op-tion pricing problem arising in financial market, Math. Methods Appl. Sci. 46(6) (2023), 6558−6577.
[28] Raja, M.A.Z., Mehmood, J., Sabir, Z., Nasab, A.K. and Manzar, M.A. Numerical solution of doubly singular nonlinear systems using neural networks-based integrated intelligent computing, Neural. Comput. Appl. 31 (2019), 793−812.
[29] Selvaraju, N. and Abdul Samant, J. Solution of matrix Riccati differen-tial equationfor nonlinear singular system using neural networks, Int. J. Comput. Appl. 29 (2010), 48−54.
[30] Shannon, A.G. and Horadam, A.F. Some Relationships among Vieta, Morgan–Voyce and Jacobsthal Polynomials, Applications of Fibonacci Numbers, (1999), 307−323.
[31] Shiralashetti, S.C. and Kumbinarasaiah, S. Cardinal B-spline wavelet based numerical method for the solution of generalized Burgers-Huxley equation, Int. J. Appl. Comput. Math. 4(73) (2018), (2018).
[32] Singh, H. Solution of fractional Lienard equation using Chebyshev oper-ational matrix method, Nonlinear Sci. Lett. A. 8 (2017), 397−404.
[33] Srinivasa, K., Rezazadeh, H. and Adel, W. Numerical investigation based on Laguerre wavelet for solving the Hunter Saxton equation, Int. J. Appl. Comput. Math. 6 (2020), 139.
[34] Xian-Lin, Y. and Jia-Shi, T. Exact solutions to the generalized Lienard equation and its applications, Pramana, 71 (2008), 1231−1245.
[35] Yin, Z. and Chen, H. On stability of periodic solutions of Lienard type equations, Discrete Dyn. Nat. Soc. 2017(1) (2017), 1805760.
Send comment about this article