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DNA model using residual power series
and Laplace residual power series method
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Abstract

In this study, we investigate the numerical exploration of the Peyrard–
Bishop DNA (PBD) dynamic model. These solutions are responsible for
analyzing the nonlinear interactions between the adjacent displacements of
the DNA strand. To obtain these solutions, the authors present two highly
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effective and precise techniques for solving the nonlinear PBD dynamic
model: the Residual Power Series Method (RPSM) and the Laplace Resid-
ual Power Series Method (LRPSM), applied under initial and boundary
conditions. The concept is explained through various numerical examples,
demonstrating its practical application and ease of use. A convergence
analysis has been provided between the exact and approximate solutions.
These physical characteristics are thoroughly analyzed through graphical
representations. The proposed methods are compared with other numer-
ical techniques to showcase their applicability, accuracy, and efficiency.
Two test case problems are solved, and the results are presented as tables
and figures using MATHEMATICA software. The solutions illustrate the
successful applications of the proposed methods, which can assist in finding
numerical solutions to other nonlinear problems.

AMS subject classifications (2020): 35R11; 65M25; 65M30.

Keywords: DNA model; Laplace Transform; Power series method; Conver-
gence analysis.

1 Introduction

Nonlinear partial differential equations (NLPDEs) have significance in sci-
ence and engineering due to their wide range of applications. Most of the
real-world situations can be transformed into nonlinear mathematical mod-
els. Consequently, solving such a system is significant and requires much
investigation. Researchers have been motivated to develop and investigate
effective techniques to solve such dynamical systems, which exhibit nonlin-
earities [11, 26, 9]. A significant part of mathematical modeling involves
both linear partial differential equations (LPDEs) and NLPDEs. NLPDEs
are particularly useful in addressing problems in quantum mechanics, plasma
physics, and nonlinear optics. Two-dimensional random NLPDEs are crucial
in numerous applications within engineering, biology, and physics. Many
scientific problems are modeled using nonlinear random PDEs with two vari-
ables [29, 28, 18, 24].

Over the last few decades, researchers have proposed numerous analyti-
cal methods and approximate algorithms for solving NLPDEs. Chakrabarty
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et al.[10] explored optical soliton solutions of the complex Ginzburg–Landau
(CGL) model with Kerr law nonlinearity. Similarly, Hosseini et al.[19] exam-
ined soliton solutions within the same context. Chen et al. [12] investigated
the Ivancevic option pricing model, and using the trial function method,
they derived rogue wave and dark wave solutions. More recently, Osman
[25] obtained multi-soliton rational solutions for the quantum Zakharov–
Kuznetsov equation in quantum magnetoplasmas using the generalized uni-
fied method. Some other analytical methods have been investigated by sev-
eral authors[22, 31, 21]. Identifying various approaches is essential for bet-
ter understanding natural occurrences. This natural occurrence can occur
across multiple fields including science, engineering, biology, chemistry, and
physics. As the application of NLPDEs develops, researchers begin to develop
new methods to solve these differential equations numerically because solving
these equations analytically presents numerous challenges. Numerous meth-
ods, such as the Adomian decomposition method [7], homotopy perturbation
method [30], differential transform method [8], and others, are accessible in
the literature.

Recently, scientists have been describing real-world issues with innova-
tive numerical techniques. These days, studying the nonlinear dynamics of
deoxyribonucleic acid (DNA) has become a major area of study due to its
significance for gene replication, the development of viruses and vaccines, and
the underlying mechanisms that govern the transfer of genetic information
between generations. In fact, DNA is a biomolecule that contains genetic ma-
terials necessary for an organism’s growth and reproduction. It consists of
two nucleotide linear polymer strands. Sugars, pyrimidine and purine bases,
and phosphate make up each strand. Its intricate structure restricts research
and makes mathematical modeling challenging.

In this study, we intend to solve a well-known biological model called
the Peyrard–Bishop DNA (PBD) model. Peyrard–Bishop was the first to
explain this phenomenon, which involved a nonlinear interaction of ad-
joining shifts and hydrogen bonds. Peyrard and Bishop [27] and Abazari,
Jamshidzadeh, and Wang [1] have investigated the oscillator chain of the
PBD model to investigate the emergence of solitonic structures. The study
of Dusuel, Michaux, and Remoissenet [14] and Alvarez et al. [5] examines
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the connections between powerless nonlinearity and scattering in the DNA
energetic show, including straight scattering and nonlinear scattering. Ac-
cording to research on the scientific and physical modeling of DNA elements,
these criteria can be boiled down to a critical nonlinear configuration. More-
over, hyperbolic and exponential function techniques were employed by Ali
et al. [3] to obtain the precise results of this model. Additionally, they
looked at a few numerical solutions for the PBD model using the finite differ-
ence (FD) approach. Zdravković and Satarić [33] investigated the Peyrard–
Bishop–Dauxois model, which is an extended variant of the PBD concept of
DNA dynamics. Agüero, De Lourdes Najera, and Carrillo [2] investigated the
Hamiltonian PBD model’s harmonic potential. As per the literature survey,
the PBD model, created to explore DNA dynamics, offers both strengths and
weaknesses. Strengths: It effectively captures nonlinear dynamics, particu-
larly the interactions between DNA base pairs, which are essential for under-
standing denaturation and biological activity. The model’s simplicity makes
it accessible for both numerical and analytical studies, despite representing
complex phenomena. It also provides a useful framework for simulating the
thermal separation of DNA strands, aligning well with experimental data.
Weaknesses: The model oversimplifies DNA as a one-dimensional chain, ne-
glecting the full three-dimensional helical structure and sequence specificity,
which limits its biological accuracy. Although helpful for thermal denatu-
ration studies, the PBD model may not be sufficient for explaining complex
molecular processes like DNA-protein interactions or replication, reflecting
its limited applicability.

According to the literature study, the PBD model has been solved ana-
lytically using various methods. Only one or two scholars have solved this
model numerically. So the primary motivation for our research is to find
numerical solutions to the PBD model using two different techniques known
as the residual power series method (RPSM) and the Laplace residual power
series method (LRPSM) which is based on Taylor’s series expansion. Both
of these methods use symbolic computing software to develop a power series
solution as a rapidly convergent series with the least possible computations.
The results are very encouraging and the proposed technique is both compu-
tationally feasible and reliable.
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A useful analytical technique for figuring out the coefficients of the power
series solutions of a particular class of differential equations is the RPSM,
which was introduced by [17]. Its foundation is the formulation of linearity-
and perturbation-free power series solutions to several linear and nonlinear
equations. The LRPSM is yet another novel analytical technique that is em-
ployed in this work. The technique in the discussion was initially introduced
by Eriqat and colleagues [4]. The suggested technique achieves its main goal
by utilizing the concept of the limit at infinity, even though it does not
depend on the derivative for computing the coefficients of the series solu-
tion, as the RPSM approach requires. These two techniques have recently
been adapted to solve various types of differential equations, such as nonlin-
ear time-fractional dispersive PDEs [4], hyperbolic systems of Caputo-time-
fractional PDEs with variable coefficients [16], time-fractional Navier-Stokes
equations [32], space-time fractional PDEs and nonlinear PDE, respectively,
[6, 20].

The paper is organized as follows: The importance of the PBD model
and its application to a certain field of research are highlighted in section
“Introduction”. It also mentions the study’s main objectives, as well as any
background information necessary for understanding the next sections. The
following section discusses the way the PBD model is formed. The section
titled “Numerical methods for the PBD model equation” describes the pro-
posed numerical technique for determining solutions for the PBDModel equa-
tion. The next section examines the “Convergence analysis,” which estimates
how closely the numerical solution approximates the exact solution. In Sec-
tion “Illustrative examples,” the proposed method is used to solve the nonlin-
ear PBD Model equation problem of accuracy and applicability. The work’s
contributions are summarized in the “Conclusion” section, which emphasizes
the suggested method’s achievements and provides potential directions for
further research.

2 Formation of PBD model

A DNA molecule is generally shaped like a double helix, which means it is
made up of two complimentary polymeric chains that are wrapped around one
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another. In the Watson–Crick model [23], B-shaped DNA generates a double
helix containing a pair of strands. The masses of nucleotides vary by minimal
amounts, indicating a homogeneous crystal structure. Hydrogen bonds join
the strands, making them weak, however, the harmonic longitudinal length
stays strong. In 1989, Peyrard and Bishop proposed the Hamiltonian model
[27], which is based on Morse’s potential:

Pm(wn − vn) = De

{
e−ρ(wn−vn) − 1

}2

. (1)

Here, Pm symbolizes Morse’s potential, wn represents the displacement
between two atoms, and vn indicates bond length equilibrium. The parame-
ters De and ρ represent the depth and width of the Morse potential, respec-
tively. Zdravković and Satarić [33] proposed an explanation for the Hamil-
tonian of the DNA chain. In addition, Dauxois [13] developed an enhanced
version of the PB model, which was used in the hydrogen bond strand width
defined by the Hamiltonian shown below:

H(w) =
1

2m
qn

2

+
l1
2
∆2wn +

l2
4
∆4wn + δ(e−ρ

√
2wn)2, (2)

∆wn = wn+1 − wn.

In the expression, l1 and l2 indicate the linear and nonlinear coupling
strengths, respectively. The constant δ is included, and qn = mwn repre-
sents the momentum of the displacement wn. Starting with the Hamiltonian
equation (2), the equation of motion in the continuum limit can be stated as
follows.

wττ − (k1 + 3k2wss)− 2
√
2ρDee

−αw(e−αw − 1) = 0. (3)

Define parameters as follows: k1 = l1
md21, k2 = l2

md41, De = δ
m , and α =

√
2ρ,

where d1 represents the inter-site nucleotide length in the DNA ladder.

This paper examines the PBD model equation as follows:

wττ − (k1 + 3k2w
2
s)wss − 2αϖe−αw(e−αw − 1) = 0 (4)

with initial condition

w(s, 0) =
−1

α
ln
(
±2

√
3
√
k2

α2
√
Ω

sech2s
)
, (5)
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where k1, k2, α, β, and ϖ = De are real parameters. We will then go over the
fundamentals of using the RPSM and LRPSM methods to solve the nonlinear
PBD model equation.

3 Basic concepts

Definition 1. [17] An expansion of the form
∞∑

n=0

ϕn(s)(τ − τ0)
n = ϕ0(s) + ϕ1(s)(τ − τ0) + ϕ2(s)(τ − τ0)

2 + · · · ,

0 ≤ n− 1 ≤ n, τ ≥ τ0,

(6)

is referred to as a power series around τ = τ0, in which τ is the variable and
ϕn(s) is the coefficient of the series and function of s.

Theorem 1. [17] Let w(s, τ) have the following power series representation
of τ0 = 0

w(s, τ) =

∞∑
n=0

ϕn(s)τ
n, s ∈ I, 0 ≤ τ < R. (7)

The coefficients ϕn(s) of the equation can be defined as follows:

ϕn(s) =
∂n
τ w(s, 0)

n!
,

For n = 0, 1, 2 . . ., ∂n
τ = ∂n

∂τn , and R = min
c∈I

Rc, where Rc is the radius of

convergence of the power series
∞∑

n=0
ϕn(s)τ

n. Now, substituting ϕn(s) into

the series representation (7) yields an expansion, which is an expansion of
variable coefficients,

w(s, τ) =
∂n
τ w(s, 0)

n!
τn, x ∈ I, 0 ≤ τ < R. (8)

Definition 2. Let w(s, τ) be a function defined for τ > 0. The Laplace
transform of w(s, τ), providing the integral converges on an integral of s, is
defined as

W (s, p) = L
[
w(s, τ)

]
=

∫ ∞

0

e−pτw(s, τ)dτ. (9)

Definition 3. The inverse Laplace transform of a function W (s, p) is the
function w(s, τ), τ ≥ 0, defined as
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w(s, τ) = L−1[W (s, p)] =

∫ r+i∞

r−i∞
epτW (s, p)dp, r = Re(p) > a0, (10)

where a0 lies in the right half plane of the integral’s absolute convergence.

Lemma 1. [15] Let ∂m−1
τ w1(s, τ), ∂m

τ w1(s, τ), ∂m−1
τ w2(s, τ), and ∂m

τ w2(s, τ)

be piece-wise continuous functions of exponential order ϵ defined on I ×
[0,∞), m = 1, 2, . . . , n. Assume L [w(s, τ)] = W (s, p), L−1 [W (s, p)] =

w(s, τ) in which (s, p) ∈ F = {(s, p) :
√

s2 + p2 > ϵ(s)}, where α and β are
constants. Then the remaining conditions are satisfied

1. L [αw1(s, τ) + βw2(s, τ)] = αW1(s, p) + βW2(s, p), s ∈ I, p > ϵ,

2. L−1 [αW1(s, p) + βW2(s, p)] = αw1(s, τ) + βw2(s, τ), s ∈ I, τ ≥ 0,

3. L[∂τw(s, τ)] = pL[w(s, τ)]− w(s, 0),

4. L[∂2
τw(s, τ)] = p2L[w(s, τ)]− wτ (s, 0)− pw(s, 0),

5. L[∂n
τ w(s, τ)] = pnL[w(s, τ)]−

n−1∑
m=0

pn−m−1∂m
τ w(s, 0),

6. lim
p→∞

W (s, p) = 0,

7. lim
p→∞

pW (s, p) = w(s, 0).

Theorem 2. Let the function W (s, p) = L [w(s, τ)] can be expressed as
Laurent series representation:

W (s, p) =
ϕ0(s)

p
+

∞∑
n=1

ϕn(s)

pn+1
, s > 0, s ∈ I. (11)

Then, ϕn(s) =
∂n

∂τnw(s, 0), n = 0, 1, 2, . . ..

Proof. Assume that W (s, p) is represented by the Laurent series expansion
of (11). Subsequently, we have

pW (s, p) = ϕ0(s) +

∞∑
n=1

ϕn(s)

pn
, p > 0. (12)

Also, ϕ0(s) = w(s, 0).
Now, multiplying p on (12), we obtain
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p2W (s, p)− pw(s, 0) = ϕ1(s) +

∞∑
n=2

ϕn(s)

pn
,

ϕ1(s) = p2W (s, p)− pw(s, 0)−
∞∑

n=2

ϕn(s)

pn
.

(13)

Now, our aim is to find the value of ϕ1(s). Therefore, we arrange (13) as
p → ∞ on both sides

ϕ1(s) = lim
p→∞

(p2W (s, p)− pw(s, 0)−
∞∑

n=2

ϕn(s)

pn
)

= lim
p→∞

(p2W (s, p)− pw(s, 0))

= lim
p→∞

p(pW (s, p)− w(s, 0))

= lim
p→∞

p(L [wτ (s, τ)])

= wτ (s, 0).

To derive the general formula for ϕn(s), multiply (12) by pn+1 and take
the limit of the generated equation as p → ∞. This gives ϕn(s) =
∂n

∂τnw(s, 0), n = 0, 1, 2, . . ..

Next, we shall investigate the numerical solution for the PBD dynamic
model equation using the numerical methods.

4 Numerical methods

In this section, we give a detailed view of the RPSM and LRPSM used to
find the solution of the model in (4).

4.1 Residual power series method (RPSM)

In this section, we apply the RPSM to solve the PBD dynamic model equation
given as

wττ − (k1 + 3k2w
2
s)wss − 2αϖe−αw(e−αw − 1) = 0.
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The initial condition for (4) has been defined as

w(s, 0) =
−1

α
ln
(
±2

√
3
√
k2

α2
√
Ω

sech2s
)
. (14)

We utilize RPSM to obtain a series solution to the given equation under the
specified initial conditions. This entails replacing the power series expan-
sion with the reduced residual function. The resulting equation provides a
recurrence formula for the truncated residual function.

Assume that the solution is in the expansion form:

w(s, τ) =

∞∑
n=0

ϕn(s)τ
n, 0 ≤ τ < R, s ∈ I. (15)

Next, kth truncated series of w be defined in the form of wk:

wk(s, τ) =

k∑
n=0

ϕn(s)τ
n, 0 ≤ τ < R, s ∈ I. (16)

For w(s, 0) = ϕ0(s) = ϕ(s), (14) can be written as

wk = ϕ(s) +

k∑
n=1

ϕn(s)τ
n, 0 ≤ τ < R, s ∈ I, k = 1,∞. (17)

In order to determine the coefficients ϕn(s) for n = 1, 2, 3, . . . , k in the series
expansion of (17), the residual function is defined as follows:

Resw = wττ − (k1 + 3k2w
2
s)wss − 2αϖe−αw(e−αw − 1). (18)

Then, the kth residual function, Resk, where k = 1, 2, . . . is as follows:

Reskw = (wk)tt − (k1 + 3k2(wk)
2
s)(wk)sss − 2αϖe−α(wk)(e−α(wk) − 1). (19)

According to literature, Resw = 0 and limk→∞ Reskw = Resw for all s ∈ I

and τ ≥ 0. Then, (∂r−1Resw/∂τ
r−1) = 0. for every r = 1, 2, . . . , k. Now,

calculate ϕ1(s), using (19) as

Res1w = (w1)tt − (k1 + 3k2(w1)
2
s)(w1)ss − 2αϖe−α(w1)(e−α(w1) − 1), (20)

where
w1 = ϕ(s) + tϕ1(s)
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and

ϕ(s) = w(s, 0) =
−1

α
ln

(
±2

√
3
√
k2

α2
√
Ω

sech2s
)
.

We derive that Res1 = 0 (τ = 0) from (20), and consequently,

ϕ1(s) = 0.332348 tanh(s).

The first RPS approximate solution is

w1 = − log(1.09545 sech(s)) + τ0.332348 tanh(s).

To determine the form of ϕ2(s), the second unknown coefficient,

w2 = ϕ(s) + τϕ1(s) + τ2ϕ2(s).

Using k = 2 in (19), the residual function becomes

Res2w = (w2)tt − (k1 + 3k2(w2)
2
s)(w2)ss − 2αϖe−α(w2)(e−α(w2) − 1). (21)

Moreover, (∂Res2w/∂τ) = 0 in Res2w(τ = 0), and consequently,

ϕ2(s) = 0.213317 sech(x)
1√
2 − 0.22752 sech(x)

√
2.

Thus, the second RPS approximate solution is

w2(s, τ) =− log(1.09545 sech(s) + t0.332348 tanh(s)

+ τ2(0.213317sech(s)
1√
2 − 0.22752 sech(s)

√
2).

Similarly, we write the next approximation as

w3 = ϕ(s) + τϕ1(s) + τ2ϕ2(s) + τ3ϕ3(s).

For k = 3 in (19),

Res3w = (w3)ττ − (k1 + 3k2(w3)
2
s)(w3)ss − 2αϖe−α(w3)(e−α(w3) − 1), (22)

(∂2Res3w/∂τ
2) = 0(τ = 0), and thus

ϕ3(s) = 0.0534688 sech(s)1+
√
2 sinh(s).

Therefore, the third approximate solution becomes
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w3(s, τ) =− log(1.09545 sech(s) + t0.332348 tanh(s)

+ τ2(0.213317sech(s)
1√
2 − 0.22752 sech(s)

√
2)

+ τ30.0534688 sech(s)1+
√
2 sinh(s).

We repeat this procedure to represent the solution to (4). The kth-approximation
of the solution to (4) can be stated in the following finite series:

wk(s, τ)

= − log(1.09545 sech(s) + t0.332348 tanh(s) + t2(0.213317 sech(s)
1√
2

− 0.22752 sech(s)
√
2) + τ30.0534688 sech(s)1+

√
2 sinh(s) + · · · .

4.2 Laplace residual power series method (LRPSM)

In this section, we explain the steps of the LRPSM used to solve the PBD
model (4). The LRPSM’s primary technique involves applying the Laplace
transform to NLPDEs and using a power series as the proposed solution
within this transformed space. The coefficients of this expansion, which rep-
resent unknowns, are found using a technique similar to the standard RPSM.
Ultimately, the solution obtained in the transformed space is reverted to
the original space using the inverse Laplace transform, thus providing the
solution for the PBD model equation.

step 1: First, we apply the Laplace transform to (4), that is,

L[wττ ] = L
[
(k1 + 3k2w

2
s)wss

]
+ L

[
2αϖe−αw(e−αw − 1)

]
= L

[
(k1 + 3k2w

2
s)wss

]
+ 2αϖL

[
e−2αw

]
− 2αωL

[
e−αw

]
= L

[
(k1 + 3k2u

2
s)wss

]
+ 2αϖL

[ ∞∑
n=0

(−1)n4nαn

n!
wn(s, τ))

]

− 2αϖL

[ ∞∑
n=0

(−1)nαn

n!
wn(s, τ))

]
.

(23)

Using L[wττ (s, τ)] = p2L[w(s, τ)]−wτ (s, 0)− pw(s, 0) with initial condi-
tion given in (14), we write (23) as
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p2L[w(s, τ)]− wτ (s, 0)− pw(s, 0)

= k1Wss(s, p) + 3k2L
[
L−1[Ws(s, p)]

2L−1[Wss(s, p)]
]

+ 2αϖ

∞∑
n=0

(−1)n

n!
4nαnL

[
L−1 [W (s, p)]

n]
− 2αϖ

∞∑
n=0

(−1)nαn

n!
L
[
L−1 [W (s, p)]

n]
,

W (s, p)

=
ϕ0(s)

p
+

ϕ1(s)

p2
+

k1Wss(s, p)

p2
+

3k2
p2

L
[
L−1[Ws(s, p)]

2L−1[Wss(s, p)]
]

+
2αϖ

p2

∞∑
n=0

(−1)n4nαn

n!
L
[
L−1 [W (s, p)]

n]
− 2αϖ

p2

∞∑
n=0

(−1)n

n!
αnL

[
L−1 [W (s, p)]

n]
,

(24)
where W (s, p) = L[w(s, τ)], w(s, 0) = ϕ0(s) and wτ (s, 0) = ϕ1(s).
step 2: Now, the transformed function W (s, p) can be expressed as the
following expansion:

W (s, p) =

∞∑
n=0

ϕn(s)

pn+1
. (25)

The kth truncated series is expressed as

Wk(s, p) =

k∑
n=0

ϕn(s)

pn+1
=

ϕ0(s)

p
+

k∑
n=1

ϕn(s)

pn+1
.

Now, by using the Laplace residual function to (24), it is as follows:

LResW (s, p) =W (s, p)− ϕ0(s)

p
− ϕ1(s)

p2
− k1

p2
Wss(s, p)

− 3k2
p2

L
[
L−1[Ws(s, p)]

2L−1[Wss(s, p)]
] 2αϖ

p2

−
∞∑

n=0

(−1)n

n!
4nαnL

[
L−1 [W (s, p)]

n]
+

2αϖ

p2

∞∑
n=0

(−1)nαn

n!
L
[
L−1 [W (s, p)]

n]
.

(26)

The kth Laplace residual function can be expressed as
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LReskW (s, p) =Wk(s, p)−
ϕ0(s)

p
− ϕ1(s)

p2
− k1

p2
Wkss

(s, p)

− 3k2
p2

L
[
L−1[Wks(s, p)]

2L−1[Wkss(s, p)]
]

− 2αϖ

p2

∞∑
n=0

(−1)n

n!
4nαnL

[
L−1 [Wk(s, p)]

n]
+

2αϖ

p2

∞∑
n=0

(−1)nαn

n!
L
[
L−1 [Wk(s, p)]

n]
.

(27)

step 3: To obtain the coefficient functions ϕn(s), we solve the following
system, iteratively:

lim
k→∞

pk+1LReskW (s, p) = 0, k = 1, 2, 3, . . . . (28)

Finally, we use the Laplace inverse on Wk(s, p) to find the kth approximate
solution, wk(s, τ). Here are the first few elements of the sequence ϕn(s).

ϕ1(s) =0.332348 tanh(s),

ϕ2(s) =− 0.106659 sech(s)0.707107 + 0.113761 sech(s)1.41421

+ sech(s)2(0.05 + 0.015 tanh(s)2),

ϕ3(s) =0.00835513 sech(s)1.70711 sinh(s)− 0.01789 sech(s)2.41421 sinh(s)

+ 0.00332348sech(s)4 tanh(s) + sech(s)2(−0.0110783 tanh(s)

− 0.00332348 tanh(s)3.

Now, the kth approximation wk(s, τ) can be expressed as

wk(s, τ) =− log [1.09545 sech(s)] + 0.332348τ tanh(s)

+ τ2(−0.106659sech(s)0.707107 + 0.113761 sech(s)1.41421

+ sech(s)2(0.05 + 0.015 tanh(s)2))

+ τ3(0.00835513 sech(s)1.70711 sinh(s)

− 0.0178229sech(s)2.41 sinh(s) + 0.00332348 sech(s)4 tanh(s)

+ · · · .
(29)
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5 Convergence analysis

In this section, we provide a convergence analysis of the suggested method.

Theorem 3. [15] Let W (s, p) = L[w(s, τ)] be a piece-wise continuous func-
tion on I × [0,∞). Theorem 2 can be viewed as representing the new form
of Taylor’s series. If

∣∣sL[∂n+1
τ w(s, τ)]

∣∣ ≤ µ(s), then finally, the following
inequality is satisfied by the Laplace transform reminder Rn:

|Rn(s, p)| ≤
µ(s)

p1+(n+1)
.

Theorem 4. Suppose that wn(s, τ) and w(s, τ) are defined in a Banach space
over (C[0, 1], ∥·∥). The series {wn(s, τ)}∞n=0 converges to an exact solution on
the interval 0 < µ < 1.

Proof. Let Pn be the sequence of partial sum

1. P0 = w0(s, τ),

2. P1 = w0(s, τ) + w1(s, τ),

3. Pn = w0(s, τ) + w1(s, τ) + · · ·+ wn(s, τ).

Now, Pn(s, τ)
∞
n=0 is a Cauchy sequence. Then

∥Pn+1 − Pn∥ = ∥wn+1(s, τ)∥ ≤ µ ∥wn(s, τ))∥ ≤ µ2 ∥wn−1(s, τ))∥

≤ · · · ≤ µn+1 ∥w0(s, τ)∥ .
(30)

Now, for every n,m ∈ N , n ≥ m, and by using (30), we have

∥Pn − Pm∥

= ∥(Pn − Pn−1) + (Pn−1 − Pn−2) + Pn−2 + · · ·+ (Pm+1 − Pm)∥

≤ ∥(Pn − Pn−1)∥+ ∥(Pn−1 − Pn−2)∥+ · · ·+ ∥(Pm+1 − Pm)∥

≤ µn ∥u0(s, τ)∥+ µn−1 ∥u0(s, τ)∥+ · · ·+ µm+1 ∥u0(s, τ)∥

≤ (µn + µn−1 + · · ·+ µm+1) ∥u0(s, τ)∥

=
1− µn−m

1− µ
µm+1 ∥u0(s, τ)∥ .

For 0 < µ < 1 and 1− µn−m < 1, we get
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∥Pn − Pm∥ ≤ µm+1

1− µ
∥u0(s, τ)∥ .

Since limm→∞[µ
m+1

1−µ ∥u0(s, τ)∥] = 0 and u0(s, τ) is bounded, we have

lim
n,m→∞

∥Pn − Pm∥ = 0.

Therefore, the series converges.

6 Numerical examples

To demonstrate the performance of numerical simulations various initial val-
ues are provided for solving the nonlinear PBD model using the methods
RSPM and LRPSM. We use a PC with a Ryzen 5 (3500U) processor for the
computation. The MATHEMATICA software is used to construct problems
and plot two-dimensional and three-dimensional graphs for different values
of s and τ .

Example 1. Consider the PBD model, (4). The exact solution for this
problem is provided by

w(s, τ) =
−1

α
ln
(
±2

√
3
√
k2

α2
√
Ω

sech2(s− βτ)

)
.

Also, the initial condition is given by

u(s, 0) =
−1

α
ln
(
±2

√
3
√
k2

α2
√
Ω

sech2s
)
, (31)

where α = 1,Ω = 0.1, k1 = 0.1, k2 = 0.01, β = 0.332348, τ = 1.

Table 1 compares the approximate solutions derived by the RPSM and
LRPSM methods for w5(s, τ) to their exact solutions, as well as the absolute
errors. Even though there are few approximation methods for solving the
PBD dynamic model, the authors compare their results to the exact answer
that has been verified. Table 2 compares the maximum absolute errors solved
using the FD method [3] with the RPSM and LRPSM for solving the PBD
model. Figures 1 and 2 display a two-dimensional graph of the approximate
solutions for different values of τ = 1, 2, 3. Figure 3 provides a comparison
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Table 1: Comparison table for w5(s, τ)

s τ Exact solution RPSM LRPSM
0.1 0.1 −0.0823111525861 2.02289× 10−6 1.14496× 10−8

0.2 −0.07736822772221 9.14133× 10−6 5.62125× 10−8

0.3 −0.07135098243578 2.13121× 10−6 1.2389× 10−8

0.4 −0.06427226132232 3.93493× 10−6 2.06541× 10−8

0.2 0.1 -0.06420461254424342 3.06466× 10−6 4.21426× 10−8

0.2 -0.06420461254424342 1.27704× 10−6 4.21426× 10−8

0.3 -0.04690604169269628 2.99501× 10−6 4.99988× 10−8

0.4 −0.036731130920844575 5.55226× 10−6 6.74669× 10−8

0.3 0.1 -0.03663619985626926 4.37628× 10−6 7.41591× 10−8

0.2 -0.025462077770375065 7.85772× 10−6 1.40389× 10−8

0.3 -0.013319517915262057 4.25469× 10−6 1.40389× 10−8

0.4 -0.00023174466185355724 2.02289× 10−6 2.35173× 10−8

0.4 0.1 -0.00011122438946878011 6.05776× 10−6 2.31873× 10−8

0.2 0.01390542657263386 2.50589× 10−6 8.77949× 10−8

0.3 0.028817222671667767 5.82749× 10−6 2.12122× 10−8

0.4 0.04459787305092009 1.0702× 10−6 4.11488× 10−8

of RPSM and LRPSM employing the exact solution. Figures 4 and 5 show
a three-dimensional graph of the approximate solution. Tables 3 and 4 dis-
play the CPU time required to solve the PBD model using the RPSM and
LRPSM techniques for various values of wk(s, τ), respectively. The obtained
results have been compared with the same obtained by some existing meth-
ods. It manifests that the RPSM is more accurate than the LRPSM, and
the computational time taken by both techniques is much less (less than a
second)

Example 2. Consider the PBD model defined in (5). The exact solution
and initial conditions for this problem are provided by

w(s, τ) =
−1

α
ln
(
2
√
3
√
k2

α2
√
Ω

es−βτ

(1 + es−βτ )2

)
,
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Table 2: Comparison L∞ errors for Example 1

s RPSM LRPSM FD method[3]
-1 2.65558× 10−6 6.74669× 10−7 2.24109× 10−5

0 9.66568× 10−7 7.41549× 10−8 1.68698× 10−4

1 3.50922× 10−6 2.35565× 10−7 3.58976× 10−5

Table 3: CPU time of Example 1 for w5(s, τ), w7(s, τ), and w9(s, τ) using RPSM

w5(s, τ) w7(s, τ) w9(s, τ)

0.246 /s 0.443/s 0.689/s

Table 4: CPU time of Example 1 for w5(s, τ), w7(s, τ) and w9(s, τ) using LRPSM

w5(s, τ) w7(s, τ) w9(s, τ)

0.149 /s 0.248/s 0.487/s

Figure 1: Approximate solution using RPSM for τ = 1, 2, 3
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Figure 2: Approximate solution using LRPSM for τ = 1, 2, 3

Figure 3: Comparison of RPSM and LRPSM with exact solution
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Figure 4: Approximate solution using RPSM

Figure 5: Approximate solution using LRPSM
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Figure 6: Approximate solution using RPSM for τ = 1, 2, 3

w(x, 0) =
−1

α
ln
(
2
√
3
√
k2

α2
√
Ω

es

(1 + es)2

)
, (32)

where α = 3,Ω = 0.1, k1 = 0.1, k2 = 0.01, β = 0.483656, τ = 1.

Table 5 displays the exact solution for the PBD model and compares
absolute errors with the RPSM and LRPSM techniques with w5(s, τ). Al-
though there are few approximation approaches for solving the PBD model
equation, the authors compare their results to the exact solution that has
been validated. Table 6 compares the greatest absolute errors solved by the
FD approach [3] with the nonlinear PBD model equation. Figures 6 and 7
illustrate a two-dimensional graph of approximate solutions for τ = 1, 2, 3.
Figure 8 illustrates the comparison of RPSM and LRPSM with the precise
answer. Figures 9 and 10 show a three-dimensional graph of the approxi-
mate answer. Tables 7 and 8 display the CPU time required to solve the
PBD model using the RPSM and LRPSM techniques for various values of
wk(s, τ), respectively.
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Table 5: Comparison table for w5(s, τ)

s τ Exact solution RPSM LRPSM
0.1 0.1 0.013048991520552798 1.95404× 10−6 1.87035× 10−8

0.2 0.012827730618851004 7.81952× 10−6 7.48505× 10−8

0.3 0.012996302429450476 1.75981× 10−6 1.68458× 10−8

0.4 0.013554509915358792 3.12868× 10−6 2.9949× 10−8

0.2 0.1 0.014741090120408296 1.94237× 10−5 1.85741× 10−6

0.2 0.013715149604062494 7.77844× 10−6 7.4395× 10−8

0.3 0.013078005647602956 1.75183× 10−6 1.67573× 10−8

0.4 0.01283040190258303 3.11674× 10−6 2.98765× 10−8

0.3 0.1 0.016264113007539976 1.92221× 10−6 1.80394× 10−8

0.2 0.018089633401329762 770323× 10−6 7.23719× 10−8

0.3 0.014824428284429108 1.73614× 10−6 1.63285× 10−6

0.4 0.013772248795808822 3.09105× 10−6 2.91017× 10−6

0.4 0.1 0.023078084980686298 1.89392× 10−6 1.80394× 10−6

0.2 0.02046197927720671 7.59522× 10−6 7.23719× 10−6

0.3 0.018226 1.71302× 10−6 1.63285× 10−6

0.4 0.0163753558674409 3.05207× 10−6 2.91017× 10−6

Table 6: Comparison of L∞ errors of Example 2

s RPSM LRPSM FD method[3]
-1 8.65558× 10−8 8.65558× 10−8 7.66503× 10−7

0 7.66568× 10−8 7.66568× 10−8 3.46402× 10−7

1 9.50922× 10−8 8.56666× 10−8 7.66228× 10−7

Table 7: CPU time of Example 2 for w5(s, τ), w7(s, τ) and w9(s, τ) using RPSM

w5(s, τ) w7(s, τ) w9(s, τ)

0.246 /s 0.399/s 0.611/s

Table 8: CPU time of Example 2 for w5(s, τ), w7(s, τ) and w9(s, τ) using LRPSM

w5(s, τ) w7(s, τ) w9(s, τ)

0.151 /s 0.244/s 0.477/s
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Figure 7: Approximate solution using LRPSM for τ = 1, 2, 3

Figure 8: Comparison of RPSM and LRPSM with exact solution
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Figure 9: Approximate solution using RPSM

Figure 10: Approximate solution using LRPSM
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7 Conclusion

The primary aim of this research was to solve the nonlinear PBD model
using two semi-analytical methods: the RPSM and LRPSM. The RPSM is
often simple for manual calculations and efficient when using computational
tools, as it mainly involves calculating the limit at infinity, although this can
be computationally expensive. In contrast, a new approach was introduced,
combining the Laplace transform operator with the residual power series.
The authors conducted a convergence analysis of the proposed methods. For
small values of k, the method yields highly accurate results, and increasing
the number of iterations improves the solution’s precision. Numerical ex-
amples confirmed the reliability, accuracy, and effectiveness of the methods.
A key advantage of the new technique is that it reduces the computational
effort required to obtain the solution in power series form, with coefficients
determined through successive algebraic steps. In conclusion, the LRPSM
has demonstrated its ability to solve nonlinear equations with high accuracy
and simplicity. The authors applied two methods to the Peyrard–Bishop
model and compared the results, demonstrating that both methods produce
very similar outcomes. However, the computational time required for the
LRPSM approach is significantly less than that for the RPSM approach, as
shown in tabular form.

This opens opportunities for researchers to extend the method to other
types of equations, such as integral, integro-differential, and algebraic equa-
tions. Future work will involve applying this method to higher-dimensional
physical problems, with a particular focus on recent developments in con-
formable fractional problems.
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