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Abstract

This study presents the process of using extrapolation methods to solve
the nonlinear Volterra–Fredholm integral equations of the second kind. To
do this, by approximating the integral terms contained in equations by a
quadrature rule, the nonlinear Volterra–Fredholm integral equations of the
second kind are reduced to a set of nonlinear algebraic equations. Then,
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the solution of the corresponding system of nonlinear equations is approxi-
mated by an iterative method, and finally, these iterations are accelerated
by an extrapolation method. We demonstrate the effectiveness of the pro-
posed approach by solving some numerical examples.

AMS subject classifications (2020): Primary 45G10; Secondary 65B05, 65B99.

Keywords: Volterra–Fredholm integral equations; Extrapolation methods;
Iterative methods.

1 Introduction

The modeling of many mathematical, physics, biological, and engineering
problems has led to the formation of a group of integral equations in the form
of Volterra–Fredholm integral equations [30, 12]. Our focus is on the non-
linear Volterra–Fredholm integral equation of the second kind, represented
as

x(t) = f(t) +

∫ t

a

g(t, s, x(s))ds+

∫ b

a

k(t, s, x(s))ds, t ∈ [a, b], (1)

where f, g, and k are known and analytic functions, and x is the unknown
function to be determined. The existence, uniqueness, and other properties
of the solution of equation (1) are presented in [24].

Since these equations cannot be solved exactly, it is important to find
their approximate solutions using some numerical methods. There have been
various suggested numerical methods for approximating solutions to nonlin-
ear Volterra–Fredholm integral equations, such as radial basis functions [17],
combination of the modified Adomian decomposition and method and the
quadrature (trapezoidal and Weddle) rules [22], approximation collocation
methods [11], Taylor polynomial methods [33], triangular functions methods
[19], homotopy perturbation method [13], rationalized Haar functions meth-
ods [23, 1], wavelet methods [34], modification of hat functions [21], and many
other methods.

In various science and engineering fields, it is essential to determine the
limits or approximations of limits for sequences. For instance, approximations
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derived from fixed-point iterations of linear or nonlinear equation systems.
Unfortunately, many of these sequences have slow convergence rates, making
them expensive to use.

An effective solution to overcome this problem is to use extrapolation
methods (or convergence acceleration methods) for the desired sequence.
These methods use the original sequence to produce a new sequence that
converges to the same limit as the original one but faster [29]. There exist
many methods for accelerating the convergence of a sequence, such as the
scalar Shanks transformation for transforming a sequence of numbers, which
was introduced by Shanks [28], and Wynn [31] implemented it using the scalar
ε-algorithm (SEA).

In 1962, Wynn [32] generalized the SEA to accelerate sequences of vec-
tors. The vector ε-algorithm (VEA) was introduced using an algebraic theory
similar to that of the scalar method. Brezinski extended the SEA to a topo-
logical vector space and created the Shanks topological transformation, which
is implemented through a recursive algorithm in two classes [4]. The rules of
these algorithms were later simplified and named the first simplified topolog-
ical ε-algorithm (STEA1) and the second simplified topological ε-algorithm
(STEA2) [8]. The topological Shanks transformation and the topological ε-
algorithm (TEA) have been used for solving linear and nonlinear equations,
computing eigenelements, Pade-type approximations, matrix functions, ma-
trix equations, the Lanczo method, and more [9, 15, 5, 14, 25, 10].

Our study aims to show how we can use extrapolation methods to solve
Volterra–Fredholm integral equations. Because these methods are defined
without needing specific information about the sequence’s generation, they
can be directly utilized to solve linear and nonlinear systems. In this arti-
cle, we find an iterative method to solve the system of nonlinear equations
that result from using a quadrature method on the integral expressions of
the Volterra–Fredholm integral equation. Then, we use extrapolation to ac-
celerate the convergence of the sequence resulting from the iterative method
and get an approximate solution to the integral equation. Section 2 presents
a review of ε-algorithms and introduces the sequence transformations em-
ployed to accelerate the sequence produced in Section 3. In Section 3, we
approximate the integral utilizing a quadrature method and then utilize the

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



Safdari, Moradkhani and Dastjerdi 4

Picard iterative method to approximate it again. Additionally, we introduce
an algorithm for accelerating the sequence produced by the iterative method.
In Section 4, some numerical examples prove the efficacy of our method.

2 A review of ε-algorithms

2.1 The SEA

The Shanks transformation, proposed by Shanks in 1955, utilizes a recursive
method to transform scalar sequences. If (xn) is a scalar sequence and x is
its unknown limit, applying the Shanks transformation converts the sequence
into a set of sequences (xn) → {(ek(xn))} that can be represented as a ratio
of two determinants,

ek(xn) =

∣∣∣∣∣∣∣∣∣∣∣

xn . . . xn+k

∆xn . . . ∆xn+k

...
...

∆xn+k−1 . . . ∆xn+2k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1

∆xn . . . ∆xn+k

...
...

∆xn+k−1 . . . ∆xn+2k−1

∣∣∣∣∣∣∣∣∣∣∣

, k, n = 0, 1, . . . .

In fact, for k = 1, Shanks transformation is the same as the Aitken’s ∆2

process.

Theorem 1. For all n, ek(xn) = x if and only if there exist a0, . . . , ak, with
a0ak ̸= 0 and a0 + · · ·+ ak ̸= 0, such that

a0(xn − x) + · · ·+ ak(xn+k − x) = 0.

Proof. See [7].

The Shanks transformation can be performed recursively by Wynn’s SEA
[31], whose rules are
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ε
(n)
−1 = 0, n = 0, 1, . . . ,

ε
(n)
0 = xn, n = 0, 1, . . . ,

ε
(n)
k+1 = ε

(n+1)
k−1 + (ε

(n+1)
k − ε

(n)
k )−1, k, n = 0, 1, . . . .

(2)

Wynn has shown that for all k and n, ε
(n)
2k = ek(xn) and ε

(n)
2k+1 =

1/ek(∆xn), where the forward difference operator ∆ is defined by ∆xn =

xn+1 − xn [29].
The quantities ε

(n)
k are usually displayed in a two-dimensional array

known as the ε-array (Table 1).

Table 1: ε-array

ε
(0)
−1 = 0

ε
(0)
0 = x0

ε
(1)
−1 = 0 ε

(0)
1

ε
(1)
0 = x1 ε

(0)
2

ε
(2)
−1 = 0 ε

(1)
1

. . .
... ε

(2)
0 = x2

...
. . .

...
...

...
. . .

...
...

... ε
(0)
2k

...
...

... . .
.

...
...

... . .
.

...
...

... . .
.

... ε
(2k−1)
0 = x2k−1

... . .
.

ε
(2k)
−1 = 0 ε

(2k−1)
1

ε
(2k)
0 = x2k

Only the values in the even columns, that is, the columns containing
quantities with an even lower index, are interesting and directly related to
the scalar Shanks transformation ε

(n)
2k = ek(xn).

The values of the initial scalar sequence are saved in column 0. Thus,
having 2k + 1 terms of a sequence in column 0, that is, ε(i)0 = xi for i =

0, . . . , 2k, we are able to complete the ε-array up to the vertex ε
(0)
2k . With one

difference in the calculation of the elements of column 1, we use this formula
ε
(n)
1 = (ε

(n+1)
0 − ε

(n)
0 )−1.
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When dealing with a large initial sequence, it may be recommended to
stop the computations before completing the entire ε-array up to its vertex,
and once a certain even column (Maxcol) is reached (Table 2).

Table 2: ε-array with a certain even column

ε
(0)
−1 = 0

ε
(0)
0 = x0

ε
(1)
−1 = 0 ε

(0)
1

ε
(1)
0 = x1 ε

(0)
2

ε
(2)
−1 = 0 ε

(1)
1

. . .
... ε

(2)
0 = x2

...
... ε

(0)
Maxcol

...
...

...
...

...
...

...
... ε

(1)
Maxcol

...
...

...
...

...
...

...
... ε

(2)
Maxcol

...
...

...
...

ε
(2k−1)
0 = x2k−1

... ε
(3)
Maxcol

ε
(2k)
−1 = 0 ε

(2k−1)
1

...
... ε

(2k)
0 = x2k

...
... ε

(4)
Maxcol

...
...

...
...

...

Although the easiest way to implement the ε-algorithm is to calculate
the columns one by one from the first column, in this case, if we want to
add a new term of the scalar sequence, all the calculations must be done
again, which causes problems in computation time and storage space. To
overcome these problems, Wynn proposed a method called moving rhombus
[31] because, as we can see in (2), the expressions involved in calculation ε

(n)
k+1

are located in the four corners of a rhombus as Table 3.

In this method, we proceed with ascending diagonals. Each diagonal will
be a scalar vector, and we utilize the previous diagonal to calculate the next
diagonal (Table 4).

For example, in ascending diagonal 2, quantities ε(1)0 and ε
(0)
1 have already

been calculated and stored. In the calculation of the ascending diagonal 3, by
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Table 3: Rhombus rule

ε
(n)
k

""E
EE

EE
EE

E

ε
(n+1)
k−1

;;wwwwwwwww

##G
GG

GG
GG

G
ε
(n)
k+1

ε
(n+1)
k

<<yyyyyyyy

Table 4: ε-array with a certain even column

column 1 column 2 column 3 column 4

diagonal 1 ε
(0)
0 = x0

↓ ε
(0)
1

diagonal 2 ε
(1)
0 = x1 → ε

(0)
2

ε
(1)
1 ↓ ε

(0)
3

diagonal 3 ε
(2)
0 = x2 ε

(1)
2 → ε

(0)
4

ε
(2)
1 ε

(1)
3 ↓

diagonal 4 ε
(3)
0 = x3 ε

(2)
2 ε

(1)
4

ε
(3)
1 ε

(2)
3 ↓

diagonal 5 ε
(4)
0 = x4 ε

(3)
2 ε

(2)
4

ε
(4)
1 ε

(3)
3 ↓

diagonal 6 ε
(5)
0 = x5 ε

(4)
2

...
...

...
...

...
...

entering the quantity ε
(2)
0 = x2 from the original scalar sequence and using

the diagonal 2, we calculate the quantities ε
(1)
1 and ε

(0)
2 . Now, diagonal 3

containing quantities ε
(2)
0 , ε(1)1 , and ε

(0)
2 is replaced the diagonal 2, and this

process continues.
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2.2 The VEA

When the elements of the sequence (xn) are vectors, the VEA can be uti-
lized. This algorithm is an extension of the SEA and is designed for vector
sequences [32]. If we define the inverse of a vector x as x−1 = x/(x, x), where
(·, ·) represents the typical inner product, the rules for the vector algorithm
are identical to those of the scalar algorithm. Additionally, the scheme and
implementation are quite similar.

2.3 The TEA

In 1975, Brezinski [4] introduced the topological Shanks transformation,
which is a more comprehensive approach as it deals with sequences of el-
ements from a topological vector space E on R or C. This transformation
has two classes and two different algorithms for implementation. The idea
was based on the definition of the inverse of a couple (x, y) ∈ E×E∗ defined
as x−1 = y/ ⟨y, x⟩ ∈ E∗ and y−1 = x/ ⟨y, x⟩ ∈ E, where E∗ is the algebraic
dual space of E and ⟨·, ·⟩ is the duality product between E and E∗. Both al-
gorithms need to perform operations involving elements of the algebraic dual
space E∗ and E. These algorithms involve two different rules for the even
lower index terms and the odd ones. The first TEA (TEA1) for computing
the quantities of the first topological Shanks transformation, êk(xn) ∈ E [4]
is presented as



ε̂
(n)
−1 = 0 ∈ E∗, n = 0, 1, . . . ,

ε̂
(n)
0 = xn ∈ E, n = 0, 1, . . . ,

ε̂
(n)
2k+1 = ε̂

(n+1)
2k−1 +

y〈
y, ε̂

(n+1)
2k − ε̂

(n)
2k

〉 ∈ E∗, n, k = 0, 1, . . . ,

ε̂
(n)
2k+2 = ε̂

(n+1)
2k +

ε̂
(n+1)
2k − ε̂

(n)
2k〈

ε̂
(n+1)
2k+1 − ε̂

(n)
2k+1, ε̂

(n+1)
2k − ε̂

(n)
2k

〉 ∈ E, n, k = 0, 1, . . . .
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The quantities ẽk(xn) ∈ E of the second topological Shanks transforma-
tion can be recursively computed by the second TEA (TEA2) [4] as

ε̃
(n)
−1 = 0 ∈ E∗, n = 0, 1, . . . ,

ε̃
(n)
0 = xn ∈ E, n = 0, 1, . . . ,

ε̃
(n)
2k+1 = ε̃

(n+1)
2k−1 +

y〈
y, ε̃

(n+1)
2k − ε̃

(n)
2k

〉 ∈ E∗, n, k = 0, 1, . . . ,

ε̃
(n)
2k+2 = ε̃

(n+1)
2k +

ε̃
(n+1)
2k − ε̃

(n)
2k〈

ε̃
(n+1)
2k+1 − ε̃

(n)
2k+1, ε̃

(n+2)
2k − ε̃

(n+1)
2k

〉 ∈ E, n, k = 0, 1, . . . .

Proposition 1. For k, n = 0, 1, . . ., we have

ε̂
(n)
2k = êk(xn),

〈
y, ε̂

(n)
2k

〉
= ek(⟨y, xn⟩),

ε̂
(n)
2k+1 = y/ ⟨y, êk(∆xn)⟩, ε̂

(n)
2k+1 = y/ek(⟨y,∆xn⟩).

These relations are also true for the ε̃
(n)
k ’s and ẽk’s; see [4].

Brezinski [4] investigated the convergence and acceleration results of TEA,
and he and Redivo-Zaglia [8] introduced some other convergence and accel-
eration results that would not have been easily obtained directly from the
rules of the TEA.

2.4 The STEA

In simplified versions of TEA1 and TEA2, STEA1 and STEA2, we have one
rule instead of two, the functional y is utilized in the initialization of the
algorithm, the storage is reduced, and the numerical stability can be partly
controlled. These new algorithms also allow for the proof of theoretical results
on the convergence and acceleration of the transformation [8]. The rule of
the STEA1 is

ε̂
(n)
2k+2 = ε̂

(n+1)
2k +

ε
(n)
2k+2 − ε

(n+1)
2k

ε
(n+1)
2k − ε

(n)
2k

(ε̂
(n+1)
2k − ε̂

(n)
2k ), k, n = 0, 1, . . . , (3)
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with ε̂
(n)
0 = xn, n = 0, 1, . . ., where ε

(n)
k ’s are obtained by using Wynn’s SEA

to the sequence (⟨y, xn⟩) and ε̂
(n)
2k = êk(xn). Note that (3) can be written as

ε̂
(n)
2k+2 =

ε
(n)
2k+2 − ε

(n)
2k

ε
(n+1)
2k − ε

(n)
2k

ε̂
(n+1)
2k −

ε
(n)
2k+2 − ε

(n+1)
2k

ε
(n+1)
2k − ε

(n)
2k

ε̂
(n)
2k

= ε̂
(n)
2k +

ε
(n)
2k+2 − ε

(n)
2k

ε
(n+1)
2k − ε

(n)
2k

(ε̂
(n+1)
2k − ε̂

(n)
2k ),

and we have the following property:

Property 1. For all n, the computation of ε̂(n)2k+2 is stable if there exists Mk,
independent of n, such that

∣∣∣ ε(n)2k+2 − ε
(n)
2k

ε
(n+1)
2k − ε

(n)
2k

∣∣∣+ ∣∣∣ε(n)2k+2 − ε
(n+1)
2k

ε
(n+1)
2k − ε

(n)
2k

∣∣∣ ≤ Mk. (4)

Theorem 2. Let r(n)k = (ε
(n)
2k+2 − ε

(n+1)
2k )/(ε

(n+1)
2k − ε

(n)
2k ). From (3), we have

∥ε̂(n)2k+2 − ε̂
(n+1)
2k ∥

∥ε̂(n+1)
2k − ε̂

(n)
2k ∥

= |r(n)k |. (5)

If limn→∞ ε̂
(n)
2k = x and if there exists M such that for all n ≥ N , |r(n)k | ≤

M , then
lim
n→∞

ε̂
(n)
2k+2 = x.

Proof. The relation (3) can be shown as

ε̂
(n)
2k+2 = (1 + r

(n)
k )ε̂

(n+1)
2k − r

(n)
k ε̂

(n)
2k . (6)

By the assumption on r
(n)
k and since the two scalar coefficients in the right-

hand side sum up to 1, the conditions of the Toeplitz theorem for summation
processes are satisfied, which proves the result [4].

The STEA2 with the same implementation as the first can be imple-
mented in the following form:

ε̃
(n)
2k+2 = ε̃

(n+1)
2k +

ε
(n)
2k+2 − ε

(n+1)
2k

ε
(n+2)
2k − ε

(n+1)
2k

(ε̃
(n+2)
2k − ε̃

(n+1)
2k ), k, n = 0, 1, . . . , (7)
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with ε̃
(n)
0 = xn, n = 0, 1, . . . and ε

(n)
k ’s are the same for the STEA1 and, we

get ε̃(n)2k = ẽk(xn).
Note that there are several possibilities for choosing the linear functional

y ∈ E∗, since now, with the STEA, it appears only in the initialization terms
of the SEA. When E = Cn, we can choose it as the usual inner product

y : xn ∈ Cn → ⟨y, xn⟩ = (y, xn).

When E = Cn×n, we may set

y : xn ∈ Cn×n → ⟨y, xn⟩ = trace(xn).

When E = Cn×m, we may choose a matrix Y ∈ Cn×m and define

y : xn ∈ Cn×m → ⟨y, xn⟩ = trace(Y Txn).

We can also define y by (u, xnv), where u ∈ Cn and v ∈ Cm [8].
Brezinski [4] investigated the convergence and acceleration results of

STEA for a sequence in vector space.

3 Numerical method based on acceleration method

In this section, to accelerate the iterative method for solving the nonlinear
Volterra–Fredholm integral equation of the second kind, we suggest utilizing
STEA. The first step involves converting the integral equation into a discrete
form, followed by solving the system of equations using the Picard iteration
method. Lastly, to accelerate this process, we suggest employing the STEA1
and STEA2 convergence acceleration methods.

3.1 The approximation of the integral term

It is an obvious numerical method for solving integral equations to approx-
imate their integral term using a quadrature rule. If we initially ignore the
error, then the integral equation (1) will be replaced by the approximation
equation. Choose a regular mesh in t, s. Let ∆ = {a = t0, . . . , tp = b} be an

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??
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equidistant partition of [a, b], with the partition’s discretization parameter,
h = ti+1 − ti, i = 0, . . . , p− 1. Now if we take ∆ on [a, b], we have

x(ti) = f(ti) +

∫ ti

a

g(ti, s, x(s))ds+

∫ b

a

k(ti, s, x(s))ds. (8)

By partitioning ∆ as above with h = si+1 − si, i = 0, . . . , p − 1 and also
the known weights wij , j = 0, . . . , i for the intervals [a, ti], i = 0, . . . , p and
wl, l = 0, . . . , p for the intervals [a, b], equality (8) can be written as

x(ti) = f(ti) +

i∑
j=0

wijg(ti, sj , x(sj)) +

p∑
l=0

wlk(ti, sl, x(sl)), i = 0, . . . , p.

(9)
So, we set ti = si, i = 0, . . . , p and xi = x(ti), xl = x(sl), xj = x(sj), fi =

f(ti), i = 0, . . . , p for simplicity and we find approximate values xi, i =

0, . . . , p as the solution of the system of p+ 1 nonlinear equations

xi = fi +

i∑
j=0

wijg(ti, tj , xj) +

p∑
l=0

wlk(ti, tl, xl), i = 0, . . . , p. (10)

This method is called the quadrature or Nystorm method [12].

3.2 The iterative technique

In order to solve the system of nonlinear equations (10) that implicitly de-
fine xi, we suggest an iterative approach. Typically, this involves employing
simple iteration techniques, such as the fixed-point iteration process (Picard
iteration). This approach yields a sequence of values x(n)

i , n = 0, 1, . . ., which
hopefully converges to a unique solution. So, applying process (10), we have

x
(n+1)
i = fi+

i∑
j=0

wijg(ti, tj , x
(n)
j )+

p∑
l=0

wlk(ti, tl, x
(n)
l ), i = 0, . . . , p, (11)

or generally, relaxation process

x
(n+1)
i = x

(n)
i − α

{
x
(n)
i − fi −

i∑
j=0

wijg(ti, tj , x
(n)
j )

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



13 An approach of extrapolation methods for the solution of nonlinear ...

−
p∑

l=0

wlk(ti, tl, x
(n)
l )

}
, i = 0, . . . , p, n = 1, 2, . . . , (12)

where x
(0)
i , i = 0, . . . , p, is the initial approximation of the solution at the

points ti, which is mostly taken as 0, 1, or t. The parameter α, which is
different from 1, is used to adjust the convergence of the iterative method, and
we choose its value experimentally. However, when implementing the desired
extrapolation method, the convergence of the resulting sequence from the
iterative method is not necessary. When α = 1, the Picard iteration method
diverges, but it may also converge at times. In various iterative methods,
the value of α has been examined. For instance, in Mann’s iterative method
[20], the value of α changes in each iteration and is replaced by a sequence
of αn. Another method to find the appropriate value of the α parameter is
dynamic relaxation [16], which is used in many other fixed-point methods
[6, 18, 26, 3].

In short, we have a two-step approximation method that is supposed
to yield the exact solution of x. First, we apply the Nystorm method to
approximate the exact solution x at the points ti, i = 0, . . . , p then obtain
the approximate approximation by iterating x(n) = (x

(n)
0 , . . . , x

(n)
p ). The

iterative method described above may not converge, or its convergence may
be very slow. However, the vector sequence x(n) can be directly accelerated by
an appropriate method, and we want to accelerate it by STEA1 and STEA2.

3.3 Implementation the algorithms of STEA1 and
STEA2

In order to implement STEA1 and STEA2 to approximate the solution of
the Volterra–Fredholm integral equation (1), we approximate the occurring
integrals by the trapezoidal rule with h = (b − a)/p and ti = a + ih for
i = 1, . . . , p, giving the following nonlinear system of equations

x0 = f0 +
h

2

[
k(t0, t0, x0) + 2

p−1∑
l=1

k(t0, tl, xl) + k(t0, tp, xp)
]
,
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xi = fi +
h

2

[(
k(ti, t0, x0) + g(ti, t0, x0)

)
+ 2

i−1∑
j=1

(
k(ti, tj , xj) + g(ti, tj , xj)

)
+ 2k(ti, tj , xi) + g(ti, tj , xi) + 2

p−1∑
j=i+1

k(ti, tj , xj) + k(ti, tp, xp)
]
,

i = 1, . . . , p− 1,

xp = fp +
h

2

[(
k(tp, t0, x0) + g(tp, t0, x0)

)
+ 2

p−1∑
j=1

(
k(tp, tj , xj) + g(tp, tj , xj)

)
+
(
k(tp, tp, xp) + g(tp, tp, xp)

)]
.

Hence, a system of p+1 nonlinear equations is created, and we want to solve
it by an iterative process (12).

These iterations can be written as

x(n+1) = F (x(n)),

starting x(0) = 1.

The STEA1 and the STEA2 will be applied to the sequence of vectors
x(n) = (x

(n)
0 , . . . , x

(n)
p )T and the SEA to the sequence of scalars (y, x(n)). We

set y in two ways: it is randomly chosen in [−1, 1], or it is set to (1, . . . , 1)T .
The value of α is chosen experimentally to induce the convergence of the
iterations [3]. To apply the algorithms, we first fix the even column and want
to reach in the ε-array, say 2k. Then, we compute 2k+1 terms of the original
sequence and, using, for example, the STEA1, we obtain the values of the
array in the order ε̂(0)0 , ε̂

(1)
0 , ε̂

(0)
2 , ε̂

(1)
2 , . . . , ε̂

(0)
2k . The following Table 5 shows a

scheme of the method.

4 Numerical examples

Some examples of the use of STEA1 and STEA2 to accelerate the iterations
(12) for the calculation of an approximate solution of the Volterra–Fredholm
integral equations of the second kind are presented in this section. The exact
solutions for these examples are available. To demonstrate the accuracy and
effectiveness of the proposed method, we have compared the exact solution
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Table 5: Implementation of STEAs



Choose 2k and x0.

For n = 1, 2, . . .

compute xn.

Apply the STEA1 to x0, x1, x2, . . . and compute the sequences of

extrapolated values ε̂
(0)
0 = x0, ε̂

(1)
0 , ε̂

(0)
2 , ε̂

(1)
2 , . . . , ε̂

(0)
2k , ε̂

(1)
2k , ε̂

(2)
2k , . . .

and similar quantities by the STEA2.

end.

with the approximation obtained from the Picard iterative method and the
approximations obtained from the convergence acceleration methods STEA1
and STEA2. For each example, we have drawn five figures corresponding to
the y vector selection. These figures include the exact solution and approxi-
mate solutions computed by using STEA1 and STEA2, the Euclidean norm
of the errors, and the Euclidean norm of the differences.

Here, sol and x represent the exact solution and its approximation using
the Picard iteration method, while eps1 and eps2 are approximate solutions
computed by using STEA1 and STEA2 in accelerated Picard iterations, re-
spectively. To stop the use of STEA1, we use the following inequalities as a
condition:

∥ε̂(n+1)
2k − F (ε̂

(n+1)
2k )∥ > L∥ε̂(n)2k − F (ε̂

(n)
2k )∥

or
∥ε̂(n)2k − F (ε̂

(n)
2k )∥ ≤ δ.

These relations are also considered for STEA2, where L and δ are user-
defined, and F is previously defined.

To evaluate the convergence of the proposed method to the solution of
the fixed-point problem, we compare the approximate values obtained from
the convergence acceleration methods STEA1 and STEA2 with the values
obtained from applying the function F to them.
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Example 1. Consider the following nonlinear Volterra–Fredholm integral
equation with the exact solution x(t) = t [27]:

x(t) =
1

6
t+

1

2
te−t2 +

∫ t

0

tse−x2(s)ds+

∫ 1

0

tx2(s)ds, t ∈ [0, 1].

For starting, we consider x(0) = 1 as the initial vector and we take α = 0.1,
2k = 8, and p = 12. In Figure 1, we see the exact solution and approximate
solutions obtained from acceleration methods STEA1 and STEA2. Also, we
see the errors and differences in Figures 2 and 3 with 50 iterations. We get
the results on the left of the figures with y = (1, . . . , 1)T and on the other
hand with y random.

Figure 1: Exact solution and approximate solutions obtained from acceleration methods
STEA1 and STEA2 for Example 1 with y = (1, . . . , 1)T (left) and with y random (right).
The exact solution is x(t) = t.

Table 6 shows the errors obtained by the iterative method, STEA1, and
STEA2 for 50 iterations and different values of α, p, and 2k.

According to the definition, we expected STEA2’s performance to be bet-
ter than STEA2’s as seen in Table 6. Also, the data in Table 6 obtained by
choosing random y show better results. Table 7 shows the difference between
the solution obtained from the iterative method and F applied to it and those
obtained from STEA1 and STEA2 and F applied to them for 50 iterations
and different values of α, p, and 2k.

Example 2. Consider the following nonlinear Volterra–Fredholm integral
equation with the exact solution x(t) = et [2],
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17 An approach of extrapolation methods for the solution of nonlinear ...

(a) (b)

Figure 2: Errors for Example 1 with y = (1, . . . , 1)T (left) and with y random (right).
We take α = 0.1, 2k = 8, and p = 12.

(a) (b)

Figure 3: Difference for Example 1 with y = (1, . . . , 1)T (left) and with y random (right).
We take α = 0.1, 2k = 8, and p = 12.

x(t) = et(1−t)+
π

4
t−t tan−1(et)+

∫ t

0

tx(s)

1 + x2(s)
ds+

∫ 1

0

tsetx(s)ds, t ∈ [0, 1].

For starting, we consider x(0) = 1 as the initial vector, and we take α = 0.05,
2k = 8, and p = 12. In Figure 4, we see the exact solution and approximate
solutions obtained from acceleration methods STEA1 and STEA2. Also, we
see the errors and differences in Figures 5 and 6 with 50 iterations. We get
the results on the left of the figures with y = (1, . . . , 1)T and on the other
hand with y random.
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Table 6: The errors between the exact solution and the solution obtained from the
iterative method, as well as between the exact solution and those obtained from the
acceleration methods STEA1 and STEA2. The exact solution is displayed with sol, the
solution obtained from the iterative method is displayed with x, and those obtained
from acceleration methods STEA1 and STEA2 are displayed, respectively, with eps1

and eps2. With α = 0.5 and p = 50, the iterations stopped at 28 since δ = 10−8, L=20.

α p 2k y ∥x− sol∥ ∥eps1− sol∥ ∥eps2− sol∥

0.1 12 8 (1, . . . , 1)T 9.66×10−2 1.10×10−3 1.12×10−3

0.1 12 8 random 9.66×10−2 1.43×10−3 1.34 ×10−3

0.1 12 6 (1, . . . , 1)T 9.66×10−2 2.21 ×10−3 1.81×10−3

0.1 12 6 random 9.66×10−2 3.59×10−3 2.96 ×10−3

0.1 12 4 (1, . . . , 1)T 9.66×10−2 1.90×10−2 1.51 ×10−2

0.1 12 4 random 9.66 ×10−2 1.05 ×10−2 8.68 ×10−3

0.5 50 8 (1, . . . , 1)T 1.06×10−3 6.87×10−5 6.87×10−5

0.5 50 8 random 6.45×10−4 6.86×10−5 6.86×10−5

0.5 50 6 (1, . . . , 1)T 5.66×10−3 2.85×10−4 2.85×10−4

0.5 50 6 random 7.33×10−3 2.84×10−4 2.85 ×10−4

0.1 50 8 (1, . . . , 1)T 9.72×10−2 2.72×10−4 1.75×10−4

0.1 50 8 random 9.72×10−2 1.45×10−4 9.88 ×10−5

Table 8 shows the errors obtained by the iterative method, STEA1, and
STEA2 for 50 iterations and different values of α, p, and 2k.

Table 9 shows the difference between the solution obtained from the itera-
tive method and F applied to it and those obtained from STEA1 and STEA2
and F applied to them for 50 iterations and different values of α, p, and 2k.
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Table 7: The difference between the solution obtained from the iterative method and F
applied to it and those obtained from STEA1 and STEA2 and F applied to them for 50
iterations and different values of α, p, and 2k. With α = 0.5 and p = 50, the iterations
stopped at 28 since δ = 10−8, L=20.

α p 2k y ∥x− F (x)∥ ∥eps1− F (eps1)∥ ∥eps2− F (eps2)∥

0.1 12 8 (1, . . . , 1)T 8.99×10−3 5.70×10−5 3.66×10−5

0.1 12 8 random 8.99×10−3 5.86×10−5 3.82 ×10−5

0.1 12 6 (1, . . . , 1)T 8.99×10−3 3.08×10−4 2.23×10−4

0.1 12 6 random 8.99×10−3 1.99×10−4 1.46 ×10−4

0.1 12 4 (1, . . . , 1)T 8.99×10−3 3.84×10−3 3.08 ×10−3

0.1 12 4 random 8.99 ×10−3 3.11×10−4 2.56 ×10−4

0.5 50 8 (1, . . . , 1)T 9.72×10−4 1.35×10−7 7.77×10−9

0.5 50 8 random 5.66×10−3 6.15×10−8 4.28×10−9

0.5 50 6 (1, . . . , 1)T 1.27×10−3 5.34×10−8 6.36×10−9

0.5 50 6 random 1.67×10−3 5.29×10−8 6.58 ×10−9

0.5 50 4 (1, . . . , 1)T 5.66×10−4 2.52×10−8 6.12×10−9

0.5 50 4 random 4.32×10−4 1.08×10−8 8.81 ×10−9

(a) (b)

Figure 4: Exact solution and approximate solutions of STEA1 and STEA2 for Example
2 with y = (1, . . . , 1)T (left) and with y random (right). The exact solution is x(t) = et.
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(a) (b)

Figure 5: Errors for Example 2 with y = (1, . . . , 1)T (left) and with y random (right).
We take α = 0.05, 2k = 8, and p = 12.

(a) (b)

Figure 6: Differences for Example 2 with y = (1, . . . , 1)T (left) and with y random
(right). We take α = 0.05, 2k = 8, and p = 12.

5 Conclusion

In this study, we employed simplified topological epsilon algorithms to accel-
erate the convergence of the relaxed Picard iteration scheme. We achieved
this by discretizing the integral terms using a quadrature formula and ob-
taining a system of nonlinear equations. We also tested some examples and
performed error analysis to verify the efficiency of our approach. After com-
paring the approximate solution obtained from the Picard iteration method
with the values obtained from the convergent acceleration methods STEA1
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Table 8: The error between the exact solution and the solution obtained from the
iterative method, as well as between the exact solution and those obtained from the
acceleration methods STEA1 and STEA2. The exact solution is displayed with sol, the
solution obtained from the iterative method is displayed with x, and those obtained
from acceleration methods STEA1 and STEA2 are displayed, respectively, with eps1

and eps2.

α p 2k y ∥x− sol∥ ∥eps1− sol∥ ∥eps2− sol∥

0.05 12 8 (1, . . . , 1)T 1.54×100 4.03×10−2 4.00×10−2

0.05 12 8 random 1.54×100 4.00×10−2 3.99 ×10−2

0.05 12 6 (1, . . . , 1)T 1.54×100 3.78×10−2 3.74×10−2

0.05 12 6 random 1.54×100 4.00×10−2 3.99 ×10−2

0.05 12 4 (1, . . . , 1)T 1.54×100 5.24×10−2 5.11 ×10−2

0.05 12 4 random 1.54 ×100 3.73 ×10−2 3.73 ×10−2

0.05 20 8 (1, . . . , 1)T 1.93×100 1.83×10−2 1.80×10−2

0.05 20 8 random 1.93×100 2.11×10−2 2.08×10−2

0.01 12 8 (1, . . . , 1)T 3.08×100 2.57×10−1 2.47×10−1

0.01 12 8 random 2.82×100 9.40×10−2 9.15 ×10−2

0.01 20 8 (1, . . . , 1)T 3.93×100 1.94×10−1 1.87×10−1

0.01 20 8 random 3.86×100 3.23×10−1 3.19×10−1

and STEA2, it is evident that the approximate solution obtained from the
convergent acceleration method is more precise and closer to the actual so-
lution. It is suggested to use convergence acceleration methods STEA1 and
STEA2 in achieving the desired approximate solution of multiple and multi-
variable integral equations.
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Table 9: The difference between the solution obtained from the iterative method and F

applied to it and those obtained from STEA1 and STEA2 and F applied to them for 50
iterations and different values of α, p, and 2k.

α p 2k y ∥x− F (x)∥ ∥eps1− F (eps1)∥ ∥eps2− F (eps2)∥

0.05 12 8 (1, . . . , 1)T 2.40×10−2 1.02×10−4 7.87×10−5

0.05 12 8 random 2.40×10−2 1.03×10−4 9.04 ×10−5

0.05 12 6 (1, . . . , 1)T 2.40×10−2 9.42×10−4 8016×10−4

0.05 12 6 random 2.40×10−2 9.80×10−5 8.90 ×10−5

0.05 12 4 (1, . . . , 1)T 2.40×10−2 7.75×10−4 6.94 ×10−4

0.05 12 4 random 2.40 ×10−2 7.99 ×10−4 7.26 ×10−4

0.05 20 8 (1, . . . , 1)T 2.98×10−2 9.16 ×10−5 7.03×10−5

0.05 20 8 random 2.98×10−2 9.83×10−5 8.74×10−5

0.01 12 8 (1, . . . , 1)T 9.19×10−3 2.37×10−3 2.27×10−3

0.01 12 8 random 8.48×10−3 6.65×10−4 6.64 ×10−4

0.01 20 8 (1, . . . , 1)T 1.18×10−2 1.49×10−3 1.42×10−3

0.01 20 8 random 1.16 ×10−2 9.32×10−4 9.18×10−4

References

[1] Babolian, E., Bazm, S. and Lima, P. Numerical solution of nonlinear
two-dimensional integral equations using rationalized Haar functions,
Commun. Nonlinear. Sci. Numer. Simul. 16(3) (2011), 1164–1175.

[2] Borzabadi, A.H. and Heidari, M. A Successive numerical scheme for
some classes of Volterra–Fredholm integral equations, Iranian J. Math.
Sci. Inf. 10(2) (2015), 1–10.

[3] Brezinski, C. Numerical stability of a quadratic method for solving sys-
tems of non linear equations, Computing 14 (1975), 205–211.

[4] Brezinski, C. Generalisations de la transformation de shanks, de la table
de Pade et de l’ε-algorithme, Calcolo 12 (1975), 317–360.

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



23 An approach of extrapolation methods for the solution of nonlinear ...

[5] Brezinski, C. Padé-type approximation and general orthogonal polyno-
mials, Birkhauser-Verlag, 1980.

[6] Brezinski, C. and Chehab, J.-P. Nonlinear hybrid procedures and fixed
point iterations, Numer. Funct. Anal. Optim. 19 (1998), 465–487.

[7] Brezinski, C. and Redivo-Zaglia, M. Extrapolation methods: Theory and
practice, North-Holland, 1991.

[8] Brezinski, C. and Redivo-Zaglia, M. The simplified topological ε-
algorithms for accelerating sequences in a vector space, Siam J. Sci.
Comput. 36(5) (2014), A2227–A2247.

[9] Brezinski, C. and Radivo-Zagila, M. Extrapolation methods for the nu-
merical solution of nonlinear Fredholm integral equations, J. Integral
Equ. Appl. 31 (2019), 29–57.

[10] Brezinski, C. and Sadok, H. Lanczos-type algorithms for solving systems
of linear equations, Appl. Numer. Math. 11 (1993), 443–473.

[11] Brunner, H. On the numerical solution of nonlinear Volterra–Fredholm
integral equation by collocation methods, SIAM J. Numer. Anal. 27(4)
(1990), 987–1000.

[12] Delves, L.M. and Mohamed, J.M. Computational methods for integral
equations, Cambridge University Press, 1985.

[13] Ghasemi, M., Tavassoli Kajani, M. and Babolian, E. Numerical solutions
of the nonlinear Volterra–Fredholm integral equations by using Homotopy
Perturbation Method, Appl. Math. Comput. 188(1) (2007), 446–449.

[14] Jbilou, K., Messaoudi, A. and Tabaa, K. On some matrix extrapolation
methods, C. R. Math. Acad. Sci. Paris 341 (2005), 781–786.

[15] Jbilou, K. and Sadok, H. Vector extrapolation methods. Applications and
numerical comparison, J. Comput. Appl. Math. 122 (2000), 149–165.

[16] Kuttler, U. and Wall, W.A. Fixed-point fluid-structure interaction
solvers with dynamic relaxation, Comput. Mech. 43 (2008), 61–72.

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



Safdari, Moradkhani and Dastjerdi 24

[17] Laeli Dastjerdi, H. and Nili Ahmadabadi, M. The numerical solution of
nonlinear two-dimensional Volterra–Fredholm integral equations of the
second kind based on the radial basis functions approximation with error
analysis, Appl. Math. Comput. 293 (2017), 545–554.

[18] MacLeod, A.J. Acceleration of vector sequences by multi-dimensional ∆2

methods, Commun. Appl. Numer. Meth. 2 (1986), 385–392.

[19] Maleknejad, K., Almasieh, H. and Roodaki, M. Triangular functions
(TF) method for the solution of nonlinear Volterra–Fredholm integral
equations, Commun. Nolin. Sci. Numer. Simul. 15(11) (2010), 3293–3298.

[20] Mann, W.R. Mean value methods in iteration, Proc. Amer. Math. Soc.
4 (1953), 506–510.

[21] Mirzaee, F. and Hadadiyan, E. Numerical solution of Volterra–Fredholm
integral equations via modification of hat functions, Appl. Math. Com-
put. 280 (2016), 110–123.

[22] Mosa, G.A., Abdou, M.A. and Rahby, A.S. Numerical solutions for non-
linear Volterra–Fredholm integral equations of the second kind with a
phase lag, AIMS Math. 6 (2021), 8525–8543.

[23] Ordokhani, Y. Solution of nonlinear Volterra–Fredholm–Hammerstein
integral equations via rationalized Haar functions, Appl. Math. Comput.
180(2) (2006), 436–443.

[24] Patchpatte, B.G. On a class of Volterra and Fredholm non-linear integral
equations, Sarajevo J. Math. 16 (2008), 61–71.

[25] Salam A. and Graves-Morris, P.R. On the vector ε-algorithm for solving
linear systems of equations, Numer. Algorithms 29 (2002), 229–247.

[26] Sedogbo, G.A. Some convergence acceleration processes for a class of
vector sequences, Appl. Math. (Warsaw) 24 (1997), 299–306

[27] Shali, J.A. and Ebadi, G. Approximate solutions of nonlinear Volterra–
Fredholm integral equations, Int. J. Non. Sci. 14(4) (2012), 425–433.

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



25 An approach of extrapolation methods for the solution of nonlinear ...

[28] Shanks, D. Nonlinear transformations of divergent and slowly convergent
sequences, J. Math. Phys. 34 (1955), 1–42.

[29] Sidi, A. Practical extrapolation methods: Theory and applications, Cam-
bridge University Press, 2003.

[30] Wazwaz, A.M. Linear and nonlinear integral equations: Methods and
applications, Springer-Verlag, 2011.

[31] Wynn, P. On a device for computing the em(Sn) transformation, Math.
Tables Aids Comput. 10 (1956), 91–96.

[32] Wynn, P. Acceleration techniques for iterated vector and matrix problems,
Math. Comp. 16 (1962), 301–322.

[33] Yalcinbas, S. Taylor polynomial solutions of nonlinear Volterra–Fredholm
integral equations, Appl. Math. Comput. 127 (2002), 195–206.

[34] Yousefi, S. and Razzaghi, M. Legendre wavelets method for the nonlin-
ear Volterra–Fredholm integral equations, Math. Comput. Simul. 70(1)
(2005), 1–8.

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??


	An approach of extrapolation methods for the solution of nonlinear Volterra–Fredholm integral equations of the second kind
	H. Safdari, M. Moradkhani and M.T. Dastjerdi

