[1] Babolian, E., Bazm, S. and Lima, P. Numerical solution of nonlinear two-dimensional integral equations using rationalized Haar functions, Commun. Nonlinear. Sci. Numer. Simul. 16(3) (2011), 1164–1175.
[2] Borzabadi, A.H. and Heidari, M. A Successive numerical scheme for some classes of Volterra–Fredholm integral equations, Iranian J. Math. Sci. Inf. 10(2) (2015), 1–10.
[3] Brezinski, C. Numerical stability of a quadratic method for solving sys-tems of non linear equations, Computing 14 (1975), 205–211.
[4] Brezinski, C. Generalisations de la transformation de shanks, de la table de Pade et de l’ε-algorithme, Calcolo 12 (1975), 317–360.
[5] Brezinski, C. Padé-type approximation and general orthogonal polyno-mials, Birkhauser-Verlag, 1980.
[6] Brezinski, C. and Chehab, J.-P. Nonlinear hybrid procedures and fixed point iterations, Numer. Funct. Anal. Optim. 19 (1998), 465–487.
[7] Brezinski, C. and Redivo-Zaglia, M. Extrapolation methods: Theory and practice, North-Holland, 1991.
[8] Brezinski, C. and Redivo-Zaglia, M. The simplified topological ε-algorithms for accelerating sequences in a vector space, Siam J. Sci. Comput. 36(5) (2014), A2227–A2247.
[9] Brezinski, C. and Radivo-Zagila, M. Extrapolation methods for the nu-merical solution of nonlinear Fredholm integral equations, J. Integral Equ. Appl. 31 (2019), 29–57.
[10] Brezinski, C. and Sadok, H. Lanczos-type algorithms for solving systems of linear equations, Appl. Numer. Math. 11 (1993), 443–473.
[11] Brunner, H. On the numerical solution of nonlinear Volterra–Fredholm integral equation by collocation methods, SIAM J. Numer. Anal. 27(4) (1990), 987–1000.
[12] Delves, L.M. and Mohamed, J.M. Computational methods for integral equations, Cambridge University Press, 1985.
[13] Ghasemi, M., Tavassoli Kajani, M. and Babolian, E. Numerical solutions of the nonlinear Volterra–Fredholm integral equations by using Homotopy Perturbation Method, Appl. Math. Comput. 188(1) (2007), 446–449.
[14] Jbilou, K., Messaoudi, A. and Tabaa, K. On some matrix extrapolation methods, C. R. Math. Acad. Sci. Paris 341 (2005), 781–786.
[15] Jbilou, K. and Sadok, H. Vector extrapolation methods. Applications and numerical comparison, J. Comput. Appl. Math. 122 (2000), 149–165.
[16] Kuttler, U. and Wall, W.A. Fixed-point fluid-structure interaction solvers with dynamic relaxation, Comput. Mech. 43 (2008), 61–72.
[17] Laeli Dastjerdi, H. and Nili Ahmadabadi, M. The numerical solution of nonlinear two-dimensional Volterra–Fredholm integral equations of the second kind based on the radial basis functions approximation with error analysis, Appl. Math. Comput. 293 (2017), 545–554.
[18] MacLeod, A.J. Acceleration of vector sequences by multi-dimensional ∆2 methods, Commun. Appl. Numer. Meth. 2 (1986), 385–392.
[19] Maleknejad, K., Almasieh, H. and Roodaki, M. Triangular functions (TF) method for the solution of nonlinear Volterra–Fredholm integral equations, Commun. Nolin. Sci. Numer. Simul. 15(11) (2010), 3293–3298.
[20] Mann, W.R. Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510.
[21] Mirzaee, F. and Hadadiyan, E. Numerical solution of Volterra–Fredholm integral equations via modification of hat functions, Appl. Math. Com-put. 280 (2016), 110–123.
[22] Mosa, G.A., Abdou, M.A. and Rahby, A.S. Numerical solutions for non-linear Volterra–Fredholm integral equations of the second kind with a phase lag, AIMS Math. 6 (2021), 8525–8543.
[23] Ordokhani, Y. Solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via rationalized Haar functions, Appl. Math. Comput. 180(2) (2006), 436–443.
[24] Patchpatte, B.G. On a class of Volterra and Fredholm non-linear integral equations, Sarajevo J. Math. 16 (2008), 61–71.
[25] Salam A. and Graves-Morris, P.R. On the vector ε-algorithm for solving linear systems of equations, Numer. Algorithms 29 (2002), 229–247.
[26] Sedogbo, G.A. Some convergence acceleration processes for a class of vector sequences, Appl. Math. (Warsaw) 24 (1997), 299–306
[27] Shali, J.A. and Ebadi, G. Approximate solutions of nonlinear Volterra–Fredholm integral equations, Int. J. Non. Sci. 14(4) (2012), 425–433.
[28] Shanks, D. Nonlinear transformations of divergent and slowly convergent sequences, J. Math. Phys. 34 (1955), 1–42.
[29] Sidi, A. Practical extrapolation methods: Theory and applications, Cam-bridge University Press, 2003.
[30] Wazwaz, A.M. Linear and nonlinear integral equations: Methods and applications, Springer-Verlag, 2011.
[31] Wynn, P. On a device for computing the em(Sn) transformation, Math.Tables Aids Comput. 10 (1956), 91–96.
[32] Wynn, P. Acceleration techniques for iterated vector and matrix problems, Math. Comp. 16 (1962), 301–322.
[33] Yalcinbas, S. Taylor polynomial solutions of nonlinear Volterra–Fredholm integral equations, Appl. Math. Comput. 127 (2002), 195–206.
[34] Yousefi, S. and Razzaghi, M. Legendre wavelets method for the nonlin-ear Volterra–Fredholm integral equations, Math. Comput. Simul. 70(1) (2005), 1–8.
Send comment about this article