[1] Abdelrahman, A., Mohammed, M., Yousif, O.O. and Elbashir, M.K. Nonlinear conjugate gradient coefficients with exact and strong Wolfe line searches techniques, J. Math. 2022(1), (2022) 1383129.
[2] Al-Baali, M. Descent property and global convergence of the Fletcher-Reeves method with inexact line search, IMA J. Numer. Anal. 5 (1985) 121–124.
[3] Andrei, N. Another nonlinear conjugate gradient algorithm for uncon-strained optimization, Optim. Methods Softw. 24 (2008) 89–104.
[4] Andrei, N. An unconstrained optimization test functions, Adv. Modeling Optim. 10, (2008) 147–161.
[5] Dai, Y.H., Han, J.Y., Liu, G.H., Sun, D.F., Yin X. and Yuan, Y. Con-vergence properties of nonlinear conjugate gradient methods, SIAM J. Optim. 10 (1999) 348–358.
[6] Dai, Y.H. and Liao, L.Z. New conjugacy conditions and related nonlinear conjugate gradient methods, Appl. Math. Optim. 43 (2001) 87–101.
[7] Dai, Y.H. and Yuan, Y. A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim. 10 (1999) 177–182.
[8] Dai, Y.H. and Yuan, Y. An efficient hybrid conjugate gradient method for unconstrained optimization, Annal. Oper. Res. 103(1) (2001) 33–47.
[9] Djordjević, S.S. New hybrid conjugate gradient method as a convex com-bination of LS and CD methods, Filomat 31 (2017), 6, 1813-1825.
[10] Dolan, E.D.and Moré, J.J. Benchmarking optimization software with performance profiles, Math. Program. 91, (2002) 201–213.
[11] Fletcher, R. Practical methods of optimization, 2nd Ed., J. Wiley, Sons, New York, USA, 1987.
[12] Fletcher, R. and Reeves, C.M. Function minimization by conjugate gra-dients, Comput. J. 7, (1964) 149–154.
[13] Gilbert, J.C.and Nocedal, J. Global convergence properties of conjugate gradient methods for optimization, SIAM J. Optim. 2 (1) (1992) 21–42.
[14] Hamoda, M., Mamat, M., Rivaie, M. and Salleh, Z. A conjugate gra-dient method with Strong Wolfe–Powell line search for unconstrained optimization, Appl. Math. Sci. 10 (15), (2016) 721–734.
[15] Hestenes, M.R. and Stiefel, E.L. Methods of conjugate gradients for solv-ing linear systems, J. Res. Natl. Bur. Stand. 49, (1952) 409–436.
[16] Ibrahim, Y.I. and Khudhur, H.M. Modified three-term conjugate gradi-ent algorithm and its applications in image restoration, J. Electr. Eng. Comput., 28(2022) 1510–1517.
[17] Liu, J.K. and Li, S.J. New hybrid conjugate gradient method for uncon-strained optimization, Appl. Math. Comput. 245 (2014) 36–43.
[18] Liu, Y. and Storey, C. Efficient generalized conjugate gradient algo-rithms, Part 1, Theory, J. Optim. Theory. Appl. 69, (1991) 129–137.
[19] Polak, E. and Ribiere, G. Note sur la convergence de méthodes de di-rections conjuguées, Revue Française d’informatique et de Recherche Opérationnelle, Série Rouge 3, (1969) 35–43.
[20] Rivaie, M. Mamat, M., June, L.W. and Mohd, I. A new class of nonlinear conjugate gradient coefficients with global convergence properties, Appl. Math. Comput., 218(22) (2012) 11323–11332.
[21] Souli, C., Ziadi, R., Bencherif-Madani, A.and Khudhur, H.M. A hybrid CG algorithm for nonlinear unconstrained optimization with application in image restoration, J. Math. Mod. (2024) 301–317.
[22] Sulaiman, I.M., Bakar, N.A., Mamat, M., Hassan, B.A., Malik, M. and Ahmed, A.M.A new hybrid conjugate gradient algorithm for optimization models and its application to regression analysis J. Electr. Eng. Comput. 23(2021) 1100–1109.
[23] Touati-Ahmed D. and Storey, C. Efficient hybrid conjugate gradient tech-nique, J. Optim. Theory. Appl. 64, (1990) 379–397.
[24] Wei, Z.X., Yao, S.W. and Liu, L.Y. The convergence properties of some new conjugate gradient methods, Appl. Math. Comput. 183 (2) (2006) 1341–1350.
[25] Zhang, L. An improved Wei-Yao-Liu nonlinear conjugate gradient method for optimization computation, J. Appl. Math. Comput. 215(6), (2009) 2269–2274.
[26] Zheng, X.Y., Dong, X.L. Shi, J.R.and Yang, W. Further comment on an-other hybrid conjugate gradient algorithm for unconstrained optimization by Andrei, Numer. Algorithm 84 (2019) 603–608.
[27] Ziadi, R. and Bencherif-Madani, A. A mixed algorithm for smooth global optimization, J. Math. Model., 11(2)(2023) 207–228.
[28] Ziadi, R. and Bencherif-Madani, A. A Perturbed quasi-Newton algorithm for bound-constrained global optimization, J. Comp. Math., (2023) 1–29.
[29] Ziadi, R., Ellaia, R. and Bencherif-Madani, A. Global optimization through a stochastic perturbation of the Polak-Ribiére conjugate gradient method, J. Comput. Appl. Math., 317,(2017) 672–684.
Send comment about this article