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with nonlinear harvesting

D. Mondal, M. Sen* and P.S. Mandal

Abstract

In this study, Allee type, single-species (prey), two-patch model with
nonlinear harvesting rate, and species migration across two patches have
been developed and analyzed. As we all know, the population of any species
in an ecosystem is greatly dependent on the carrying capacity of the corre-
sponding ecosystem; the main focus of our work is on how carrying capacity
affects system dynamics in the presence and absence of randomness (de-
terministic and stochastic case, respectively). In the deterministic case,
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125 Effect of demographic stochasticity in the persistence zone ...

we find that the carrying capacity of both patches increases the number
of interior equilibrium points, and a maximum of eight interior equilib-
rium points can be observed. Also, we observe some interesting dynamics,
including bi-stability, tri-stability, and catastrophic bifurcations. On the
other hand, we use the continuous-time Markov chain modeling approach
to construct an equivalent stochastic model of the corresponding determin-
istic model based on deterministic assumptions. Based on the extinction or
persistence of the species, we compare the dynamics of deterministic and
stochastic models in order to assess the impact of demographic stochas-
ticity on the population of the species in two patches. The stochastic
model shows the possibility of species extinction in a finite amount of time,
whereas the deterministic model shows the persistence of the species at the
same time, which is the major difference between these two models. We
also derive the implicit equation for the expected time needed for species
extinction. Finally, a graphic is used to illustrate how the patch’s carrying
capacity affects the expected time.

AMS subject classifications (2020): Primary 60J27; Secondary 34C23, 92-10.

Keywords: Stability analysis; Bifurcation; Continuous-time Markov chain
(CTMC); Expected time to extinction.

1 Introduction

Every ecosystem is affected by biotic exploitation, habitat fragmentation,
nutrient loading, and slow changes in the climate [29]. Normally, it is be-
lieved that nature would adapt to changes in the environment smoothly and
continuously. Ecosystems’ external factors, such as temperature, fertilizer or
hazardous chemical inputs, groundwater depletion, habitat fragmentation,
harvesting, or loss of species diversity, may vary over time gradually, even
linearly. Additionally, nature is significantly impacted at both the local and
global levels by the interplay between human activities and the ecosystem.
The survival of several rare and endangered species may be hampered by
the indiscriminate collection of biological resources. Therefore, in order to
get the greatest advantages while maintaining ecological balance, harvest-
ing should be done very judiciously. A population in the ecosystem may

Iran. J. Numer. Anal. Optim., Vol. 15, No. 1, 2025, pp 124–162
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abruptly switch from one stable state to another as a result of irresponsible
harvesting; such a scenario is referred to as a regime shift or catastrophic
alteration [7, 30, 29]. If a regime shift has taken place, it will be impossible
to recover the population level to its prior state. As a result, the individ-
uals of the specific population should continue to perform at their current
low level of productivity [25]. The term “shift” describes minor frequency
and large-scale variations in ecosystems that are likely to result in changes
to the ecological framework, species abundances, and community organiza-
tion [25, 27]. In such cases, both exploited and unexploited populations’
abundances change throughout time. When an alternate stable equilibrium
arises in an ecosystem, multiple stable equilibria exist in the fundamental
deterministic structure, and a variety of fascinating things can take place.
Furthermore, we can see that the ecosystem contains two alternate stable
states under certain environmental circumstances, which are separated by
an unstable equilibrium that delineates the boundary between the “basins of
attraction” of the states.

Basically, the Allee effect is a phenomenon in ecology where the fitness
(survival and reproduction) of individuals in a community rises with growing
population size, especially at low population densities. In a deterministic
setting, the Allee effect reveals population bi-stability [11]. However, in the
case of the density-regulated growth process, it is possible that there might
be more than one stable state in the presence of harvesting. Single-species
models with and without the Allee effect and density-regulated parameter (θ)
have been taken into consideration by several researchers [32, 26, 6, 28, 27].
Depending on the value of θ, the per capita growth rate (PGR) profile of the
species is convex (when θ > 1) or concave (when θ < 1) in nature. It should
be noted that when θ = 1, the theta-logistic model becomes the classical logis-
tic model. In major cases, the correlations between density and PGR among
various species are concave in nature. The density-dependent theta logistic
model can provide an explicit explanation of this type of relationship [32, 26].
The theta-logistic model with harvesting in Allee-type phenomena describes
how population’s growth is influenced by factors like intra-specific competi-
tion (described by the parameter θ), Allee effects (which cause population
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127 Effect of demographic stochasticity in the persistence zone ...

growth to decrease at low population densities), and harvesting (removing
individuals from the population).

According to the theory of patch dynamics, which is used in ecology, it
is possible to understand an ecosystem’s dynamics by examining its smaller,
interconnected spatial components, which interact with one another, and
this dynamics refers to the changes that take place in distinct geographic
components of an ecosystem. The idea of patch dynamics is founded on
the observation that ecosystems are spatially heterogeneous, meaning they
include a variety of creatures and resources that are dispersed unevenly, and
this heterogeneity occurs across scales of time and space. As we know, the
number of individuals in any patch depends on the carrying capacity of the
corresponding patch; therefore, our main aim is to study the effect of the
patch’s carrying capacity on the system dynamics.

Researchers might convert the simple theta-logistic model with harvesting
into a two-patch system for several reasons: realism, migration and connec-
tivity, habitat quality, metapopulation dynamics, management, and conser-
vation. All the above-mentioned situations motivate us to consider the theta-
logistic model with nonlinear harvesting in the Allee phenomena, which are
distributed over two patches. On the other hand, a two-patch system refers
to a more complex model that involves two interconnected subpopulations
or habitats. In each patch, different ecological processes can occur, such as
birth, death, migration between patches, and environmental interactions.

In [32, 26, 6, 28, 27], researchers studied the theta-logistic model for sin-
gle species from different angles (deterministic and stochastic). A stochastic
model can be utilized to study the volatility and variability present in bio-
logical systems as a result of demography or climate when a small number
of individuals are present in a population [20, 13, 18]. In a stochastic model,
there is a possibility of species extinction when a small number of individ-
uals are initially present in the population. Sau, Bhattacharya, and Saha
[27] considered two deterministic models: One is a density regulation model,
and the other is an Allee-type density regulation model. Also, they con-
sidered both linear and nonlinear harvesting rates. For both models, they
formulated and analyzed an equivalent stochastic differential equation (SDE)
model by introducing demographic noise. Sibly et al. [32] investigated the
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effect of density regulation around carrying capacity (θ in the theta-logistic
model) on the correlation between the PGR and the population density. The
authors of [26] established a deterministic model for a population that is
subject to a strong Allee effect and conducted a model-based investigation
on a population of economically significant herring fish. By taking demo-
graphic noise into account, they formulated an equivalent SDE model and
calculated the probability of population extinction and the expected time to
extinction. Bhowmick et al. [6] developed analogous SDE models of logis-
tic and extended logistic growth models to examine the numerous real-life
population dynamics and share the primary body of literature on stochastic
modeling of ecological systems. For the mean, variance, and skewness of the
quasi-equilibrium distribution under a more general family of growth curves,
they developed a number of new approximations. Sau, Saha, and Bhat-
tacharya [28] established a theta-logistic model by incorporating an Allee
effect, crowding effects that lower birth and death rates in large populations,
and two harvesting model options: linear harvesting and nonlinear harvest-
ing. They constructed and analyzed the equivalent SDE models for their
suggested models by including demographic stochasticity.

Several researchers utilized the continuous-time Markov chain (CTMC)
modeling approach to construct and analyze stochastic models in the fields of
epidemiology and ecology [1, 12, 13, 14, 17, 20, 22, 16, 15, 23, 21, 33, 34]. Akhi
et al. [1] looked at a deterministic vector-host malaria model and changed
it into a stochastic model using a CTMC and an SDE. They investigated
how the model parameters affected the model outcomes by employing the
Latin hypercube sampling and partial rank correlation coefficients procedure.
Maity and Mandal [13] investigated the impact of demographic stochastic-
ity on the transmission dynamics of cassava disease. Using the multi-type
GWbp, they estimated the disease extinction probability for the stochas-
tic model. The authors in [20] created a stochastic honeybee-virus model
and estimated disease extinction probability using multi-type GWbp. They
also examined how model parameters affected model results. An equiva-
lent stochastic model of the deterministic Zika virus transmission model was
created by the authors in [14]. They calculated the probability of disease
extinction using the multi-type GWbp. After deriving an implicit equation
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for the mean initial passage time, they looked at how the model’s parame-
ters affected the same. Maliyoni [15] developed a stochastic epidemic model
based on the assumptions of the deterministic model for the West Nile virus
in birds, and he concluded that the probability of disease extinction would
be high when the disease spreads from exposed mosquitoes rather than in-
fected birds and infected mosquitoes. Nipa, Jang, and Allen [23] developed
two stochastic epidemic models for dengue fever, namely the CTMC model
and the SDE model, based on the assumptions of the deterministic model.
The stochastic models are nonhomogeneous in time because of the vector
population’s periodicity. They calculated the probability of disease extinc-
tion in close proximity to the disease-free periodic solution. Stephano et al.
[33] studied the transmission dynamics of bovine tuberculosis in humans and
cattle by considering both deterministic and CTMC models. They compared
the probability of disease extinction estimated by the multi-type GWbp with
the probability calculated by the CTMC model’s sample paths. Swift [34]
formulated and analyzed a stochastic prey-predator model, but in this inves-
tigation, they ignored the impact of demographic stochasticity on the extinc-
tion or persistence of the species in the population. The predator-prey model
with parasites, in which prey individuals serve as the intermediate hosts for
the parasites, was researched by Jang and Baglama [12]. They came to the
conclusion that species in the population always become extinct when de-
mographic stochasticity is present, but they remain in the population when
stochasticity is not present. Indeed the authors did not study the mean time
of species extinction in their investigation. In addition, the researchers in
[32, 26, 6, 28, 27] did not use the CTMC modeling approach to develop and
assess an analogous stochastic model of the theta logistic model. To the best
of our knowledge, no one has yet used the CTMC modeling method to explore
the stochastic version of a single-species, two-patch model with a nonlinear
harvesting rate and species migration between two patches. Keeping in mind
that, we will look into the following points:

(i) To understand how fluctuations in carrying capacity might alter the
dynamics of the system.
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(ii) To formulate an equivalent stochastic model of our suggested determin-
istic model by employing the CTMC modeling approach.

(iii) Compare deterministic and stochastic models based on species extinc-
tion and persistence.

(iv) Derive the implicit equation for the meantime to population extinction.

(v) A graphical illustration of how the patch’s carrying capacity affects the
possibility of population extinction and the mean time to extinction.

The organization of the remaining part of our article is as follows: In
Section 2, we present our proposed deterministic model. By employing phase
plane analysis, we examine the existence and stability of the equilibrium
points of the model in subsection 3.1. In subsection 3.2, we conduct one-
parametric and two-parametric bifurcation analysis to investigate how the
carrying capacity of the patch affects the dynamics of the system. By us-
ing the CTMC modeling approach, we develop an identical stochastic model
based on the assumptions of our proposed model in Section 4. A comparison
of deterministic and stochastic models based on species extinction or persis-
tence is given in subsection 4.1. We derive an implicit equation to compute
the expected time to population extinction in subsection 4.2, and the graph-
ical demonstration of the effect of the patch’s carrying capacity on this time
is provided in subsection 4.2.1. Finally, in Section 5, we provide a summary
of our findings and their corresponding significance.

2 Deterministic model

First of all, we propose an Allee type density-regulated, single-species, two-
patch model with nonlinear harvesting rate, and species migration across
two patches. The base model is taken from [28, 27]. The mathematical
representation of our proposed model is given by the following system of
nonlinear equations:

dX1

dt
= r1X1

(
X1

K1
−

A1

K1

)(
1−

(
X1

K1

)θ
)

−
q1E1X1

b1E1 + L1X1
+ β21X2 − β12X1,

(1a)
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dX2

dt
= r2X2

(
X2

K2
−

A2

K2

)(
1−

(
X2

K2

)θ
)

−
q2E2X2

b2E2 + L2X2
+ β12X1 − β21X2,

(1b)

with initial conditions X1(0) ≥ 0 and X2(0) ≥ 0. Here Xi(t) represents the
density of the prey population at time t in patch i, i = 1, 2. Species Xi has
an intrinsic growth rate, denoted by the constant ri. Moreover, Ki and Ai

denote the carrying capacity and the Allee threshold of patch i, respectively,
satisfying the condition 0 < |Ai| < Ki, and θ is the density regulation around
carrying capacity. Also, qi and Ei represent the catchability coefficient and
the harvesting effort in region i, respectively. The rates at which species
move from patch 1 to patch 2 and from patch 2 to patch 1 are represented
by the parameters β12 and β21, respectively. Finally, bi represents the degree
of competition among the boats, fishermen, and other technology used in
fishing in patch i. In patch i, Li is the product of capture rate and handling
time.

In our analysis, we put θ = 1 in the system (1), and as a result, our
modified system is as follows:

dX1

dt
= r1X1

(
X1

K1
− A1

K1

)(
1− X1

K1

)
− q1E1X1

b1E1 + L1X1
+ β21X2 − β12X1,

(2a)
dX2

dt
= r2X2

(
X2

K2
− A2

K2

)(
1− X2

K2

)
− q2E2X2

b2E2 + L2X2
+ β12X1 − β21X2.

(2b)

Figure 1 provides an illustration of the dynamics of the system (2).

Figure 1: Compartmental diagram for the two-patch model (2).
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3 Model analysis

The system (2) can be written as

dX1

dt
= F1(X1, X2) ≡ β21X2 − β12p1(X1), (3a)

dX2

dt
= F2(X1, X2) ≡ β12X1 − β21p2(X2), (3b)

where

p1(X1) = X1 +
q1E1

β12(b1E1 + L1X1)
X1 −

r1
β12

X1

(
X1

K1
− A1

K1

)(
1− X1

K1

)
,

p2(X2) = X2 +
q2E2

β21(b2E2 + L2X2)
X2 −

r2
β21

X2

(
X2

K2
− A2

K2

)(
1− X2

K2

)
.

It is important to note that as per the Picard’s theorem, the above initial
value problem (3) exhibits unique solution corresponding to any initial con-
dition X1(0) ≥ 0, X2(0) ≥ 0, which is positively invariant [10].

The Jacobian matrix for the system (3) at any point E∗
i = (X1, X2) is

JE∗
i
=

[
−β12p

′
1(X1) β21

β12 −β21p
′
2(X2)

]
.

Hence, for the stability of an equilibrium point, say (X∗
1 , X

∗
2 ), we need the

following two conditions to be satisfied:

β12p
′
1(X

∗
1 ) + β21p

′
2(X

∗
2 ) > 0, (4a)

p′1(X
∗
1 )p

′
2(X

∗
2 ) > 1. (4b)

3.1 Phase-plane analysis

In this section, we focus on examining the existence of equilibrium points.
The system has only one trivial equilibrium point (0, 0), and no other
axial equilibrium points exist. Ecologically feasible interior equilibrium
points are the point of intersection of the nullclines of prey in patch 1,
F1(X1, X2) ≡ β21X2 − β12p1(X1) and the nullclines of prey in patch 2,
F2(X1, X2) ≡ β12X1 − β21p2(X2). The interior equilibrium points are repre-
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sented by the symbol E∗
i (X

∗
1 , X

∗
2 ). To get the number of interior equilibrium

points, it is extremely complicated to analytically solve the two equations pro-
vided above, but the possible number of feasible interior equilibrium points
in the system (2) can be determined from the relative positions and shapes
of the nontrivial nullclines as shown in Figures 2 and 3(a). These figures
are the graphical representation of the two nontrivial nullclines, which can
intersect at a maximum of eight points. Therefore, we have observed that the
system (2) has at most eight interior equilibrium points, and they may vary
from zero to eight, namely, E∗

i (X
∗
1 , X

∗
2 ), i = 1, . . . , 8, which is presented in

Figure 2. We can confirm the stability characteristics of these nine equilibria
by using the geometrical criteria given in (4) and the direction of the vector
field (see Figure 3(c)), which are presented in the following propositions.

Proposition 1. The point E0(0, 0) is always locally asymptotically stable
equilibrium point.

Proof. We have F1(X1, X2) = β21X2−β12p1(X1) and F2(X1, X2) = β12X1−
β21p2(X2). Then the Jacobian matrix at E0 is

JE∗
0
=

[
−β12p

′
1(0) β21

β12 −β21p
′
2(0)

]
,

where p′1(X1)|(0,0) = 1 + q1
β12b1

+ r1A1

β12K1
and p′2(X2)|(0,0) = 1 + q2

β21b2
+ r2A2

β21K2
.

Then we see that, the stability conditions (4), β12p
′
1(0) + β21p

′
2(0) > 0

and p′1(0)p
′
2(0) > 1 are satisfied at (0,0). Therefore, E0(0, 0) is always locally

asymptotically stable.

Proposition 2. (a) E∗
1 , E∗

3 , E∗
6 , and E∗

7 are always saddle points, if exist.
(b) E∗

2 , E∗
4 , and E∗

8 are always locally asymptotically stable points, if exist.
(c) E∗

5 is always unstable node, if exists.

Proof. The Jacobian matrix of the system (2) at any equilibrium point
E∗

i (X
∗
1 , X

∗
2 ), i = 1, 2, 3, 4, 5, 6, 7, 8 can be written as,

JE∗
i
=


∂F1

∂X1

∂F1

∂X2

∂F2

∂X1

∂F2

∂X2


E∗

i

.
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Figure 2: Graphical representation of the prey nullcline of patch 1 (blue colored curve)
and the prey nullcline of patch 2 (red colored curve). They can intersect at a maximum
of eight points, namely, E∗

i (X
∗
1 , X

∗
2 ), i = 1, . . . , 8.
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Figure 3: (a) Possible number of coexisting equilibrium points; nullclines of X1 and
X2 are represented by the blue and red solid curves, respectively, (b) Position and
stability of nine equilibrium points: green, red, and magenta solid points represent
stable, saddle, and unstable equilibrium points, respectively, (c) Nature of stability of
the interior equilibrium point by using direction of vector field.

Assume that dX2

dX1

(F1) and dX2

dX1

(F2) denote the gradient of the tangent of
the curve F1(X1, X2) = 0 and F2(X1, X2) = 0, respectively. Hence, we may
express the determinant of JE∗

i
as follows using the implicit function theorem:
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det(JE∗
i
) =

[
∂F1

∂X2

∂F2

∂X2

(
dX2

dX1

(F2)

− dX2

dX1

(F1)
)]

. (5)

Now, we will explain how to determine the sign of [ ∂F1

∂X1
]E∗

1
. Since

F1(X1, X2) < 0 below the nontrivial prey nullcline and F1(X1, X2) > 0

for the opposite side. Hence when we move from left to the equilibria E∗
1 to

right sign changes from positive to negative, that is,F1(X
∗
1 − ∆X1

2 , X2) > 0

and F1(X
∗
1 + ∆X1

2 , X2) < 0, which imply that ∂F1

∂X1
|E∗

1
< 0. The signs of the

remaining terms in the Jacobian matrix JE∗
1
may also be found in a similar

manner.

Therefore, we have the sign of the Jacobian matrix J around E∗
1 by using

the graphical Jacobian method [31, 35] as follows:

Sign(JE∗
1
) = Sign


∂F1

∂X1

∂F1

∂X2

∂F2

∂X1

∂F2

∂X2

 = Sign

[
−β12p

′
1(X

∗
1 ) β21

β12 −β21p
′
2(X

∗
2 )

]

=

[
− +

+ +

]
,

and we provide the graphical representation in Figure 3(c). But in this case,
dX2

dX1

(F1)
∣∣∣
E∗

1

> dX2

dX1

(F2)
∣∣∣
E∗

1

, and expression (5) gives det(JE∗
1
) < 0, and we also

get p′1(X∗
1 )+ p′2(X

∗
2 ) > 0, but p′1(X∗

1 )p
′
2(X

∗
2 ) < 0. Therefore, we can see that

the stability requirements (4) are not met in this case, which implies that E∗
1

is always a saddle point.

Similar to this, it is simple to demonstrate the stability of any other
interior equilibrium point.

Now, we also consider a numerical example to illustrate the stability of
these nine equilibrium points is shown in Figure 3(b). To do this, we have
considered the following set of parameter values:

r1 = 4.1, A1 = 0.95, E1 = 1.8, b1 = 1.57, L1 = 2.3, β21 = 0.27,

β12 = 0.2, r2 = 4.3, A2 = 0.90, E2 = 1.2, b2 = 1.76, L2 = 1.6,

q1 = 3.125939754, q2 = 1.86576534254, K1 = 5.4, K2 = 4.6. (6)
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137 Effect of demographic stochasticity in the persistence zone ...

For this choice of parameter values, we find the following nine equilibrium
points:

E0 = (0, 0), E∗
1 = (0.2566, 2.2320), E∗

2 = (0.527, 3.675), E∗
3 = (1.797, 3.856),

E∗
4 = (4.687, 4.145), E∗

5 = (2.709, 1.562), E∗
6 = (4, 1), E∗

7 = (3.409, 0.494),
E∗

8 = (3.792, 0.627).

Among these nine equilibria, E0, E∗
2 , E∗

4 , and E∗
8 are always locally asymp-

totically stable points; E∗
1 , E∗

3 , E∗
6 , and E∗

7 are always saddle points; and E∗
5

is an unstable node, as shown in Figure 3(b) and summarized in Table 1.

Table 1: Summary of existence and stability of equilibrium points.

Equilibrium points Stability

E0 (Always exists) Always locally asymptotically Stable

E∗
1 , E∗

3 , E∗
6 , E∗

7 (If exist) Always a Saddle point

E∗
2 , E4∗ , E∗

8 (If exist) Always locally asymptotically Stable

E∗
5 (If exists) Always an Unstable point

3.2 Bifurcation structure

As we know, the number of prey in any patch depends on the patch’s car-
rying capacity; therefore, with the aid of bifurcation, we investigate how the
dynamical properties of the system will alter as the carrying capacity rises
and falls. In our investigation, we have observed that the system exhibits
only one local bifurcation, namely, the saddle-node bifurcation or limit point
bifurcation (LP), which is the local bifurcation of co-dimension one. Saddle-
node bifurcation is the process through which two equilibrium points are
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simultaneously created or destroyed as the parameter varies, and two equi-
librium points collide at the bifurcation threshold, which is shown in Figures
4 and 5. Therefore, many such situations arise where the system becomes
monostable, bistable, and tri-stable, as shown in Figures 5, 6, and 7.

3.3 Saddle node bifurcation

We now investigate the saddle-node bifurcation for the system (2) with re-
spect to the carrying capacity of patch 1, that is, K1. Due to this bifurcation,
two interior equilibrium points coincide at a single equilibrium point E∗

SN ,
that is, two nontrivial nullclines touches each other at E∗

SN for the threshold
value K∗

1SN
. Therefore, Det(JE∗

SN
) = 0. This means one of the eigenvalue of

(JK∗
1SN

) is zero with multiplicity one. Now, we will check the transversality
conditions of the Sotomayor theorem [24] for saddle-node bifurcation.

Let V and W be the eigenvectors of JE∗
SN

and
[
JE∗

SN

]T corresponding to

zero eigenvalue, respectively. Here, V =

(
β21

β12p
′
1(X1)

)
and W =

(
1

p′1(X1)

)
.

By using the technique outlined in [19], the transversality conditions for the
saddle-node bifurcation in our system are as follows:

WTFK1
(E∗

SN ;K∗
1SN

) =
r1A1X∗

1SN

K2∗
1SN

−
r1X2∗

1SN

K2∗
1SN

−
2r1A1X2∗

1SN

K3∗
1SN

+
2r1X3∗

1SN

K3∗
1SN

̸= 0,

(7)

WTD2F (E∗
SN ;K∗

1SN
)(V, V ) = −β12β

2
21p

′′
1 (X1)− β2

12β21p
′′
2 (X2)(p

′(X1))
3 ̸= 0. (8)

Due to the difficulty in determining the exact expression of E∗
SN analyt-

ically, we use a numerical example to verify if saddle-node bifurcation oc-
curs. Therefore, we will perform a numerical evaluation of the transver-
sality conditions (7) and (8). So here, we choose the saddle node bi-
furcation curve 1 (SN1) to quantitatively test all these conditions. For
K1 = 2.9 and K2 = 4.615 and all other parameters are fixed at (6), we
start from the region R11 of Figure 4, where the system (2) has four inte-
rior equilibrium points E∗

1 , E∗
2 , E∗

3 , and E∗
4 . When K1 continuously de-

creases and reaches its threshold value K∗
1SN1

= 2.6799535268, we have ob-
served that third and fourth interior equilibrium points coincide; that is,
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E∗
3 = E∗

4 = (1.779209934, 3.867745878) = E∗
SN1

(X∗
1SN1

, X∗
2SN1

). We have
also observed that if we reduce K1’s value further after it reaches its thresh-
old value, the system has just two interior equilibrium points E∗

1 and E∗
2 .

For the saddle-node bifurcation curve 1, that is, SN1 (the magenta-colored
curve in Figure 4), the transversality conditions are wTFK1(E

∗
SN1

;K∗
1SN1

) =

0.276069791( ̸= 0), wTD2F (E∗
SN1

;K∗
1SN1

)(V, V ) = −0.1264730496( ̸= 0), and
Det(J(X∗

1SN1
, X∗

2SN1
))|K∗

1SN1

= 0. This indicates that all the necessary con-
ditions for SN1 to occur are satisfied. Similarly, we can easily verify these
transversality conditions (7) and (8) for all other saddle-node bifurcation
curves.

3.3.1 Two parameter bifurcation

In this subsection, we are interested in studying the effect of K1 and K2 on
system dynamics. So, we perform the bifurcation analysis for the simulta-
neously changing values of K1 and K2, and their corresponding results are
summarized in Table 2. In Figure 4, we present the bifurcation diagram in the
K1K2-parametric plane and explain how the local bifurcation curves divide
the entire parametric plane into different subregions, each of which exhibits
the system’s dynamical behavior in a qualitatively distinct way. From this
figure, we have observed that the saddle-node bifurcation curves SN2 and
SN6 coincide at a point that is marked with a black bubble known as the
cusp point (CP). Therefore, at the existence of this point, three equilibrium
points coincide into a single equilibrium point.

3.3.2 One parameter bifurcation

We are focused here on understanding how the carrying capacity affects the
species population. In order to do so, we provide two one-parametric bifur-
cation diagrams (see Figures 5(a) and 5(b)) with respect to K1 and all other
parameter values are fixed at (6). Figure 5 demonstrates that the number of
interior equilibrium points in the system either rises or falls pairwise as the
carrying capacity K1 grows. Our system has seven saddle-node bifurcation
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Figure 4: Two parameter bifurcation diagram in K1K2-plane. Black bubble represents
cusp point and with reference to this point, the equilibrium points E∗

3 , E∗
5 , and E∗

6

coincide at E∗
6 .

curves, denoted by SNi, i = 1, . . . , 7, which are depicted in Figure 4 and
summarized in Table 2. Among these seven curves, we will concentrate only
on the four curves, SNi, i = 1, . . . , 4.

From Figures 5(a) and 5(b), we have observed that the number of inte-
rior equilibrium points varies from 2 to 8 and 0 to 4, respectively, but the
characteristics of these two figures are quite similar. For this reason, we only
describe Figure 5(a) precisely. From this figure, we have observed that for
four different K1 values, there are four LP points from which two branches of
equilibria emerge. When carrying capacity K1 is lesser than KSN1

1 ≈ 2.697,
the system has two interior equilibrium points. Furthermore, if we increase
the value of K1 from it, we have observed that the system has four interior
equilibrium points. After that, the system exhibits six interior equilibrium
points when the value of K1 lies between KSN2

1 ≈ 4.692 and KSN3
1 ≈ 5.356.

Finally, when K1 becomes larger than 5.356, the system reaches the region
where the number of interior equilibrium points is at its maximum, which is
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Table 2: Saddle-node bifurcations and related equilibrium points.

Serial No. Saddle-node Equilibrium
bifurcation points coincide

curves
1 SN1 E∗

3 , E∗
4

(Magenta)
2 SN2 E∗

5 , E∗
6

(Brown)
3 SN3 E∗

7 , E∗
8

(Red)
4 SN4 E∗

6 , E∗
8

(Violet)
5 SN5 E∗

1 , E∗
2

(Green)
6 SN6 E∗

3 , E∗
5

(Blue)
7 SN7 E∗

2 , E∗
3

(Cyan)

equal to 8. In this region, the system has three stable equilibria among eight
equilibria, so the system becomes tri-stable. It is also found that, when the
carrying capacity exceeds the value KSN4

1 ≈ 5.489, six interior equilibrium
points remain in the system.

Here, we have observed that two bifurcations, SN1 and SN4, of the sys-
tem behave like catastrophic bifurcations. A bifurcation is where the stability
of an equilibrium fails, a catastrophe happens, and the system shifts abruptly
into a different state. As a result, the system’s present stable state vanishes,
and it is compelled to transition to an alternate stable state. For SN1 (catas-
trophic bifurcation 1), the system instantly switches from stable state E∗

4 to
E∗

2 , and for SN4 (catastrophic bifurcation 2), the system switches from stable
state E∗

8 to E∗
2 , as illustrated in Figure 5(a).
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Figure 5: One parameter bifurcation diagram in K1X2-plane. “LP” represents Saddle-
node bifurcation. Green, magenta, and red-colored curves represent stable, unstable,
and saddle equilibria, respectively.

Let us now describe how the dynamics of the system change mainly for
the interior equilibrium points as the parameters move through the differ-
ent subregions shown in Figure 4. All the phase portraits corresponding
to the different subregions of Figure 4 are presented in Figures 6 and 7, in
which green, red, and magenta bubbles represent stable, unstable, and saddle
points, respectively. Table 3 summarizes the number and type of equilibrium
points discovered in various regions of Figure 4, as illustrated in Figures 6
and 7.

4 Stochastic model

Stochasticity plays a crucial role in every living system [8]. In the environ-
ment, individuals are born, die, harvested, and dispersed from one place to
another at random. As a result, the variability in the aforementioned demo-
graphic parameters causes fluctuations in the total size of the individuals, and
the associated stochasticity is known as demographic stochasticity. Stochas-
tic models deal with stochasticity (either demographic or environmental) and
hence give varying outputs for each input [20]. To study the effect of demo-
graphic stochasticity on the population of any individual, we formulate an
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(a) K1=K2 = 3 (b) K1 = 4.2, K2 = 3

(c) K1 = 5.1, K2 = 3.2 (d) K1 = 5.5, K2 = 2.9

(e) K1 = 5.5, K2 = 2 (f) K1 = 6.1, K2 = 1.7

(g) K1 = 6.5, K2 = 2.9 (h) K1 = 6.5, K2 = 4.1

Figure 6: Phase portraits of different regions of Figure 4 are shown for various values of
K1 and K2, all other parameter values remain same.
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(a) K1 = 5.4, K2 = 4.6 (b) K1 = 5.2, K2 = 4.5

(c) K1 = 4.2, K2 = 4.6 (d) K1 = 2, K2 = 4.5

(e) K1 = 2.7, K2 = 6 (f) K1 = 4.8, K2 = 6.2

(g) K1 = 5.4, K2 = 6.4 (h) K1 = 6.3, K2 = 6

Figure 7: Phase portraits of different regions of Figure 4 are shown for various values of
K1 and K2, all other parameter values remain same.
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Table 3: Summary of the number of equilibrium points corresponding to the different
regions of the bifurcation diagram represented in Figure 4.

Domain R1 R2 R3 R4 R5 R6

Number of Nil E∗
3 , E∗

4 or, E∗
3 , E∗

4 , E∗
3 , E∗

4 , E∗
4 , E∗

6 , E∗
4 , E∗

7

Interior E∗
4 , E∗

6 E∗
5 , E∗

6 E∗
5 , E∗

6 , E∗
7 , E∗

8

equilibrium E∗
7 , E∗

8

point

Domain R7 R8 R9 R10 R11 R12

Number of E∗
3 , E∗

4 , E∗
1 , E∗

2 E∗
1 , E∗

2 E∗
1 , E∗

2 E∗
1 , E∗

2 , E∗
1 , E∗

2

Interior E∗
5 , E∗

7 , E∗
3 , E∗

4 E∗
3 , E∗

4 E∗
3 , E∗

4 E∗
3 , E∗

4

equilibrium E∗
5 , E∗

7 E∗
5 , E∗

6 E∗
5 , E∗

6

point E∗
7 , E∗

8

Domain R13 R14 R15 R16

Number of E∗
1 , E∗

4 , E∗
1 , E∗

4 E∗
1 , E∗

4 , E∗
1 , E∗

4

Interior E∗
5 , E∗

6 E∗
5 , E∗

6 , E∗
5 , E∗

7

equilibrium E∗
7 , E∗

8

point

Note: The stability nature of all equilibrium points corresponding to the
different regions of bifurcation diagram (Figure 4) remains the same, which

is already illustrated in Table 1.

equivalent stochastic model of our ordinary differential equation model (2)
using the CTMC modeling approach [2, 5, 4, 3, 18, 20, 13]. For the sake
of simplicity, we have considered the same notations for the random vari-
ables as in the deterministic model. Let Xi(t) stand for the discrete random
variable that represents the number of prey at time t presenting within a
patch i. As the number of prey in any patch depends on the carrying ca-
pacity of the patch and the probability of occurrence of every event in the
stochastic process depends on the number of prey, we can argue that the
carrying capacity is essential for the variability in the stochastic processes.
Let Xi(t) ∈ {0, 1, 2, . . . , G} be the random variables, where G is constant and
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t ∈ R+. Assume that {(X1(t), X2(t)) : t ∈ [0,∞)} is a bivariate homogeneous
Markov process with a probability function

p(x1,x2)(t) = Prob(X1(t) = x1, X2(t) = x2). (9)

Table 4: State transitions and rates describing the stochastic model.

Description Transition Rate
Birth of X1 (X1, X2) → (X1 + 1, X2) r1X1

(
X1

K1
− A1

K1

)(
1− X1

K1

)
Birth of X2 (X1, X2) → (X1, X2 + 1) r2X2

(
X2

K2
− A2

K2

)(
1− X2

K2

)
Death of X1 (X1, X2) → (X1 − 1, X2)

q1E1X1

b1E1+L1X1

due to harvesting
Death of X2 (X1, X2) → (X1, X2 − 1) q2E2X2

b2E2+L2X2

due to harvesting
Dispersal of X2 from (X1, X2) → (X1 + 1, X2 − 1) β21X2

patch 2 to patch 1
Dispersal of X1 from (X1, X2) → (X1 − 1, X2 + 1) β12X1

patch 1 to patch 2

Let ∆Xi(t) ≡ Xi(t + ∆t) −Xi(t) and ∆t be sufficiently small such that
∆Xi ∈ {−1, 0, 1} for i = 1, 2. The transition probabilities listed below are
defined for a short time interval ∆t using the state transition rates listed in
Table 4:

(i) While there is no birth or death of X2, the likelihood of X1 being born
is r1x1

(
x1

K1
− A1

K1

)(
1− x1

K1

)
∆t+ o(∆t).

(ii) While there is no birth or death of X1, the likelihood of X2 being born
is r2x2

(
x2

K2
− A2

K2

)(
1− x2

K2

)
∆t+ o(∆t).

(iii) The probability of X1 dying as a result of harvesting is q1E1x1

b1E1+L1x1
∆t+

o(∆t).

(iv) Due to harvesting, X2 dies with probability q2E2x2

b2E2+L2x2
∆t+ o(∆t).
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(v) The probability of dispersal of X2 from patch 2 to patch 1 is β21x2∆t+

o(∆t).

(vi) X1 disperses from patch 1 to patch 2 with probability β12x1∆t+o(∆t).

(vii) The probability of the system having no births, deaths, or disper-
sal is 1 −

[
r1x1

(
x1

K1
− A1

K1

)(
1− x1

K1

)
+ r2x2

(
x2

K2
− A2

K2

)(
1− x2

K2

)
+

q1E1x1

b1E1+L1x1
+ q2E2x2

b2E2+L2x2
+ β21x2 + β12x1

]
∆t+ o(∆t).

Therefore, the transition probabilities from state (x1, x2) to state (x1 +

jx1
, x2 + jx2

) are as follows:

p∗(∆t) =



r1x1

(
x1

K1
− A1

K1

)(
1− x1

K1

)
∆t

+o(∆t), (jx1 , jx2) = (1, 0),

r2x2

(
x2

K2
− A2

K2

)(
1− x2

K2

)
∆t

+o(∆t), (jx1
, jx2

) = (0, 1),

q1E1x1

b1E1+L1x1
∆t+ o(∆t), (jx1 , jx2) = (−1, 0),

q2E2x2

b2E2+L2x2
∆t+ o(∆t), (jx1

, jx2
) = (0,−1),

β21x2∆t+ o(∆t), (jx1
, jx2

) = (1,−1),

β12x1∆t+ o(∆t), (jx1 , jx2) = (−1, 1),

1−
[
r1x1

(
x1

K1
− A1

K1

)(
1− x1

K1

)
+r2x2

(
x2

K2
− A2

K2

)(
1− x2

K2

)
+ q1E1x1

b1E1+L1x1
+ q2E2x2

b2E2+L2x2
+ β21x2

+β12x1

]
∆t+ o(∆t), (jih , jim) = (0, 0),

o(∆t), otherwise,

(10)

where p∗(∆t) = p(x1+jx1
,x2+jx2

),(x1,x2)(∆t), and o(∆t) has the following prop-
erty:

lim
∆t→0

o(∆t)

∆t
= 0.

The probabilities p(x1,x2)(t) satisfy the following forward Kolmogorov differ-
ential equation:

dp(x1,x2)(t)

dt
=Φ1(x1 − 1, x2)p(x1−1,x2)(t) + Ψ1(x1 + 1, x2)p(x1+1,x2)(t)
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+Φ2(x1, x2 − 1)p(x1,x2−1)(t) + Ψ2(x1, x2 + 1)p(x1,x2+1)(t)

+ Υ1(x1 − 1, x2 + 1)p(x1−1,x2+1)(t) (11)

+Υ2(x1 + 1, x2 − 1)p(x1−1,x2+1)(t)− Ω(x1, x2)p(x1,x2)(t),

where Φ1(x1, x2) = r1x1

(
x1

K1
− A1

K1

)(
1− x1

K1

)
,

Φ2(x1, x2) = r2x2

(
x2

K2
− A2

K2

)(
1− x2

K2

)
,

Ψ1(x1, x2) =
q1E1x1

b1E1 + L1x1
,

Ψ2(x1, x2) =
q2E2x2

b2E2 + L2x2
, (12)

Υ1(x1, x2) = β21x2,

Υ1(x1, x2) = β12x1,

Ω(x1, x2) = (Φ1 +Φ2 +Ψ1 +Ψ2 +Υ1 +Υ2).

Equation (11) also known as the Master equation. Solving this equation an-
alytically is challenging for us. Therefore, we employ the Gillespie algorithm
[9] (see Appendix A) to simulate the relevant stochastic model of the bivari-
ate process in order to generate sample paths (stochastic realisations) for the
process.

4.1 Comparison between deterministic and stochastic
model

In this part, we show the possibility of population extinction in a finite
amount of time for different carrying capacities (values are given in the cap-
tion of the graph) by comparing the sample paths of the stochastic model
to the numerical solution of the deterministic model (see Figures 8(a) and
8(b)). To do this, we take the initial conditions X1(0) = 4, X2(0) = 1, and
the parameter values r1 = 4.1, A1 = 0.95, E1 = 1.8, b1 = 1.57, L1 = 2.3,
β21 = 0.27, β12 = 0.2, r2 = 4.3, A2 = 0.90, E2 = 1.2, b2 = 1.76, L2 = 1.6,
q1 = 3.125939754, q2 = 1.86576534254. Sample paths in Figures 8(a) and
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8(b) hit the time axis in a finite amount of time, depicting the extinction of
the populations, whereas the deterministic solution (red solid curve) depicts
the existence of the populations. From these figures, we also see that carry-
ing capacity has no impact on population extinction or existence but slightly
affects extinction time.

In Figures 9(a) and 9(c), we plot the stochastic trajectories for the system
(11) by taking into account the initial number of individuals in the domain
of attraction of the stable equilibrium points (E0 and E2∗) in order to better
understand the possibility of population extinction in the presence of demo-
graphic stochasticity. In Figures 9(b) and 9(d), the relevant time series is
presented. According to Figure 9(a), when the initial population is in the re-
gion of attraction of E0, the deterministic trajectory reaches E0 (see dashed
magenta curve), which indicates population extinction, but when stochastic-
ity is present, two cases occur: among three trajectories, one reaches E0 (see
dashed green curve), which shows population extinction, and the other two
trajectories are concentrated in the region of attraction of E0, that is, the
existence of individuals in the population. The Gillespie algorithm [9] and
10,000 sample paths are used to assess the chance of population extinction.
In this scenario, the estimated probability of population extinction is 0.7589.
In Figure 9(b), these two possibilities for the stochastic model are illustrated.

Additionally, when we consider the initial number of population in the
domain of attraction of E2∗ (see Figure 9(c)), we notice that the determinis-
tic trajectory (solid magenta curve) depicts the existence of individuals in the
population, whereas the stochastic trajectory depicts two possible outcomes:
among three trajectories, one is concentrated in the domain of attraction of
E2∗ , and the other two (dashed green curve) cross the separatrix and enter
the domain of attraction of E0, finally reaching E0. These two scenarios of
the stochastic model demonstrate that either individuals remain in the pop-
ulation or they disappear. These two possibilities of the stochastic model are
depicted in Figure 9(d). In this case, the probability of population extinction
is 0.5673.

Figure 10 also shows how demographic stochasticity affects the persistence
of the species in the population by comparing the results of the deterministic
and stochastic models for varying numbers of initially existing individuals in
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the basin of attraction of equilibrium point E4∗ . From this figure, we have
observed that the stochastic model always shows the only extinction of the
second prey species from the population (shown by the sample paths that hit
the x-axis), whereas the deterministic model always shows the persistence
of both prey species (shown by the magenta solid curve) when the initial
number of prey in the population is within the domain of attraction of the
stable equilibrium point E4∗ . The parameter values are listed in (6). The
caption of each subfigure of Figure 10 indicates the number of individuals
initially present in the population.
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Figure 8: For varied carrying capacity of the patches, three sample paths of the stochastic
model and the corresponding deterministic solution (red solid curve) of model (2). In
(a) K1 = 5.4, K2 = 4.6, and in (b) K1 = K2 = 5.4.
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Figure 9: In (a) and (b) stochastic trajectories starting near E0 and E∗
2 , respectively.

Green, red, and magenta solid points represent stable, saddle, and unstable equilibrium
points, respectively. The initial point is symbolized by the red star. Separatrix is repre-
sented by blue solid line. Magenta-colored line represents the deterministic trajectory,
and the remaining curves represent the stochastic model’s sample paths, in both (a)
and (b). In (c) and (d) time series with X1 in red and X2 in green. Initial condition:
in (a) and (b) X1 = 2, X2 = 1, and in (c) and (d) X1 = 1, X2 = 3. Parameter values
are listed in (6).

4.2 Expected time to population extinction

The expected time to population extinction is the amount of time it will take
for a system to eliminate individuals from the system [2, 20]. The generator
matrix Q = (qji) can be used to estimate this, where the transition rate
from state i to state j is represented by qji (i, j = 0, 1, 2, . . .). Transition
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Figure 10: Five stochastic trajectories (dashed curves) and the corresponding determin-
istic solution (solid magenta curve) of the two patch model (2). Green, red, and magenta
solid points represent stable, saddle, and unstable equilibrium points, respectively. The
initial point is symbolized by the black pentagram. Separatrix is represented by blue
solid line. Parameter values are listed in (6). Each subfigure’s caption provides an initial
number of individuals.

probabilities pji are used to compute transition rates qji [20]. The following
formula can be used to get the generator matrix Q from the infinitesimal
transition matrix P (∆t) = (pji(∆t)):

Q = lim
∆t→0+

P (∆t)− I
∆t

, (13)

where pji represents probability of transition from state i to state j, and
I stands for the same-dimensional matrix (the identity matrix in the finite
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case), which has zeros everywhere and ones along the diagonal. Assume that
the transition probabilities pji(t) are continuous and differentiable for t ≥ 0

[2, 20]. Initially, pji = 0, i ≠ j and pii = 1. To calculate the time evolution
of the transition probabilities, use the following formula:

dp

dt
= Qp, (14)

where Q = (qji) can be expressed as
q00 q01 q02 . . .

q10 q11 q12 . . .

q20 q21 q22 . . .
...

...
...

. . .

 . (15)

The following formula can be used to estimate the amount of time before
population extinction [2]:

τ = cQ̃−1, (16)

where c = (−1,−1, . . . ,−1)︸ ︷︷ ︸
(X1×X2)−times

and Q̃ is generated by removing the generator

matrix’s first row and first column. Equation (11) can be expressed in the
matrix form as follows:

dp

dt
= Qp, (17)

where the generator matrix Q = (qji) ∈ M(X1+1)(X2+1)×(X1+1)(X2+1)(R) and
the total number of prey in patch i is Xi, i = 1, 2. In the finite state space,
we have

Q =



W0 Z1 0 . . . 0 0

Y0 W1 Z2 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . WX1−1 ZX1

0 0 0 . . . YX1−1 WX1


, (18)

where Ws, Ys, Zs ∈ M(X2+1)×(X2+1)(R), and
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Ws =



−Ω(s, 0) Ψ2(s, 1) 0 . . . 0 0

Φ2(s, 0) −Ω(s, 1) Ψ2(s, 2) . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . −Ω(s,X2 − 1) Ψ2(s,X2)

0 0 0 . . . Φ2(s,X2 − 1) −Ω(s,X2)


,

Ys =



Φ1(s, 0) Υ1(s, 1) 0 . . . 0 0

0 Φ1(s, 1) Υ1(s, 2) . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . Φ1(s,X2 − 1) Υ1(s,X2)

0 0 0 . . . 0 Φ1(s,X2)


,

Zs =



Ψ1(s, 0) 0 0 . . . 0 0

Υ2(s, 0) Ψ1(s, 1) 0 . . . 0 0
...

...
...
. . .

...
...

0 0 0 . . . Ψ1(s,X2 − 1) 0

0 0 0 . . . Υ2(s,X2 − 1) Ψ1(s,X2)


,

where s = 0, 1, . . . , X1.

4.2.1 Effect of K1 and K2 on expected time to population
extinction

In this section, we look into how carrying capacity can affect the time it takes
for species to go extinct. In this scenario, we take into account the following
three possibilities: K1 = K2, K1 < K2, and K2 > K1. The same parameter
values and initial conditions as in subsection 4.1 have been employed in this
analysis. Figures 11(a) and 11(b) demonstrate that the time required for
extinction of the species is reduced when K1 > K2, as compared to the cases
where K1 = K2 and K1 < K2. This leads us to the conclusion that K1 has
a more significant effect on the extinction time than K2.
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Figure 11: Effect of different carrying capacities on expected time to population extinc-
tion.

5 Discussion

The term “carrying capacity” refers to the highest population of a species that
an environment can sustain. Numerous limiting factors, including the avail-
ability of food, the environment, predators, and competition for resources,
have an impact on it. However, it is essential to note that the relationship
between carrying capacity and the dynamics of a two-patch system is not
simple. Therefore, we are primarily interested in observing the effects of
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carrying capacities on the species population in a patchy environment in the
absence and presence of randomness.

In this investigation, we have modified a theta logistic model by incorpo-
rating nonlinear harvesting and the dispersal of individuals between patches
in a patchy environment. After that, we formulated an analogous stochastic
model of our modified model by employing the CTMC modeling approach.
For the stochastic model, we have derived an implicit equation for the ex-
pected time to population extinction. Finally, we numerically studied the
possibility of species extinction by using the Gillespie algorithm (see Ap-
pendix A) and the effect of the carrying capacities on the population’s ex-
tinction time. As far as we know, there has been no previous research on the
dynamics of our modified theta logistic model with demographic stochastic-
ity. To address this aspect, we have introduced the Gillespie algorithm with
Monte Carlo direct method. The detailed advantages of this method over
the conventional methods are discussed in Appendix A.

Initially, when both patches have low carrying capacities, we see that
there are no species in the system (see Figure 5(b)). As the carrying capac-
ity increases, the population can grow and stabilize at a steady state with
maximum population density. It is also observed that if we increase the car-
rying capacity of both patches simultaneously, there is a specific region, R9,
in which the system exhibits multiple stable states (see Figure 7(a)). The
presence of multiple stable states is leading to regime shifts, which are sudden
and dramatic changes in ecosystem structure and function. Furthermore, it
becomes clear that the number of steady states in the system will fluctuate
when the carrying capacity of patches varies, but there is a possibility of
the existence of some stable steady states (see Figure 5). Therefore, we can
draw the conclusion that, in the absence of demographic stochasticity, the
population in both patches will not vanish.

Indeed, there is a possibility of the extinction of species in the presence
of demographic stochasticity (see Figure 8), which is the major difference
between both deterministic and stochastic models. Figure 9 illustrates the
possibility for a demographic stochasticity-induced transition from any other
state where both species coexist to the species-free state, and their corre-
sponding time series plot is also shown in this figure. Figure 10 also compares
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the results of the deterministic and stochastic models for varied numbers of
initially existing individuals in the basin of attraction of the equilibrium point
E4∗ to show how demographic stochasticity impacts the persistence of the
species in the population. We can see from this figure that the deterministic
model consistently displays the persistence of both prey species, while the
stochastic model consistently displays only the extinction of the second prey
species from the population. In subsection 4.2, we derive an implicit equa-
tion for the expected time to population extinction since there is a possibility
of population extinction in a finite amount of time. After deriving the im-
plicit equation for the expected time to population extinction, in Figure 11,
we graphically present the effect of the carrying capacities on the extinction
time. From this figure, it is clear that the carrying capacity of patch 1 has a
greater impact on extinction time than the carrying capacity of patch 2 (see
Figure 11).
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Appendix A: Gillespie algorithm [9]

The basic idea of our considered Gillespie algorithm is to use Monte Carlo
technique to simulate the stochastic process. Suppose we have a system of
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M -state transitions. Let qi(t) represent the propensity function of the ith
transition, where i ranges from 1 to M , at a given time t. This means that
qi(t) dt represents the probability of the ith transition occurring within the
time interval [t, t + dt). Table 4 provides the propensity functions (transi-
tion rates) for our developed stochastic model. Then the Gillespie algorithm
consists of the following steps at time t:

(i) Set the initial condition(s) for each state at t = 0.

(ii) Generate two random numbers r1 and r2 uniformly distributed in (0, 1).

(iii) Compute the propensity function qi(t) of each reaction. Compute

q =

M∑
i=1

qi(t).

(iv) Compute the time when the next transition takes place as t+ τ , where

τ =
1

q
ln
(

1

r1

)
.

(v) Compute which reaction occurs at time t+ τ . Find j such that

r2 ≥ 1

q

j−1∑
i=1

qi(t) and r2 <
1

q

j∑
i=1

qi(t).

Then the jth transition takes place, so update the number of individuals
of species corresponding to the occurred state transition.

(vi) Iterate Step (ii) through Step (v) until t ≥ tstop.

The description of the above simulation algorithm is complete. There are
various procedures, such as the direct method and the first-reaction method,
to generate the interevent time t1 and determine which transition occurs in
time t+ t1. Both of these methods are rigorous and exact, but if the number
of state transitions M exceeds 3, then the direct method should be a bit more
efficient. In this investigation, the number of state transitions is more than 3.
As a result, we have used the direct method to obtain a more efficient result.
Furthermore, we cannot solve the forward Kolmogorov differential equation
analytically for the CTMC model; hence, we can simulate the stochastic
model and produce its sample paths using this technique.
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