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differential equations with nonlocal
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Abstract

This paper focuses on solving singularly perturbed parabolic equations
of the convection-diffusion type with a large negative spatial shift and an
integral boundary condition. A higher-order uniformly convergent numer-
ical approach is proposed that uses Crank–Nicolson and a hybrid finite
difference approximation on a piece-wise uniform Shishkin mesh. Simp-
son’s 1/3 integration rule is used to treat the integral boundary condition.
The proposed method has been shown to achieve almost second-order uni-
form convergence. The computational results derived from the numerical
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experiment are consistent with the theoretical estimates. Furthermore, the
method produces a more accurate result than certain other methods in the
literature.

AMS subject classifications (2020): 65M06, 65M12, 65M15, 65M22

Keywords: Singular perturbation; Convection-Diffusion problem; Fitted
mesh method; Hybrid finite difference scheme; Integral constraint.

1 Introduction

Many physical phenomena are modeled using delay partial differential equa-
tions (DPDEs), which are influenced by both the current state of the system
and its history. In order to make the model more realistic, it is occasionally
important to take into account the previous states of the system in addition
to the one it is in right now. DPDEs are crucial in modeling when the rate
of change of a time-dependent phenomenon depends on a preceding state.
DPDEs offer more accurate models for processes that exhibit a time lag or
an aftereffect than nonDPDEs. Physical problems are modeled using sin-
gularly perturbed parabolic delay differential equations (SPPDDEs), whose
evolution is influenced by both the system’s history and its current state. SP-
PDDEs are used in numerous scientific fields, including population dynamics,
control theory, blood flow models, and others. However, see [4, 13, 20, 6] for
more applications and detailed descriptions.

Although SPPDDEs have received less attention in the literature than
nondelayed problems such as those presented in [9, 23, 2, 30], many re-
searchers have tried to develop different numerical schemes for solving SP-
PDDEs. The literature has developed numerical methods for solving SP-
PDDEs with Dirichlet boundary conditions in great detail; see, for example,
[15, 22, 21, 28, 19, 27, 18]. Robin boundary conditions for SPPDDEs are also
considered in [7, 8, 24]. Recently, a variety of various parameter-uniform
fitted mesh numerical schemes have been suggested for solving a class of SP-
PDDEs of reaction-diffusion type with an integral boundary condition (IBC)
in [5, 14, 29], while fitted operator numerical methods have been developed
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in [10, 12, 11]. The authors in [25] looked at an SPPDDE of the convection-
diffusion type with an IBC for the first time. They developed a parameter-
uniform numerical method that provides almost first-order convergence. Very
recently, the authors in [17, 16] investigated the SPPDDE of the convection-
diffusion type with an IBC. The methods are almost first-order uniformly
convergent.

However, due to the presence of boundary layers and multi-scale char-
acters in their solutions, the convergence analysis of higher-order numerical
methods for SPPDDEs is difficult. Furthermore, the presence of large delays
in SPPDDEs results in an extra interior layer in addition to the boundary
layer. This makes convergence analysis more challenging. Traditional numer-
ical techniques require an unnecessarily large number of mesh points to avoid
solution oscillations when the perturbation parameter is very small. This is
not possible due to computational costs and rounding errors. Scholars em-
ploy fitted numerical techniques to overcome these limitations. Higher-order
numerical approaches for solving convection-diffusion SPPDDEs with an IBC
have made little progress or not gained much attention. As a result, this re-
search intends to provide a higher-order parameter-uniform fitted numerical
scheme for solving convection-diffusion SPPDDEs with an IBC as well as a
more accurate approximation.

The remaining contents of the article are structured as follows: we outline
the governing problem and discuss the continuous solution’s features in sec-
tion 2. The Crank–Nicolson and hybrid difference methods, the semi-discrete
maximum principle, and the semi-discrete stability are all covered in section
3. The convergence analysis of the suggested hybrid method is presented in
section 4. Section 5 includes numerical examples to support the theoretical
estimates and discussion. The conclusion is offered in section 6.

2 The continuous problem

In this article, consider the convection-diffusion SPPDDE with IBC on
the entire domain Ω = Ω1 ∪ Ω2, where Ω1 = (0, 1] × (0, T ] and Ω2 =

(1, 2) × (0, T ]. The total boundary is ∂Ω = ∂Ωl ∪ ∂Ωb ∪ ∂Ωr, where
∂Ωb = {(x, 0) : 0 ≤ x ≤ 2}, ∂Ωl = {(x, t) : −1 ≤ x ≤ 0 and 0 ≤ t ≤ T} and
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∂Ωr = {(2, t) : 0 ≤ t ≤ T}. Moreover,

∂u

∂t
− ε

∂2u

∂x2
+A(x)

∂u

∂x
+B(x)u(x, t) + C(x)u(x− 1, t) = f(x, t), (x, t) ∈ Ω,

u(x, 0) = φb(x), (x, 0) ∈ ∂Ωb,

u(x, t) = φl(x, t), (x, t) ∈ ∂Ωl,

$ru(x, t)≡u(2, t)− ε

∫ 2

0

g(x)u(x, t)dx = φr(x, t), (x, t) ∈ ∂Ωr,

(1)

where 0 < ε ≪ 1 is a perturbation parameter, A(x), B(x), C(x), and f(x, t)

are sufficiently smooth functions such that
A(x) ≥ A0 > A∗

0 > 0, B(x) ≥ B0 > 0, C(x) ≤ C0 < 0,

A∗
0 +B0 + C0 > 0, B(x) + C(x) ≥ 2α > 0,

u(1−, t) = u(1+, t) ux(1
−, t) = ux(1

+, t).

(2)

Furthermore, we assume that the monotonically nonnegative function g(x)

satisfies
∫ 2

0

g(x)dx < 1.

Problem (1) can be written as

$u(x, t) = F (x, t), for all (x, t) ∈ Ω, (3)

where

$=


$1 ≡

(
∂

∂t
− ε

∂2

∂x2
+A(x)

∂

∂x
+B(x)

)
, on Ω1,

$2 ≡
(

∂

∂t
− ε

∂2

∂x2
+A(x)

∂

∂x
+B(x)

)
+ C(x)u(x− 1, t), on Ω2,

(4)

F (x, t) =

{
f(x, t)− C(x)φl(x− 1, t), on Ω1,

f(x, t), on Ω2,
(5)

subject to

u(x, 0) = φb(x), on ∂Ωb,

u(x, t) = φl(x, t), on ∂Ωl,

u(1−, t) = u(1+, t),
∂u

∂x
(1−, t) =

∂u

∂x
(1+, t),

$ru(x, t) = u(2, t)− ε

∫ 2

0

g(x)u(x, t)dx = φr(x, t), on ∂Ωr.

(6)
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For the existence and uniqueness of a solution for (3)–(6), we assume that
the given data and the functions φb, φl, and φr are sufficiently smooth and
impose compatibility conditions [1]:

φb(0, 0) = φl(0, 0), φb(2, 0) = φr(2, 0),

∂φl(0, 0)

∂t
− ε

∂2φb(0, 0)

∂x2
+A(0)

∂φb(0, 0)

∂x

+B(0)φb(0, 0) + C(0)φl(−1, 0) = f(0, 0),

∂φr(2, 0)

∂t
− ε

∂2φb(2, 0)

∂x2
+A(2)

∂φb(2, 0)

∂x

+B(2)φb(2, 0) + C(2)φb(1, 0) = f(2, 0).

(7)

The differential operator $ satisfies the following lemma.

Lemma 1. Suppose that Φ(x, t) ∈ C(2,1)(Ω) satisfies Φ(0, t) ≥ 0, Φ(x, 0) ≥ 0,
$rΦ(2, t) ≥ 0, $1Φ(x, t) ≥ 0, (x, t) ∈ Ω1, $2Φ(x, t) ≥ 0, (x, t) ∈ Ω2, and
[Φx](1, t) = Φx(1

+, t)− Φx(1
−, t) ≤ 0. Then Φ(x, t) ≥ 0 for (x, t) ∈ Ω.

Proof. Refer to [25].

When this maximum principle is immediately applied, the following so-
lution bounds are obtained.

Lemma 2. Suppose that u(x, t) is the solution of problem (3)–(6). Then

∥u∥∞,Ω ≤ 1

α
∥F∥∞,Ω + ∥u∥∞,∂Ω .

Proof. Refer to [25].

Lemma 3. Suppose that u(x, t) is the solution of problem (1). Then∣∣∣∣∂ku(x, t)

∂tk

∣∣∣∣ ≤ C, for all (x, t) ∈ Ω and k = 0, 1, 2, (8)

where C is a constant independent of ε.

Proof. See [25].
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3 Description of the numerical scheme

3.1 Time Semi-discretization

Let ΩM
t = {tj = t0 + jk, j = 1, 2, . . . ,M, t0 = 0, tM = T,k = T/M} be mesh

points with step size k andM number of mesh elements in the temporal direc-
tion. Then, we discretize the time derivative in (3) using the Crank–Nicolson
method. We obtained system of singularly perturbed differential equations:

$MU j+1(x) = Gj+1(x), j = 0, 1, . . . ,M − 1, x ∈ (0, 2),

U(x, 0) = φb(x), 0 ≤ x ≤ 2,

U j+1(x) = φl(x, tj+1), −1 ≤ x ≤ 0, j = 0, 1, . . . ,M − 1,

$Mr U j+1(2)≡U j+1(2)

−ε

∫ 2

0

g(x)U j+1(x)dx = φr(x, tj+1), j = 0, 1, . . . ,M − 1,

(9)

where

$MU j+1(x)

=

 $M1 U j+1(x) ≡
(
−ε

d2

dx2
+A(x)

d

dx
+ E1(x)

)
U j+1(x), if x ∈ (0, 1],

$M2 U j+1(x) ≡
(
$M1 U j+1(x)

)
+ C(x)U j+1(x− 1), if x ∈ (1, 2),

Gj+1(x) =



Gj+1
1 (x) =

(
ε
d2

dx2
−A(x)

d

dx
− E2(x)

)
U j(x)

+f(x, tj) + f(x, tj+1)

−C(x)
(
φj
l (x− 1) + φj+1

l (x− 1)
)
, if x ∈ (0, 1],

Gj+1
2 (x) =

(
ε
d2

dx2
−A(x)

d

dx
− E2(x)

)
U j(x)

−C(x)U j(x− 1) + f(x, tj) + f(x, tj+1), if x ∈ (1, 2),

where E1(x) = B(x) +
2

k
and E2(x) = B(x)− 2

k
.

The operator $M satisfies the following Lemma.
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Lemma 4. Let Θ(x, tj+1) be a smooth function satisfies Θ(0, tj+1) ≥
0, $Mr Θ(2, tj+1) ≥ 0 and $MΘ(x, tj+1) ≥ 0, for all x ∈ (0, 2). Then
Θ(x, tj+1) ≥ 0, for all x ∈ [0, 2].

Proof. Take (x̂, tj+1) ∈ {(x, tj+1) : x ∈ (0, 2)} such that

Θ(x̂, tj+1) = min
x∈(0,2)

Θ(x, tj+1).

Then

Θx(x̂, tj+1) = 0 and Θxx(x̂, tj+1) > 0. (10)

Assume that Θ(x̂, tj+1) < 0. Then
Case i: For x̂ ∈ (0, 1], we have

$M1 Θ(x̂, tj+1) = −ε
d2Θ(x̂, tj+1)

dx2
+A(x̂)

dΘ(x̂, tj+1)

dx
+ E1(x̂)Θ(x̂, tj+1)

< 0.

Case ii: For x̂ ∈ (1, 2), we have

$M2 Θ(x̂, tj+1) = −ε
d2Θ(x̂, tj+1)

dx2
+A(x̂)

dΘ(x̂, tj+1)

dx
+ E1(x̂)Θ(x̂, tj+1)

+C(x̂)Θ(x̂− 1, tj+1)

≤ −ε
d2Θ(x̂, tj+1)

dx2
+A(x̂)

dΘ(x̂, tj+1)

dx
+ E1(x̂)Θ(x̂, tj+1)

+C(x̂)Θ(x̂, tj+1), since C(x) < 0

= −ε
d2Θ(x̂, tj+1)

dx2
+

(
B(x̂) + C(x̂) +

2

k

)
Θ(x̂, tj+1)

< 0, (by (2) and (10)) .

All cases contradict $MΘ(x, tj+1) ≥ 0, 0 < x < 2.
Therefore, Θ(x, tj+1) ≥ 0, 0 ≤ x ≤ 2.

Lemma 5. Suppose that U j+1(x) is a semi-discrete solution of (9). Then∥∥U j+1(x)
∥∥
Ω

M

≤ Cmax
{∥∥U j+1(x)

∥∥
∂ΩM

l

,
∥∥$Mr U j+1(2)

∥∥
∂ΩM

r
, max

∥∥$MU j+1(x)
∥∥} .

Proof. Define the barrier functions as
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ℑ±(x, tj+1) = CX ± U j+1(x),

where X = max
{∥∥U j+1(x)

∥∥
∂ΩM

l

,
∥∥$Mr U j+1(2)

∥∥
∂ΩM

r
, max

∥∥$MU j+1(x)
∥∥}.

It is clear that, ℑ±(0, tj+1) ≥ 0 and ℑ±(2, tj+1) ≥ 0.
Case i: For x ∈ [0, 1], we have

$M1 ℑ±(x, tj+1) = E1(x)X ± $M1 U j+1(x)

≥ kB(x) + 2

k
max

∥∥$M1 U j+1(x)
∥∥± $M1 U j+1(x)

≥ 0.

Case ii: For x ∈ (1, 2], we have

$M2 ℑ±(x, tj+1) = (C(x) + E1(x))X ± $M2 U j+1(s)

≥
(
C(x) +

kB(x) + 2

k

)
max

∥∥$M2 U j+1(x)
∥∥± $M2 U j+1(x)

≥
(
B(x) + C(x) +

2

k

)
max

∥∥$M2 U j+1(x)
∥∥± $M2 U j+1(x)

≥ 0.

Hence, applying Lemma 4 gives∥∥U j+1
∥∥
Ω

M

≤ Cmax
{∥∥U j+1(x)

∥∥
∂ΩM

l

,
∥∥$Mr U j+1(2)

∥∥
∂ΩM

r
, max

∥∥$MU j+1(x)
∥∥} .

Let ej+1 = u(x, tj+1) − Ũ j+1(x) denote the local truncation error in the
(j+1)th time step at a point (x, tj+1) ∈ ΩM , where Ũ j+1(x) is the numerical
solution of

$M Ũ j+1(x) = G̃j+1(x), x ∈ (0, 2),

Ũ j+1(x) = φl(x, tj+1), x ∈ [−1, 0],

$Mr Ũ j+1(2) = Ũ j+1(2)− ε

∫ 2

0

g(x)Ũ j+1(x)dx = φr(2, tj+1),

where
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263 Parameter-uniform numerical treatment of singularly perturbed parabolic ...

G̃j+1(x) =



(
ε
d2

dx2
−A(x)

d

dx
− E2(x)

)
u(x, tj) + f(x, tj) + f(x, tj+1)

−C(x) (φl (x− 1, tj) + φl (x− 1, tj+1)) , if x ∈ (0, 1],(
ε
d2

dx2
−A(x)

d

dx
− E2(x)

)
u(x, tj)− C(x)u(x− 1, tj)

+f(x, tj) + f(x, tj+1), if x ∈ (1, 2),

Lemma 6. The (j+1)th time step local truncation error ej+1 = u(x, tj+1)−
Ũ j+1(x) satisfies

∥ej+1∥ ≤ Ck3,

where C is a constant independent of ε and M .

Proof. Refer to [3] for a detailed proof.

Lemma 7. Suppose that U j+1(x) is a numerical solution of the semi-discrete
problem in (9). Then the global error is

∥Ej∥∞ ≤ Ck2, for all j = 1, 2, . . . ,M,

where C is a constant independent of ε.

Proof. Using the estimate in Lemma 6, we get

∥Ej∥∞ =

∥∥∥∥∥
j∑

l=1

el

∥∥∥∥∥
∞

≤ ∥e1∥∞ + ∥e2∥∞ + · · ·+ ∥ej∥∞

≤ C1jk
3 = C1(jk)(k

2)

≤ C1T (k
2) because, jk ≤ T.

≤ Ck2.

According to Lemma 7, the semi-discretized scheme is second-order uni-
formly convergent in time.
The semi-discrete solution U j+1 of the semi-discrete problem in (9) can be
decomposed as regular

(
V j+1

)
and singular

(
W j+1

)
components and can be

written as

U j+1(x) = V j+1(x) +W j+1(x),
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where V j+1(x) satisfies the equation
$MV j+1(x) = Gj+1(x), 0 < x < 2,

V j+1(x) = φl(x, tj+1), −1 ≤ x ≤ 0,

V j+1(1) = V j+1
0 (1), $Mr V j+1(2) = $Mr V j+1

0 (2),

where V j+1
0 is solution of the corresponding reduced problem.

Also, W j+1(x) satisfies the homogeneous equation:
$MW j+1(x) = 0, 0 < x < 2,

W j+1(x) = 0, −1 ≤ x ≤ 0,[
W j+1

x

]
(1) =

[
V j+1
x

]
(1),

$Mr W j+1(2) = $Mr U j+1(2)− $Mr V j+1(2).

For details of the decomposition of the semi-discrete solution, readers can
refer to [26].

The derivatives of regular and singular components of the semi-discrete
solution satisfy the following bounds.

Lemma 8. The regular and singular components of the solution U j+1(x) to
the semi-discrete problem (9) satisfy the following bounds for k = 0, 1, 2, 3, 4:∣∣∣∣∣dkV j+1(x)

dxk

∣∣∣∣∣ ≤ C
(
1 + ε3−k

)
, for {x : 0 < x < 1} ∪ {x : 1 < x < 2} ,∣∣∣∣∣dkW j+1

B (x)

dxk

∣∣∣∣∣ ≤ Cε−k exp
(
A∗

0(x− 2)

ε

)
, {x : 0 < x < 1} ∪ {x : 1 < x < 2} ,∣∣∣∣∣dkW j+1

I (x)

dxk

∣∣∣∣∣ ≤ C

 ε1−k exp
(
A∗

0(x− 1)

ε

)
, 0 < x ≤ 1,

ε1−k, 1 < x < 2.

Proof. Refer to [26].

3.2 Spatial discretization

We first construct a piece-wise uniform (Shishkin) mesh and then approxi-
mate (9) by applying the hybrid finite difference method. In the x-direction,
divide the interval [0, 2] into four sub-intervals because the problem in (9)

Iran. J. Numer. Anal. Optim., Vol. 15, No. 1, 2025, pp 255–283



265 Parameter-uniform numerical treatment of singularly perturbed parabolic ...

exhibits a strong boundary layer at x = 2, and a weak interior layer at
x = 1. The sub-interval [0, 1] is subdivided into two sub-intervals [0, 1 − τ ]

and [1−τ, 1]. Similarly, the interval [1, 2] is subdivided into two sub-intervals
[1, 2−τ ] and [2−τ, 2]. Each sub-intervals has N

4
mesh elements and τ satisfies

τ = min
{
1

2
, τ0ε ln(N)

}
,

where τ0 and N are positive constant such that τ0 ≥ 1/A∗
0 and the number

of mesh elements in the x-direction, respectively. However, assume that
τ = τ0ε ln(N) for analysis; otherwise, N−1 is exponentially small compared
with ε.

Now, the mesh points in the x-direction are defined by

xi =



ihi, i = 0, 1, . . . ,
N

4
,

1− τ +

(
i− N

4

)
hi, i =

N

4
+ 1, . . . ,

N

2
,

1 +

(
i− N

2

)
hi, i =

N

2
+ 1, . . . ,

3N

4
,

2− τ +

(
i− 3N

4

)
hi, i =

3N

4
+ 1, . . . , N,

where the mesh spacing is given by

hi =


4τ

N
, i =

N

4
+ 1, . . . ,

N

2
,
3N

4
+ 1, . . . , N,

4(1− τ)

N
, i = 1, . . . ,

N

4
,
N

2
+ 1, . . . ,

3N

4
.

Let Hi = hi + hi+1, i = 1, 2, . . . , N − 1. For any mesh function, Yi ≈ Y (xi)

define Yi− 1
2
=

Yi + Yi−1

2
and the following finite difference operators:

D−Yi =
Yi − Yi−1

hi
, D+Yi =

Yi+1 − Yi

hi+1
,

D0Yi =
Yi+1 − Yi−1

Hi
, δ2Yi =

2 (D+Yi −D−Yi)

Hi
.

For discretization of the problem in (9), the midpoint upwind difference
scheme is used in the outer regions [0, 1 − τ ] and [1, 2 − τ ], and the cen-
tral difference scheme is used in the interior layer region [1− τ, 1] and in the
boundary layer region [2− τ, 2]. This combination of the two schemes is the
proposed hybrid difference scheme which takes the form
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$N,M
md U j+1

i = Rj+1

i− 1
2

, i = 1, 2, . . . ,
N

4
,
N

2
+ 1, . . . ,

3N

4
,

$N,M
ce U j+1

i = Rj+1
i , i =

N

4
+ 1, . . . ,

N

2
,
3N

4
+ 1, . . . , N − 1,

(11)

where

$N,M
md U j+1

i =



[
−εδ2U j+1

i +Ai− 1
2
D−U j+1

i + E1,i− 1
2
U j+1

i− 1
2

]
−
[
εδ2U j

i −Ai− 1
2
D−U j

i − E2,i− 1
2
U j

i− 1
2

]
, i = 1, 2, . . . ,

N

4
,[

−εδ2U j+1
i +Ai− 1

2
D−U j+1

i + E1,i− 1
2
U j+1

i− 1
2

+ Ci− 1
2
U j+1

i−N
2 − 1

2

]
−
[
εδ2U j

i −Ai− 1
2
D−U j

i − E2,i− 1
2
U j

i− 1
2

− Ci− 1
2
U j

i−N
2 − 1

2

]
,

i =
N

2
+ 1, . . . ,

3N

4
,

$N,M
ce U j+1

i =



[
−εδ2U j+1

i +AiD
0U j+1

i + E1,iU
j+1
i

]
−
[
εδ2U j

i −AiD
0U j

i − E2,iU
j
i

]
, i =

N

4
+ 1, . . . ,

N

2
,[

−εδ2U j+1
i +AiD

0U j+1
i + E1,iU

j+1
i + CiU

j+1

i−N
2

]
−
[
εδ2U j

i −AiD
0U j

i − E2,iU
j
i − CiU

j

i−N
2

]
,

i =
3N

4
+ 1, . . . , N − 1.

Rj+1

i− 1
2

=


f(xi− 1

2
, tj) + f(xi− 1

2
, tj+1)

−Ci− 1
2

(
φj

l,i−N
2 − 1

2

+ φj+1

l,i−N
2 − 1

2

)
, i = 1, 2, . . . ,

N

4
,

f(xi− 1
2
, tj) + f(xi− 1

2
, tj+1), i =

N

2
+ 1, . . . ,

3N

4
,

Rj+1
i =


f(xi, tj) + f(xi, tj+1)

−Ci

(
φj

l,i−N
2

+ φj+1

l,i−N
2

)
, i =

N

4
+ 1, . . . ,

N

2
,

f(xi, tj) + f(xi, tj+1), i =
3N

4
+ 1, . . . , N − 1.

The discrete scheme in (11) can be simplified as
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[
β−
i U j+1

i−1 + β0
i U

j+1
i + β+

i U j+1
i+1

]
−
[
γ−
i U j

i−1 + γ0
i U

j
i + γ+

i U j
i+1

]
= Rj+1

i− 1
2

, i = 1, 2, . . . ,
N

4
,[

β−
i U j+1

i−1 + β0
i U

j+1
i + β+

i U j+1
i+1

]
−
[
γ−
i U j

i−1 + γ0
i U

j
i + γ+

i U j
i+1

]
= Rj+1

i , i =
N

4
+ 1, . . . ,

N

2
,[

β−
i U j+1

i−1 + β0
i U

j+1
i + β+

i U j+1
i+1 +

Ci− 1
2

2

(
U j+1

i−N
2 −1

+ U j+1

i−N
2

)]
−
[
γ−
i U j

i−1 + γ0
i U

j
i + γ+

i U j
i+1 −

Ci− 1
2

2

(
U j

i−N
2 −1

+ U j

i−N
2

)]
= Rj+1

i− 1
2

, i =
N

2
+ 1, . . . ,

3N

4
,[

β−
i U j+1

i−1 + β0
i U

j+1
i + β+

i U j+1
i+1 + CiU

j+1

i−N
2

]
−
[
γ−
i U j

i−1 + γ0
i U

j
i + γ+

i U j
i+1 − CiU

j

i−N
2

]
= Rj+1

i , i =
3N

4
+ 1, . . . , N − 1,

(12)

where for i = 1, 2, . . . ,
N

4
,
N

2
+ 1, . . . ,

3N

4
,



β−
i = − 2ε

Hihi
−

Ai− 1
2

hi
+

Bi− 1
2

2
+

2

2k
,

β0
i =

2ε

Hihi+1
+

2ε

Hihi
+

Ai− 1
2

hi
+

Bi− 1
2

2
+

2

2k
,

β+
i = − 2ε

Hihi+1
,

γ−
i =

2ε

Hihi
+

Ai− 1
2

hi
−

Bi− 1
2

2
+

2

2k
,

γ0
i = − 2ε

Hihi+1
− 2ε

Hihi
−

Ai− 1
2

hi
−

Bi− 1
2

2
+

2

2k
,

γ+
i =

2ε

Hihi+1
,

and for i = N

4
+ 1, . . . ,

N

2
,
3N

4
+ 1, . . . , N − 1,
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β−
i = − 2ε

Hihi
− Ai

Hi
,

β0
i =

2ε

Hihi+1
+

2ε

Hihi
+Bi +

2

k
,

β+
i = − 2ε

Hihi+1
+

Ai

Hi
,

γ−
i =

2ε

Hihi
+

Ai

Hi
,

γ0
i = − 2ε

Hihi+1
− 2ε

Hihi
−Bi +

2

k
,

γ+
i =

2ε

Hihi+1
− Ai

Hi
.

Hence, the fully discrete problem of the given problem in (1) can be written
as

$N,M
hyb U j+1

i = Rj+1
i , i = 1, 2, . . . , N − 1, j = 0, 1, . . . ,M − 1,

U0
i = φb(xi), i = 0, 1, . . . , N,

U j+1
i = φl(xi, tj+1), i = −N

2
,−N

2
+ 1, . . . , 0, j = 0, 1, . . . ,M − 1,

$N,M
r U j+1

N = U j+1
N − ε

N∑
i=1

gi−1U
j+1
i−1 − 4giU

j+1
i + gi+1U

j+1
i+1

3
hi

= φr(xN , tj+1), j = 0, 1, . . . ,M − 1,

(13)

where

$N,M
hyb U j+1

i =


$N,M
md U j+1

i , i = 1, 2, . . . ,
N

4
,

N

2
+ 1, . . . ,

3N

4
,

$N,M
ce U j+1

i , i =
N

4
+ 1, . . . ,

N

2
,

3N

4
+ 1, . . . , N − 1.

(14)

As a result, the hybrid difference scheme for solving (1) on Ω is (13)–(14),
which provide an N ×N system of algebraic equations.

4 Convergence analysis

In this section, we establish the ε-uniform error estimate of the hybrid dif-
ference scheme in (13)–(14).

Lemma 9. Assume that there exists a positive integer N0 such that for all
N ≥ N0,

N0

lnN0
≥ τ0 ∥A∥Ω ,

A∗
0N0

2
≥
∥∥∥∥B +

1

k

∥∥∥∥ , (15)
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where A and B are the coefficients given in (1).
Let Θj+1

i be a mesh function satisfies Θj+1
0 ≥ 0, $N,M

r Θj+1
N ≥ 0 and

$N,M
hyb Θj+1

i ≥ 0, for i = 1, 2, . . . , N − 1. Then Θj+1
i ≥ 0, for i = 0, 1, 2, . . . , N .

Proof. We write the operator $N,M
hyb in a matrix form as

$N,M
hyb Θj+1

i =
[
yi,i−1Θ

j+1
i−1 + yi,iΘ

j+1
i + yi,i+1Θ

j+1
i+1

]
(16)

−
[
zi,i−1Θ

j
i−1 + zi,iΘ

j
i + zi,i+1Θ

j
i+1

]
, (17)

where Y = (yi,j) and Z = (zi,j) are matrices with entries

yi,i−1 = β−
i , yi,i = β0

i , yi,i+1 = β+
i , and zi,i−1 = γ−

i , zi,i = γ0
i , zi,i+1 = γ+

i .

Clearly, Z ≥ O, because γ−
i ≥ 0, γ0

i ≥ 0, γ+
i ≥ 0. Using assumptions in

(15) to show the coefficient matrix Y is an irreducible M -matrix [26]. Now,
use induction to proof the remaining part.

Assume that Θj
i ≥ 0, j = 0, 1, . . . ,M − 1.

Then from (17), we obtain

YΘj+1
i = ZΘj

i + $N,M
hyb Θj+1

i .

Since Z ≥ O, Θj
i ≥ 0, Y −1 ≥ 0, and $N,M

hyb Θj+1
i ≥ 0 by hypothesis, we have

Θj+1
i = Y −1

(
ZΘj

i + $N,M
hyb Θj+1

i

)
≥ 0, for i = 1, 2, . . . , N − 1.

We obtain the following ε-uniform stability bound as an immediate con-
sequence of Lemma 9.

Lemma 10. Let U j+1
i be the numerical solution of the problem in (13) and

the assumptions in (15) hold true. Then,∥∥∥U j+1
i

∥∥∥
Ω

N,M
≤ Cmax

{
∥φl∥∂ΩN,M

l
,
∣∣∣$N,M

r U j+1
N

∣∣∣} +
1

α

∥∥∥Rj+1
i

∥∥∥
Ω

N,M
,

for all i = 0, 1, . . . , N.

Proof. Consider the barrier functions
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Φ±,j+1
i = Cmax

{
∥φl∥∂ΩN,M

l
,
∣∣∣$N,M

r U j+1
N

∣∣∣}+
1

α

∥∥∥Rj+1
i

∥∥∥
Ω

N,M
± U j+1

i .(18)

From (18), we obtain Φ±,j+1
0 ≥ 0, $N,M

r Φ±,j+1
N ≥ 0, and $N,M

hyb Φ±,j+1
i ≥

0, i = 1, 2, . . . , N − 1.
Consequently, the application of the discrete maximum principle (Lemma

9) gives the desired bound.

Lemma 11. Let U j+1(x) and U j+1
i be solutions of (9) and (13), respectively.

Then the local truncation error TEi at a mesh point (xi, tj+1) for the discrete
problem in (13)–(14) is given by

|TEi| =



∣∣∣$N,M
md U j+1

i −
(
$MU j+1

)
(xi)

∣∣∣ ,
i = 1, . . . ,

N

4
,
N

2
+ 1, . . . ,

3N

4
,∣∣∣$N,M

ce U j+1
i −

(
$MU j+1

)
(xi)

∣∣∣ ,
i =

N

4
+ 1, . . . ,

N

2
,
3N

4
+ 1, . . . , N − 1,

=



C

[
ε

∫ xi+1

xi−1

∣∣∣∣d3U j+1

dξ3 (ξ)

∣∣∣∣ dξ
+hi

∫ xi

xi−1

(∣∣∣∣d3U j+1

dξ3 (ξ)

∣∣∣∣+ ∣∣∣∣d2U j+1

dξ2 (ξ)

∣∣∣∣+ ∣∣∣∣dU j+1

dξ (ξ)

∣∣∣∣)dξ
]
,

i = 1, . . . ,
N

4
,
N

2
+ 1, . . . ,

3N

4
,

C

[
hi

∫ xi+1

xi−1

(
ε

∣∣∣∣d4U j+1

dξ4 (ξ)

∣∣∣∣+ ∣∣∣∣d3U j+1

dξ3 (ξ)

∣∣∣∣)dξ
]
,

i =
N

4
+ 1, . . . ,

N

2
,
3N

4
+ 1, . . . , N − 1.

To obtain parameter-uniform error estimate, we now decompose the dis-
crete solution U j+1

i into regular V j+1
i and W j+1

i components as

U j+1
i = V j+1

i +W j+1
i .

The regular component V j+1
i is the solution of the nonhomogeneous equation:

$N,M
hyb V j+1

i = Rj+1
i , for all (xi, tj+1) ∈ ΩN,M ,

V j+1
0 = V j+1(x0),

V j+1
N
2

= V j+1(1−), V j+1
N
2 +1

= V j+1(1+),

V j+1
N = V j+1(xN ).
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The singular component W j+1
i satisfies the following homogeneous equation:

$N,M
hyb W j+1

i = 0, for all i ∈
{
{1, 2, . . . , N − 1} ̸

{
N

2

}}
,

W j+1
0 = W j+1(x0), W j+1

N = W j+1(xN ),

$N,M
hyb

(
V j+1

N
2

+W j+1
N
2

)
= $N,M

hyb

(
V j+1

N
2 +1

+W j+1
N
2 +1

)
,

V j+1
N
2

+W j+1
N
2

= V j+1
N
2 +1

+W j+1
N
2 +1

.

Now, the error associated with the spatial discretization can be given by

ej+1
i = U j+1(xi)− U j+1

i =
(
V j+1(xi)− V j+1

i

)
+
(
W j+1(xi)−W j+1

i

)
.

Theorem 1. Let U j+1(xi) be the exact solution of the semi-discrete problem
in (9) and let U j+1

i be the discrete solution of the problem in (13) at each
mesh point (xi, tj+1) ∈ Ω

N,M . Then under the assumptions in (15), we get

∣∣∣U j+1(xi)− U j+1
i

∣∣∣ ≤


CN−2, i = 1, . . . ,
N

4
,
N

2
+ 1, . . . ,

3N

4
, N,

CN−2 ln2 N, i =
N

4
+ 1, . . . ,

N

2
,
3N

4
+ 1, . . . , N − 1.

Proof. The proof follows a pattern similar to that shown in [26] for an or-
dinary differential equation with an IBC for the error at the points xi, i =

1, 2, . . . , N − 1.
For the error at the point xi = xN , we have

ej+1
N = U j+1 (xN )− U j+1

N

= φj+1
r (xN ) + ε

∫ xN

x0

g(x)U j+1(x)dx

−

(
φj+1
r (xN ) + ε

N∑
i=1

gi−1U
j+1
i−1 + 4giU

j+1
i + gi+1U

j+1
i+1

3
hi

)

= ε

∫ x1

x0

g(x)U j+1(x)dx− ε
g0U

j+1
0 + 4g1U

j+1
1 + g2U

j+1
2

3
h1 + · · ·

+ε

∫ xN

xN−1

g(x)U j+1(x)dx− ε
gN−1U

j+1
N−1 + 4gNU j+1

N + gN+1U
j+1
N+1

3
hN

= −ε
1

90

[
h4
1

(
gU j+1

)(iv)
(ξ1) + h4

2

(
gU j+1

)(iv)
(ξ2)

+ · · ·+ h4
N

(
gU j+1

)(iv)
(ξN )

]
,

Iran. J. Numer. Anal. Optim., Vol. 15, No. 1, 2025, pp 255–283



Hailu and Duressa 272

where xi−1 ≤ ξi ≤ xi for i = 1, 2, . . . , N . Also,∣∣∣U j+1 (xN )− U j+1
N

∣∣∣ = ∣∣∣C1ε
(
h4
1

(
gU j+1

)(iv)
(ξ1) + h4

2

(
gU j+1

)(iv)
(ξ2)

+ · · ·+ h4
N

(
gU j+1

)(iv)
(ξN )

)∣∣∣
≤ C1ε

(
max

∣∣∣(gU j+1
)(iv)∣∣∣) (h4

1 + h4
2 + · · ·+ h4

N

)
.

Now, using ε ≤ CN−1, hi ≤ CN−1, and the result of Lemma 8 in the above
inequality, we get ∣∣∣U j+1 (xN )− U j+1

N

∣∣∣ ≤ CN−2. (19)

Theorem 2. Suppose that u(xi, tj+1) is the exact solution of the continuous
problem in (1) and that U j+1

i is the numerical solution of the problem in (13)
at each mesh point (xi, tj+1) ∈ Ω

N,M . Then under the assumptions in (15),
we get∣∣∣u(xi, tj+1)− U j+1

i

∣∣∣
≤


C
(
k2 +N−2

)
, i = 1, . . . ,

N

4
,
N

2
+ 1, . . . ,

3N

4
, N,

C
(
k2 +N−2 ln2 N

)
, i =

N

4
+ 1, . . . ,

N

2
,
3N

4
+ 1, . . . , N − 1.

Proof. From the triangular inequality, we have∣∣∣u(xi, tj+1)− U j+1
i

∣∣∣ = ∣∣∣u(xi, tj+1)− U j+1(xi) + U j+1(xi)− U j+1
i

∣∣∣
≤
∣∣u(xi, tj+1)− U j+1(xi)

∣∣+ ∣∣∣U j+1(xi)− U j+1
i

∣∣∣ .
The designed result is followed from Lemma 7 and Theorem 1.

5 Numerical illustrations and discussion

To validate the theoretical results obtained by the proposed method, we
analyze two model examples involving singularly perturbed parabolic differ-
ential equations with IBCs. We use the double mesh principle to determine
the maximum point-wise error

(
EN,M

ε

)
for the considered test examples as:
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EN,M
ε = max

i,j

∣∣∣UN,M
i,j − U2N,2M

i,j

∣∣∣ ,
where UN,M

i,j and U2N,2M
i,j are the approximate solutions i = 1, 2, . . . , N −

1, j = 1, 2, . . . ,M − 1 and i = 1, 2, . . . , 2N − 1, j = 1, 2, . . . , 2M − 1, respec-
tively. The parameter-uniform error estimate

(
EN,M

)
is

EN,M = max
ε

{
EN,M

ε .
}
.

The formula for parameter-uniform rate of convergence
(
rN,M

)
is

rN,M = log2
(

EN,M

E2N,2M

)
.

Example 1. Consider the SPPDDE:

ut(x, t)− εuxx(x, t) + (2 + x(2− x))ux(x, t) + 3u(x, t)− u(x− 1, t)

= 4xe−tt2,

u(x, 0) = 0, x ∈ [0, 2],

u(x, t) = 0, (x, t) ∈ [−1, 0]× [0, 2],

u(2, t) = 0 +
ε

6

∫ 2

0

u(x, t)dx, (x, t) ∈ {(2, t), t ∈ [0, 2]} .

Example 2. Consider the SPPDDE:

ut(x, t)− εuxx(x, t) + 3ux(x, t) + (x+ 10)u(x, t)− u(x− 1, t)

= 2(1 + x2)t2,

u(x, 0) = 0, x ∈ [0, 2],

u(x, t) = t2, (x, t) ∈ [−1, 0]× [0, 2],

u(2, t) = 0 +
ε

6

∫ 2

0

x sin(x)u(x, t)dx, (x, t) ∈ {(2, t), t ∈ [0, 2]} .

The maximum absolute errors and parameter-uniform rate of convergence
for Examples 1 and 2 obtained by the proposed hybrid method are presented
in Tables 1 and 3, respectively. The tables demonstrate that for any number
of mesh points N and M , the maximum absolute error becomes stable and
uniform as ε gets closer to zero. This means that the method’s convergence
is independent of the perturbation parameter used. Our method produces
more accurate results and has a better order of convergence than the method
developed in [17]. Tables 2 and 4 also compare the rate of convergence
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of Examples 1 and 2 obtained by the proposed hybrid difference scheme
with results from [25]. The rate of convergence obtained with our scheme is
observed to be better than that obtained in [25].

Solution profiles when ε = 2−4 for Examples 1 and 2 are shown in Fig-
ures 1 and 2, respectively. In Figures 3 and 4, we observe the behavior of the
numerical solution, and for very small values of ε, the problem under consid-
eration exhibits a strong boundary layer at x = 2. Figures 5 and 6 show the
numerical solutions of Examples 1 and 2, respectively, in the neighborhood
of x = 1. As the perturbation parameter ε approaches zero, it is possible to
see an interior layer at x = 1. The maximum absolute errors’ log-log plots
are likewise shown in Figures 7 and 8. It supports the suggested hybrid nu-
merical scheme’s theoretical order of convergence. The maximum absolute
error reduces with increasing mesh point count, as seen by the negative slope.
Since this behavior is unaffected by the value of the perturbation parameter
used, the convergence is ε-uniform. This is one of the primary findings that
this study promises to prove.

Table 1: Values of EN,M
ε , EN,M , and rN,M for Example 1 with different values of ε and

N = M .

↓ ε N = 25 N = 26 N = 27 N = 28 N = 29 N = 210

10−2 1.7153e-02 5.7880e-03 1.9294e-03 6.2634e-04 1.9777e-04 6.0662e-05
10−3 1.6979e-02 5.7452e-03 1.9143e-03 6.2324e-04 1.9722e-04 6.0903e-05
10−4 1.6962e-02 5.7412e-03 1.9128e-03 6.2292e-04 1.9711e-04 6.0858e-05
10−5 1.6960e-02 5.7408e-03 1.9127e-03 6.2289e-04 1.9710e-04 6.0858e-05
10−6 1.6960e-02 5.7407e-03 1.9127e-03 6.2289e-04 1.9710e-04 6.0858e-05
10−7 1.6960e-02 5.7407e-03 1.9127e-03 6.2289e-04 1.9710e-04 6.0858e-05
10−8 1.6960e-02 5.7407e-03 1.9127e-03 6.2289e-04 1.9710e-04 6.0858e-05
10−9 1.6960e-02 5.7407e-03 1.9127e-03 6.2289e-04 1.9710e-04 6.0858e-05
10−10 1.6960e-02 5.7407e-03 1.9127e-03 6.2289e-04 1.9710e-04 6.0858e-05
EN,M 1.7153e-02 5.7880e-03 1.9294e-03 6.2634e-04 1.9777e-04 6.0903e-05
rN,M 1.5673 1.5849 1.6231 1.6631 1.6992 -

EN,M in [17] 3.896e-03 2.083e-03 1.078e-03 5.480e-04 2.764e-04 1.388e-04

rN,M in [17] 0.9033 0.9510 0.9754 0.9877 0.9938 -
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Table 2: Comparison of rate of convergences
(
rN,M

)
of Example 1 with with different

values of ε and N = M .

↓ ε N = 25 N = 26 N = 27 N = 28 N = 29 N = 210

Results of the present scheme

2−1 0.9785 0.9883 0.9939 0.9962 0.9982 -
2−3 1.7957 2.1799 2.3488 2.0726 0.7899 -
2−5 1.5818 1.5935 1.6535 1.7110 1.8013 -
2−7 1.5663 1.5849 1.6215 1.6612 1.7002 -
2−9 1.5637 1.5854 1.6192 1.6597 1.6949 -
2−11 1.5631 1.5856 1.6188 1.6601 1.6954 -
Results in [25]

2−1 0.8587 0.9354 0.9666 0.9814 1.4995 1.5612
2−3 0.8213 1.2650 1.3636 1.5621 1.4956 1.5516
2−5 0.8698 0.9499 1.1262 1.3232 1.4918 1.5245
2−7 0.8720 1.1774 1.0161 1.3473 1.4094 1.4126
2−9 0.8483 1.2234 1.1792 1.3062 1.4071 1.4221
2−11 0.7824 1.0547 1.2590 1.1249 1.3026 1.3861

Figure 1: Numerical solution profiles of Example 1 when ε = 2−4 and N = M = 64.
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Table 3: Values of EN,M
ε , EN,M and rN,M for Example 2 with different values of ε and

N = M .

↓ ε N = 25 N = 26 N = 27 N = 28 N = 29 N = 210

10−2 5.3751e-02 1.8327e-02 6.2176e-03 2.0245e-03 6.4245e-04 1.9876e-04
10−3 5.4504e-02 1.8627e-02 6.3046e-03 2.0507e-03 6.5205e-04 2.0152e-04
10−4 5.4582e-02 1.8659e-02 6.3139e-03 2.0535e-03 6.5311e-04 2.0184e-04
10−5 5.4590e-02 1.8662e-02 6.3148e-03 2.0538e-03 6.5322e-04 2.0187e-04
10−6 5.4591e-02 1.8662e-02 6.3149e-03 2.0538e-03 6.5323e-04 2.0188e-04
10−7 5.4591e-02 1.8662e-02 6.3149e-03 2.0538e-03 6.5320e-04 2.0188e-04
10−8 5.4591e-02 1.8662e-02 6.3149e-03 2.0538e-03 6.5320e-04 2.0188e-04
10−9 5.4591e-02 1.8662e-02 6.3149e-03 2.0538e-03 6.5320e-04 2.0188e-04
10−10 5.4591e-02 1.8662e-02 6.3149e-03 2.0538e-03 6.5320e-04 2.0188e-04
EN,M 5.4591e-02 1.8662e-02 6.3149e-03 2.0538e-03 6.5323e-04 2.0188e-04
rN,M 1.5486 1.5633 1.6205 1.6527 1.6941 -

EN,M in [17] 5.255e-02 2.871e-02 1.505e-02 7.709e-03 3.901e-03 1.962e-03

rN,M in [17] 0.8720 0.9315 0.9656 0.9827 0.9913 -

Figure 2: Numerical solution profiles of Example 2 when ε = 2−4 and N = M = 64.
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Table 4: Comparison of rate of convergences
(
rN,M

)
of Example 2 with different ε and

N = M .

↓ ε N = 25 N = 26 N = 27 N = 28 N = 29 N = 210

Results of the present scheme

2−1 1.0434 1.0233 1.0111 1.0054 1.0027 -
2−3 1.5902 1.5310 1.6057 1.9093 1.4968 -
2−5 1.5601 1.5535 1.6183 1.6616 1.7025 -
2−7 1.5515 1.5604 1.6191 1.6550 1.6926 -
2−9 1.5494 1.5626 1.6202 1.6533 1.6939 -
2−11 1.5488 1.5631 1.6204 1.6529 1.6941 -
Results in [25]

2−1 1.5613 1.1790 1.2048 1.5771 1.6907 1.6973
2−3 1.3598 1.2902 1.5089 1.4045 1.5471 1.6603
2−5 1.2941 1.0056 1.2108 1.3531 1.4515 1.5658
2−7 1.0595 1.2923 1.3043 1.1327 1.4157 1.5139
2−9 1.0901 1.3009 1.3411 1.3475 1.4157 1.4652
2−11 0.9815 1.2502 1.1645 1.3379 1.3663 1.4913
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Figure 3: Line plots of Example 1 for N = M = 32 at t = 2.

Iran. J. Numer. Anal. Optim., Vol. 15, No. 1, 2025, pp 255–283



Hailu and Duressa 278

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

= 2 -1

 = 2-4

 = 2-8

 = 2-16

Figure 4: Line plots of Example 2 for N = M = 32 at t = 2.
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Figure 5: The interior layers for Example 1 at x = 1 and t = 2.
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Figure 6: The interior layers for Example 2 at x = 1 and t = 2.
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Figure 7: The log-log plot of the maximum absolute errors for Example 1.
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Figure 8: The log-log plot of the maximum absolute errors for Example 2.

6 Conclusions

In this work, a class of SPPDDEs with IBCs and weak interior layers was
numerically solved. The Crank–Nicolson difference method for the temporal
direction and a hybrid difference scheme composed of a midpoint upwind
method outside the layer region and a central difference method in the layer
region for the space variable were used to formulate the hybrid numerical
method. The convergence analysis of the method revealed that it is of order
O
(
k2 +N−2 ln2 N

)
, preserving a parameter-uniform convergence. Intensive
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numerical experimentation was conducted for different values of the pertur-
bation parameter and the number of mesh elements to validate our method.
Tables and graphs were used to present the computational findings. Theo-
retical expectations were satisfied by the convergence obtained in practice.
The results showed that the method outperformed certain current numerical
methods in the literature.
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