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Abstract

The recent outbreak of the COVID-19 disease has just appeared at the end
of 2019 that has now become a global pandemic. Analysis of mathematical
models in the prediction and control of this pandemic helps to make the
right decisions about vaccination, quarantine, and other control measures.
In this article, the aim is to analyze the three control measures of edu-
cational campaigns, social distancing, and treatment control, that these
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control measures can reduce the spread of this disease. For this purpose,
due to the uncertainty in the model parameters, a sliding mode control
law is used. Furthermore, because the model parameters are changing and
the upper limit of the parameters that have uncertainty should be known,
then an adaptive control is used to estimate the switching gain online. In
addition, in order to prevent the chattering phenomenon, the sign func-
tion is used in the sliding control law. Also, the obtained properties are
expressed and proven analytically. Therefore, initially, the controller is
designed assuming certain knowledge of an upper bound of the uncertainty
signal. After that, the parameters that have uncertainty in the simulation
are obtained by online estimation of the adaptive control. The efficiency
and performance of the controller in the absence of the certainty of the
model parameters are investigated, and the results show the desired per-
formance of this controller. Finally, the performance and efficiency of the
controller are evaluated by simulation.

AMS subject classifications (2020): 93C10, 49N10, 93C43.

Keywords: COVID-19; Sliding mode control; Uncertainty; Mathematical
model; Social distancing.

1 Introduction

Infectious diseases, whether in the past, such as cholera, plague, and so on, or
currently, the COVID-19, have challenged human societies and have always
been one of the main causes of death even in developed countries. Since it
is always possible for a new infection to appear or previous infections to re-
emerge and increase, it is very important to study these diseases in order to
predict, control, and treat them. It also poses a huge risk to public health
and economics all over the world [12, 48]. In the meantime, mathematical
models have been used to analyze the performance of this disease in recent
research to deal with and eliminate the disease [13, 21, 36]. A review of these
studies and similar studies shows that differential equations are often used in
most models and they solve and investigate the problem by simplifying it [15,
42]. In [18, 19], the simplest type of epidemic modeling includes susceptible,
infected, and recovered (SIR) people for this disease. Also, a simple model
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29 Designing a sliding mode controller COVID-19 disease model

is considered in [40], but this model cannot show all the behaviors of this
disease. Due to the different nature of this virus, it is felt necessary to add
new groups for a more accurate study of the disease. Das and Samanta
[20] studied a mathematical model for investigating the COVID-19 disease in
Japan, in which the group of infected people is divided into two categories:
“infection without symptoms and infection with symptoms”(SAIR). Also,
in [9, 17, 45, 46, 49], a simple model of the COVID-19 disease has been
investigated in order to take measures to prevent the spread of this disease.
In [45, 46], other parts were added to these simple models (SIR) in order to
have a better examine for this disease.

Some other models try to investigate this process by using statistics
and probability tools. Indeed unfortunately, these models are usually not
able to describe many details and examine them correctly due to simpli-
fications [47], Authors collected individual-case data for patients who died
from COVID-19 in Hubei, mainland China and for cases outside of mainland
China. These individual-case data were used to estimate the time between
onset of symptoms and outcome (death or discharge from hospital). There
are also many other mathematical models that reported on COVID-19 pan-
demics; see [22, 32]. In [39] mathematical models developed were mainly
used to investigate the effects of different non-pharmaceutical intervention
strategies via simulation using different computing soft-wares.
However, with regard to the spread and infectivity of the disease, one of the
important features of the model is stability, which indicates whether the dis-
ease persists or disappears [31, 41, 54]. One of the most fundamental issues
when studying stability is the determination of the so-called reproduction
number of the model, R0. Mukandavire et al. [35] quantified the COVID-19
outbreak in South Africa, explored the efficacy of vaccine scenarios, and ob-
tained a basic reproduction number of 2.94. Finally, studies have shown that
current social distancing measures to reduce contact have been successful in
controlling infection in the absence of a vaccine and other key treatments.
With the introduced control, such as quarantine, the basic reproduction num-
ber R0 decreased from 1.83 to 1.23 for India [8, 43], which shows that India
has been able to control the disease to some extent. Studied the impact of
non-pharmaceutical interventions in curtailing the 2019 novel Coronavirus in
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the US state of New York and the entire US. The research demonstrated that
using face-masks in public is very useful in minimizing community transmis-
sion and burden of COVID-19, provided their coverage level is high [37].

The prolongation of the pandemic will not only increase the death rate
of the population but also increase the medical and health costs to prevent
the spread and eliminate the virus in the society and will cause economic
losses. So when the epidemic trend of infectious disease arises, compulsory
treatment is an efficient pattern to control the rapid spreading. So in [52], a
sliding mode is carried out to evaluate the effect of compulsory treatment in
infectious disease controlling when the number of infected persons reaches a
certain level, the policy of compulsory treatment will be carried out at certain
rate.

Sliding mode control (SMC) is a powerful approach to control non-linear
and non-deterministic systems. Sliding control is a robust control method
and can be used with uncertainties and parameter disturbances, provided
that the range of these uncertainties and disturbances is known. Therefore,
SMC is considered a very suitable method for controlling non-linear systems
with uncertainty of parameters.
SMC has been widely developed, such as higher order SMC [7, 30] and dy-
namic SMC [28, 51]. Meanwhile, SMC is one of the most well-known and
widespread methods due to its simple design process and suitable results.
Therefore, this controller has been successfully applied to robotics, vehicle
dynamics [50, 53], chemical engineering [16, 29, 26], and electrical systems
[3, 4].
One of the SMC approaches is the linear quadratic regulator method [33, 34],
which is also an original method. Of course, in recent years, the optimization
and approximation of some systems that have a time delay have also been
considered [1, 24, 25, 27]. Some applications of SMC are described in [55, 23].
It has explained about the selection of the appropriate sliding surface [2].
One of the important advantages of SMC is its invariance to uncertainties.
Because of this advantage, SMC is a powerful tool dealing with structural
or unstructured disturbances, disturbance, and noise. The most important
drawback of SMC is chattering. Chattering is high frequency (but limited)
fluctuations with low amplitude, which causes thermal losses in power circuits
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and wear of mechanical parts [44]. Chattering is caused by the stimulation
and oscillation of unmodeled or unknown high frequency dynamics of sensors,
actuators, or the system itself [5, 6, 38]. One of the methods to reduce or
eliminate chattering is the use of adaptive control that although chattering is
not completely eliminated in this method, but it is reduced. This chattering
causes problems, and sometimes, it can make system performance unstable.
The system considered here also has uncertainty, so that the adaptive control
can update the system parameters [14]. Thus, in order to avoid the chatter-
ing phenomenon, switching gain adaptation is used here. In this work, for
this adaptation, the value of the gain in the simulation is considered zero
first, and its value increases until the slip condition is established; that is,
the estimation is done online.

In this paper, a mathematical model for COVID-19 relevant to study the
transmission dynamics of coronavirus in Bangladesh [11] is developed, and
this paper presents the design an adaptive sliding mode controller for the
epidemic model. This designed control law is able to protect the entire to-
tal population time regardless of the uncertainty of the model parameters.
Usually, the SMC needs to consider the information of the bounds of the un-
certainties. This assumption may also seem somewhat unrealistic in epidemic
models because the exact value of the parameters is not known. Therefore,
the designed SMC for epidemic then improves the sliding gain value with an
adaptive control. Finally, the numerical results show that the whole system
guarantees the eradication of epidemics. Also, the mathematical proof of all
the stated results, including the positivity of the solutions, the boundedness
of the solutions, the existence of the solutions, and the stability of the sliding
mode controllers, have been developed in this article.

The rest of this paper is as follows: In Section 2, the statement of the de-
sired problem is explained, along with the introduction of the system model.
In Section 3, a suitable sliding surface of integral type is defined, and the
adaptive SMC is applied to the model with parameter uncertainty. Then, in
order to investigate the performance of the controller, numerical simulation
in Section 4 is done. Finally, in Section 5, we give concluding remarks and
future directions for further studies.
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2 The mathematical model

The model that is studied and analyzed in this article, model SQIIsR, is
derived from the model of [11], considering that quarantine and isolation
of people are important things to prevent and spread the disease, so it has
been obtained by adding parts to the simple model SIR. This mathematical
model for COVID-19 is developed in [11] and in which the total population
is divided into five groups:

• S(t); Susceptible, people who are not affected by the coronavirus infec-
tions but any time they may be infected.

• Q(t); Quarantined, people who are in contact with susceptible people
and have high possibility of carrying the infection.

• I(t); Infected, people who are infected by the disease and show some
symptoms they can transmit the infections any time.

• Is(t); Isolated, people who are identified with coronavirus infections
and they are isolated to a separate place for treatment.

• R(t); Recovered, people who are have recovered and thus have the
immunity or have died from the disease and thus cannot contribute to
further disease transmission.

Let N(t) be the total population at time t, that is:

N(t) = S(t) +Q(t) + I(t) +R(t) + Is(t). (1)

The state space equations of this model are as follows:


dS(t)
dt = κ −

(
αQ(t) + φI(t)

)
S(t) − β0S(t) + εR(t) − u1S(t),

dQ(t)
dt = αQ(t)S(t) − β0Q(t) − βQ(t) − λQ(t),

dI(t)
dt = βQ(t) + φI(t)S(t) −

(
θ + δ + β0

)
I(t) − u2I(t),

dIs(t)
dt = δI(t) − σIs(t) − β0Is(t) − µIs −

(
u2 + u3

)
Is(t),

dR(t)
dt = δIs(t) − β0R(t) + θI(t) + λQ(t) − εR(t) + u1S(t) + u2I(t) +

(
u2 + u3

)
Is(t),

(2)

where S(0) ≥ 0, Q(0) ≥ 0, I(0) ≥ 0, Is(0) ≥ 0, and R(0) ≥ 0 are the initial
state. Also, all parameters have uncertainty and have a value between zero
and one.
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33 Designing a sliding mode controller COVID-19 disease model

Because there is no definitive treatment or vaccine for this virus, the
following strategies are suggested: there are three controls u1(t), u2(t), and
u3(t) for all t ∈ [0, T ]:

• u1(t); educational campaign, the first control, can be interpreted as the
proportion to be subjected to sensitization and prevention. So, we note
that u1 is the awareness program for susceptible people at time t.

• u2(t); social distancing, the second control, maintenance of social dis-
tancing, which has been considered only effective step ever now to con-
trol the transmission of this disease. This control represents preventive
actions like quarantine isolation and lockdowns which lower the contact
rate between different groups of people in a society. Therefore, this con-
trol can be interpreted as a quarantine to reduce the transmission of
this health virus.

• u3(t); treatment control, the last control u3(t) treatment of the patients
on the basis of the symptoms to minimize their sufferings and serious
medical care that helps infected individuals to recover from the disease
as fast as possible.

Also, the first control is related to before infection, and the other two controls
are related to after infection. The following theorem is used to check whether
the states (number of people) are always positive in the stated model.

Theorem 1. If S(0) ≥ 0, Q(0) ≥ 0, I(0) ≥ 0, Is(0) ≥ 0, and R(0) ≥ 0, then
solutions S(t), Q(t), I(t), Is(t), and R(t) in system (2) for t ≥ 0 are always
positive.

Proof. From the first equation of system (2) according to the initial condi-
tions, it follows that

dS(t)

dt
= κ−

(
αQ(t) + φI(t)

)
S(t)− β0S(t) + εR(t)

≥ −
(
αQ(t) + φI(t)

)
S(t)− β0S(t). (3)

Then
dS(t)

dt
+

(
αQ(t) + φI(t) + β0

)
S(t) ≥ 0. (4)
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Let
G(t) = αQ(t) + φI(t) + β0. (5)

If the both sides in inequality (4) are multiplied by exp
( ∫ t

0
G(s)ds

)
, then we

obtain

exp
(∫ t

0

G(s)ds

)
.
dS(t)

dt
+G(t). exp

(∫ t

0

G(s)ds

)
.S(t) ≥ 0. (6)

Thus
d

dt

(
S(t). exp

( ∫ t

0

G(s)ds
))

≥ 0. (7)

Integrating this inequality (7) from 0 to t gives∫ t

0

d

ds

(
S(s). exp

(∫ t

0

(
αQ(s) + φI(s) + β0

)
ds

))
ds ≥ 0. (8)

Then
S(t) ≥ S(0). exp

(
−
∫ t

0

(
αQ(t) + φI(t) + β0

)
ds

)
≥ 0. (9)

As a result, S(t) is always positive. Similarly, we prove that Q(t) ≥ 0, I(t) ≥
0, Is ≥ 0 and R(t) ≥ 0. That is,

Q(t) ≥ Q(0). exp
(
−
∫ t

0

(
β0 + β + λ

)
ds

)
≥ 0,

I(t) ≥ I(0). exp
(
−
∫ t

0

(
θ + δ + β0

)
ds

)
≥ 0,

Is(t) ≥ Is(0). exp
(
−
∫ t

0

(
β0 + µ+ σ

)
ds

)
≥ 0,

R(t) ≥ R(0). exp
(
−
∫ t

0

(
β0 + ε

)
ds

)
≥ 0. (10)

In the following theorems, boundedness and existence of the system (2)
solutions of are checked.

Theorem 2 (Boundedness of the solutions). The set Ω =

{(
S,Q, I, Is, R

)
∈

R5
+; 0 ≤ S +Q + I + Is + R ≤ κ

β0

}
is positively invariant under system (2)

with initial conditions S(0) ≥ 0, Q(0) ≥ 0, I(0) ≥ 0, Is(0) ≥ 0, and R(0) ≥ 0.

Proof. Derivation from relation (1), according to system (2), gives
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35 Designing a sliding mode controller COVID-19 disease model

dN(t)

dt
=

dS(t)

dt
+

dQ(t)

dt
+

dI(t)

dt
+

dIs(t)

dt
+

dR(t)

dt

= κ− β0

(
S(t) +Q(t) + I(t) + Is(t) +R(t)

)
︸ ︷︷ ︸

N(t)

−µIs(t)

= κ− β0N(t)− µIs(t)

≤ κ− β0N(t). (11)

By deriving from exp
(
β0t
)
.N(t) and also with (11), we have

d

dt
exp

(
β0t
)
.N(t) = β0 exp

(
β0t
)
N(t) + exp

(
β0t
)dN(t)

dt

≤ β0 exp
(
β0t
)
N(t) + exp

(
β0t
)(
κ− β0N(t)

)
= κβ0N(t). (12)

By integrating on both sides of inequality (12) between 0 and t and according
to the initial conditions, we have

exp
(
β0t
)
N(t)−N(0) ≤ κ

β0

(
exp

(
β0t
)
− 1

)
. (13)

By multiplying both sides of the inequality (13) in exp
(
− β0t

)
, we have

N(t) ≤ N(0) exp
(
− β0t

)
+

κ

β0

(
1− exp

(
− β0t

))
≤ N(0) exp

(
− β0t

)
+

κ

β0
. (14)

If we take lim t → ∞, we have 0 ≤ N(t) ≤ κ

β0
. It implies that the region

Ω is a positivity invariant set for the system (2). Therefore, all the system
(2) solutions with initial conditions are bounded. So, there exist positive
constants Z1, Z2, Z3, Z4, and Z5 such that for all t ∈ [0, T ] :

S(t) ≤ Z1, Q(t) ≤ Z2, I(t) ≤ Z3, Is(t) ≤ Z4, R(t) ≤ Z5.

Theorem 3 (Existence of solutions). The system (2) that satisfies a given
initial condition has a unique solution.

Proof. Let
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X =



S(t)

Q(t)

I(t)

Is(t)

R(t)


, Φ(X) =



dS(t)
dt

dQ(t)
dt

dI(t)
dt

dIs(t)
dt

dR(t)
dt


. (15)

Then the system (2) can be rewritten in the following form:

Φ(X) = AX +B(X), (16)

where

A =



−β0 0 0 0 ε

0 −(β0 + β + λ) 0 0 0

0 β −(β0 + δ + θ) 0 0

0 0 δ −(β0 + σ + µ) 0

0 0 θ σ −(β0 − λ+ ε)


,

(17)
and

B(X) =



κ−
(
αQ(t) + φI(t)

)
S(t)

αQ(t)S(t)

φI(t)S(t)

0

0


. (18)

The second term on the right-hand side of (16) for X1 and X2 satisfies∣∣∣B(X1)−B(X2)
∣∣∣ = ∣∣∣(αQ1 + φI1

)
S1 −

(
αQ2 + φI2

)
S2

+ αQ1S1 − αQ2S2 + φI1S1 − φI2S2

∣∣∣
= 2
∣∣∣α(Q1S1 −Q2S2

)
+ φ

(
I1S1 − I2S2

)∣∣∣
= 2
∣∣∣αQ1S1 + αQ1S2 − αQ1S2

− φI1S1 + φI1S2 − φI1S2 − αQ2S2 + φI2S2

∣∣∣
≤ 2

(
|αQ1| |S1 − S2|+ |αS2| |Q1 −Q2|
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37 Designing a sliding mode controller COVID-19 disease model

+ |φI1| |S1 − S2|+ |φS2| |I1 − I2|

)

≤ 2
Z

β0

(
|α| |S1 − S2|+ |α| |Q1 −Q2|

+ |φ| |S1 − S2|+ |φ| |I1 − I2|

)
≤ M∥X1(t)−X2(t)∥∞), (19)

Then
∥Φ(X1)− Φ(X2)∥ ≤ V.∥X1 −X2∥, (20)

where V = max(M, ∥A∥) ≤ ∞. Thus, it follows that the function Φ in (16)
is uniformly Lipschitz continuous, and the restriction on S(t) ≥ 0, Q(t) ≥
0, I(t) ≥ 0, Is(t) ≥ 0 and R(t) ≥ 0. So, there is a solution for the system (2)
[10].

3 SMC design

This section contains the design of an SMC for the model (2) so that all the
population becomes Recovered. Thus, define the tracking error as

e(t) = R(t)−Nd(t), (21)

where R(t) denotes the number of Recovered population at each time while
Nd(t) is a tracking reference signal satisfying (in order for the tracking task
to be achievable with a finite control):

Nd(0) = R(0), (22)

Nd(t)−N(t) −→ 0, t −→ ∞. (23)

Equation (22) shows that initially the tracking error in (21) is zero, that
is (e(0) = 0), means that all the population tends to be Recovered. The
proposed reference signal used in this paper is exponentially selected as

Nd(t) = (R(0)−N(0))e−at +N(t), (24)
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where the parameter a > 0 controls the rate at which the reference signal
converges to the total population. The sliding surface to achieve this control
is defined as follows:

ζ(t) = e(t) + Γ

∫ t

0

e(τ)dτ, (25)

where Γ is a constant positive gain. The control law is designed in two steps.
Firstly, an equivalent control Ueq is calculated in such a way that the sliding
surface could be reached. So we obtain the derivative of the sliding surface
(25):

˙ζ(t) = ė(t) + Γe(t)

=
(
Ṙ(t)− Ṅd(t)

)
+ Γ

(
R(t)−Nd(t)

)
= σIs(t)− β0R(t) + θI(t) + λQ(t)− εR(t) + u1S(t) + u2I(t) +

(
u2 + u3

)
Is(t)︸ ︷︷ ︸

Ṙ

+ ae−at
(
R(0)−N(0)

)
− (κ− β0N(t)− µIs(t))︸ ︷︷ ︸

Ṅ

+Γ
(
R(t)−N(t)

)
− Γe−at

(
R(0)−N(0)

)
.

(26)

For simplicity, take a = Γ and then by setting the right side of equation (26)
equal to zero, we get

σIs(t)− β0R(t) + θI(t) + λQ(t)− εR(t) + u1S(t) + u2I(t) +
(
u2 + u3

)
Is(t)

− κ+ β0N(t) + µIs(t) + ΓR(t)− ΓN(t) = 0.

(27)

The following equivalent controls are solutions for (27):

U1,eq =
1

S(t)

{
κ+R(t)

(
β0 + ϵ− Γ

)
+N(t)

(
Γ− β0

)
− Is(t)

(
µ+ σ

)
−Q(t)λ− θI(t)

}
,

U2,eq =
1

I(t) + Is(t)

{
κ+R(t)

(
β0 + ϵ− Γ

)
+N(t)

(
Γ− β0

)
− Is(t)

(
µ+ σ

)
−Q(t)λ− θI(t)

}
,

U3,eq =
1

Is(t)

{
κ+R(t)

(
β0 + ϵ− Γ

)
+N(t)

(
Γ− β0

)
− Is(t)

(
µ+ σ

)
−Q(t)λ− θI(t)

}
.

(28)

Because system (2) has uncertainty and the exact value of the parameters
are not known, then
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β0 + ϵ− Γ = ν, β̂0 + ϵ̂− Γ̂ = ν̂,

Γ− β0 = ϑ, Γ̂− β̂0 = ϑ̂,

µ+ σ = ρ, µ̂− σ̂ = ρ̂.

(29)

So according to the nominal parameters (29) the equivalent control law (28)
is as follows:

U1,eq =
1

S(t)

{
κ̂+R(t)ν̂ +N(t)ϑ̂− Is(t)ρ̂−Q(t)λ̂− I(t)θ̂

}
,

U2,eq =
1

I(t) + Is(t)

{
κ̂+R(t)ν̂ +N(t)ϑ̂− Is(t)ρ̂−Q(t)λ̂− I(t)θ̂

}
,

U3,eq =
1

Is(t)

{
κ̂+R(t)ν̂ +N(t)ϑ̂− Is(t)ρ̂−Q(t)λ̂− I(t)θ̂

}
.

(30)

The equivalent controls (30) are expressed in the following nonlinear way to
avoid the chattering phenomenon:

U1 = U1,eq −
K

S(t)
.sgn

(
ζ(t)

)
,

U2 = U2,eq −
K

I(t) + Is(t)
.sgn

(
ζ(t)

)
,

U3 = U3,eq −
K

Is(t)
.sgn

(
ζ(t)

)
,

(31)

where sgn(x) is the sign function defined as

sgn(x) =


1, x > 0,

0, x = 0,

−1, x < 0.

(32)

Moreover, K is a gain that must be designed so that it can overcome the
parameters of system (2), which has uncertainty, and gives the desired result.
Therefore, the controls law (31) allows to guaranteeing the convergence to
zero of the tracking error (21) as proved in the continuation of Theorem 4.
The switching gain is defined based on the following assumptions:

1. Suppose that the estimation error is f by a known bounded function
F as follows:

|f̂ − f | < F, (33)
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where

f̂ = κ̂+R(t)ϑ̂+N(t)ν̂ − Is(t)ρ̂−Q(t)λ̂− I(t)θ̂,

f = κ+R(t)ϑ+N(t)ν − Is(t)ρ−Q(t)λ− I(t)θ.
(34)

This assumption shows that although the system has uncertainty pa-
rameters and there is a mismatch between these parameters, it is
bounded.

2. The switching gain is selected as

K = F + η, (35)

with η > 0 arbitrary. This assumption shows how to choose the right
gain to achieve the desired results.

Theorem 4. Consider the model system (2) with the controls law (31).
Thus, if Assumptions 1 and 2 hold, then the tracking error e(t) vanishes
asymptotically.

Proof. Consider the Lyapunov candidate function

L(t) =
1

2
ζ(t)2. (36)

The derivative of the Lyapunov function (36) is calculated as follows:

L̇(t) = ζ(t).ζ̇(t)

= ζ(t)
(
ė(t) + Γe(t)

)
= ζ(t)

(
σIs(t) − β0R(t) + θI(t) + λQ(t) − εR(t) + u1S(t) − κ + β0N(t) + µIs(t) + ΓR(t) − ΓN(t)

)
= ζ(t)

(
u1S(t) − κ + Is(t)

(
σ + µ

)
− R(t)

(
− Γ + β0 + ε

)
− N(t)

(
− β0 + Γ) + λQ(t) + θI(t)

)
= ζ(t)

(
u1S(t) − κ + Is(t)ρ − R(t)ϑ − N(t)ν + λQ(t) + θI(t)

)
= ζ(t)

{(
U1,eq −

K

S(t)
sgn(ζ(t)

)
S(t) − κ + Is(t)ρ − R(t)ϑ − N(t)ν + λQ(t) + θI(t)

}
= ζ(t)

{( 1

S(t)
{κ̂ + R(t)ϑ̂ + N(t)ν̂ − Is(t)ρ̂ − Q(t)λ̂ − I(t)θ̂} −

K

S(t)
sgn(ζ(t))

)
S(t) − κ − Is(t)ρ

− R(t)ϑ − N(t)ν + λQ(t) + θI(t)

}
= ζ(t)

{(
κ̂ − κ

)
+ R(t)

(
ϑ̂ − ϑ

)
+ N(t)

(
ν̂ − ν

)
− Is(t)

(
ρ̂ − ρ

)
− Q(t)

(
λ − λ̂ − I(t)

(
θ − θ̂

)
− Ksgn(ζ(t))

}
= ζ(t)

{
f̂ − f − Ksgn(ζ(t))

}
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= ζ(t)
(
f̂ − f

)
− K|ζ(t)|. (37)

According to assumption (35),

1

2

d

dt
ζ(t)2 =

1

2

d

dt
|ζ(t)|2

= ζ(t)
(
f̂ − f

)
−K|ζ(t)|

≤ ζ(t)F − (F + η)|ζ(t)|

≤ −η|ζ(t)|.

(38)

Note that Assumptions 1 and 2 have been used to prove that the time-
derivative is always negative definite. Hence, L(t) is positive definite, while
L̇(t) is negative definite. Thus, according to Lyapunov’s direct method, the
equilibrium point at the origin ζ(t) = 0 is globally asymptotically stable and,
therefore, L(t) tends to zero as time tends to infinity. All trajectories starting
out the sliding surface ζ = 0 must reach it in finite time and then will remain
on this surface.

By integrating inequality (38) from 0 to t, we have

ζ(t)− ζ(0) ≤ −η

∫ t

0

|ζ(τ)|dτ. (39)

So

ζ(0) ≥ −ζ(t) + η

∫ t

0

|ζ(τ)|dτ

≥
∫ t

0

|ζ(τ)|dτ

≥ 0.

(40)

If t on the unequal sides of (40) tends to infinity(t → ∞), then

lim
t→∞

∫ t

0

|ζ(τ)|dτ ≤ ζ(0) < ∞. (41)

That is, in this case, the above integral exists and is smaller and equal to
ζ(0), since ζ(0) is positive and limited. According to Barbalat’s Lemma, we
have

lim
t→∞

∫ t

0

|ζ(τ) = 0. (42)
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Therefore, (42) shows reaching the sliding surface. Indeed in SMC, to have
the property of invariance, reaching the sliding surface must occur in a limited
time. According to (38),

ζζ̇ ≤ −η|ζ|. (43)

Suppose that tf is the time to reach the sliding surface, that is, ζ(tf ) = 0.
Now, consider the following two situations:

1. Suppose ζ > 0. Therefore, using (43), we reach the following relation-
ship:

ζ̇ ≤ −η. (44)

By integrating the relation (44) between t = 0 and t = tf , we have

−ζ(0) ≤ −ηtf . (45)

So
tf ≤ ζ(0)

η
. (46)

2. Suppose ζ < 0. Therefore, using (43), we reach the following relation-
ship:

ζ̇ ≥ η. (47)

By integrating the relation (44) between t = 0 and t = tf , we have

−ζ(0) ≥ ηtf . (48)

So
tf ≤ −ζ(0)

η
. (49)

Using relations (46) and (49), we have

tf ≤ |ζ(0)|
η

. (50)

Therefore, for a finite time tf ≤ |ζ(0)|
η , the sliding surface is reached. When

this condition is met, the dynamic behavior of the tracking error (25) is given

ė(t) + Γe(t) = 0. (51)
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Therefore, the control objective is achieved, and the defined tracking error
tends to zero and total population tends to be Recovered.

According to assumption (33), the function F must be defined so that the
appropriate switching gain can be obtained. For this reason, the switching
gain is specified over time with adaptive control. Since system (2) contains
parameters that are changing, then the online parameter estimation method
is used in adaptive control. Also, in the numerical results section 4, gain
switching in (35) has been obtained by the online estimation method. In this
section, by using adaptive control, the switching gain is increased enough to
reach the sliding level, and the sliding condition is established.

4 Numerical results

In this section, the performance of the proposed sliding mode controller is
investigated on the system model (2), which has uncertainty parameters. The
simulation of this model has been done using MATLAB − R2021 software
and systemLenovo−B50. The basic conditions for simulation are the relation
(52),

(S(0), Q(0), I(0), Is(0), R(0)) = (10000, 6000, 70, 3000, 30). (52)

The parameter values of system (2) are given in Table 1.
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Figure 1: Left: quarantined people (Q). Right:infected people (I).
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Table 1: The parameters of the model.

Parameter Definition Value
κ Source rate of susceptible individuals 19100
β0 Natural mortality rate 0.005
φ Disease transmission rate 0.3
α Quarantined rate 0.6
ε Coronavirus (CoV) relapse rate 0.01
β Infection rate 0.8
λ Recovery rate of quarantined individuals 0.1
θ Spontaneous recovery rate 0.7
δ Isolation rate 0.1
σ Cure rate from COVID 19 0.1
µ Disease induced death rate 0.1

Figure 1 Left, shows the effects of educational campaign control u1 and
social distancing control u2 on quarantined people for 60 days. In Figure1
Left, it is obvious that the number of quarantined people will decrease with
the application of controls. When there is no control on system (2), that is,
u1 = u2 = u3 = 0, the number of quarantined people first increases a little
and then decreases; but on the 10th day onwards, the number of these people
increases.

Figure 1 Right, shows the effect of control measures on infected people
for 60 days. In this figure, it is clear that the number of infected people is
increasing if the system is not controlled, but it shows a decreasing effect by
applying control measures. Although the affected people have a very small
decrease in the beginning and it increases again, it is probably because the
effect of control u2 and u3 on these people is not high. Indeed, the number
of infected people in [11], which is designed with optimal control, is always
increasing; Figure 1 Right shows that the designed controls were able to have
a greater impact on the number of these infected people.

Figure 2 Left, shows the effect of control measures u1, u2, and u3 on the
number of isolated people for 60 days. It can be seen here that these control
measures significantly affect isolated people and reduce these people a lot,
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Figure 2: Left: isolated people (Is). Right: recovered people (R).

so controls u1,u2, and u3 have had a good effect on these people. As can
be seen, if there is no control, the number of isolated people is increased.
According to the fact that in [11] the number of isolated people with optimal
control has always been peaking and increasing, Figure 2 Left shows that the
controllers proposed in this article have been able to reduce the number of
these isolated people. Figure 2 Right, shows the effects of control measures
such as educational campaign u1, social distancing u2, and treatment control
u3. The number of recovered people for 60 days is observed in this case that
the control measures had a great effect on the recovered people, so these
controls were able to control the recovered people well. In the absence of
control, the number of recoveries shows a small increase, which is less than
expected and not appropriate.

Therefore, these control measures have been used to achieve the desired
result, and the number of those people who have recovered increases rapidly.
The number of these recovered people is [11]more than the simulated article.

Figure 3 shows the slight difference between the recovered population and
the reference signal. As can be seen from the figure, the recovered population
and the reference signal are superimposed, which means that the control
objective is fulfilled. This difference can be eliminated by increasing the
switching gain; in other words, with an increase of a in the suggested signal,
the whole population is more inclined to be immune from this disease.
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Figure 3: Tracking error.

Figure 4 shows the simulation of controls u1, u3, and u3 separately, which
also shows the stability of the controls.

Figure 4: Controls u1, u3, and u3.

5 Conclusion

In this work, an epidemic model for the spread of the infectious disease
COVID-19 in a population was studied. This model includes people who
are susceptible, quarantined, infected, isolated, and removed. This model
includes three controls: social distancing, educational campaign, and treat-
ment control. Since this model has uncertainty parameters, it has been used
after SMC to increase the removed individuals. In addition, because the
parameters of the model have uncertainty, in the numerical simulation, the
online parameters estimation method was used in the adaptive control for
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appropriate gain switching. Finally, in order to evaluate the performance of
the controllers and confirm the presented theoretical results, simulation has
been done using MATLAB R2021a software. After checking the numerical
results, it can be seen that the controllers of social distancing u1, educational
campaign u2, and treatment control u3 of the reduction of quarantined, in-
fected, and isolated people are more effective; also, these controllers have a
very good effect on the recovered people, and this shows that the controllers
were able to prevent the spread of this disease to some extent. With regard
to the discovery of the COVID-19 vaccine, as future research, by improving
the aforementioned modeling and considering vaccinated people as an inde-
pendent group and vaccination as another control strategy, the research can
be developed.
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