[1] Abdolkhaleghzade, S.M., Effati, S. and Rakhshan, S.A. An effcient de-sign for solving discrete optimal control problem with time-varying multi-delay, Iranian Journal of Numerical Analysis and Optimization, 12(2) (2022), 719–738.
[2] Bandyopadhyay, B., Deepak, F. and Kim, K-S. Sliding mode control using novel sliding surfaces, Springer. Berlin Heidelberg, Germany, 2009.
[3] Barambones, O. and Alkorta, P. A robust vector control for induction motor drives with an adaptive sliding-mode control law, J. Frank. Inst. 348 (2) (2011), 300–314.
[4] Barambones, O., Gonzalez de Durana, J. and de la Sen, M. Robust speed control for a variable speed wind turbine, Int. J. Innov. Comput. Inf. Control. 8 (11) (2012), 7627–7640.
[5] Bartolini, G. and Pydynowski, P. An improved, chattering free, V.S.C. scheme for uncertain dynamical systems, IEEE Trans. Autom. Control. 41(8) (1996), 1220–1226.
[6] Bartolini, G., Ferrara, A., Usai, E. and Utkin, V.I. On multi-input chattering-free second-order sliding mode control, IEEE Trans. Autom. Control. 45 (9) (2000), 1711–1717.
[7] Bartolini, G., Pisano, A., Punta, E. and Usai, E. A survey of applica-tions of second-order sliding mode control to mechanical systems, Int. J. Control. 76 (2003), 875–892.
[8] Bhatnagar, V., Chandra Poonia, R., Nagar, P. and Kumar, S. Descrip-tive analysis of COVID-19 patients in the context of India, J. Interdiscip. Math. 24 (2020), 489–504.
[9] Binti Hamzah, F.A., Lau, C., Nazri, H., Ligot, D.V., Lee, G., Tan, C.L. and et al. Coronatracker: world-wide COVID-19 outbreak data analysis and prediction, Bull. World Health Organ. 19 (32) (2020), 1–32.
[10] Birkhoff, G. and Rota,G.C. Ordinary differential equations, 4th edition, JohnWiley & Sons, New York, 1989.
[11] Biswas, M.H.A., Khatun, M.S., Paul, A.K., Khatun, M.R., Islam, M.A., Samad, S.A. and Ghosh, U. Modeling the effective control strategy for the transmission dynamics of global pandemic COVID-19, medRxiv, 2020.
[12] Bogoch, I.I., Watts, A., Thomas-Bachli, A., Huber, C., Kraemer, M.U.G. and Khan, K. Pneumonia of unknown aetiology in Wuhan, China: po-tential for international spread via commercial air travel, J. Travel Med. 27(2) (2020), taaa008.
[13] Brauer, F. and Castillo-Chavez, C. Mathematical models in population biology and epidemiology, 2, New York, Springer, 2012.
[14] Cao, B. and Kang, T. Nonlinear adaptive control of COVID-19 with media campaigns and treatment, Biochem Biophys Res Commun. 555 (2021), 202–209.
[15] Cao, S., Feng, P. and Shi, P. Study on the epidemic development of COVID-19 in Hubei province by a modified SEIR model, J. Zhe jiang Univ. Med. Sci. 49(2) (2020), 178–184.
[16] Chung, Y.C., Wen, B.J. and Lin, Y.C. Optimal fuzzy slidingmode con-trol for biomicrofluidic manipulation, Control Eng. Pract. 15(9) (2007), 1093–1105.
[17] Clifford, S., Klepac, P., Zandvoort, K.V., Quilty, B., Eggo, R.M. and Flasche, S. Interventions targeting air travellers early in the pandemic may delay local outbreaks of sars-cov-2, medRxiv, 2020.
[18] Comunian, A., Gaburro, R. and Giudici, M. Inversion of an SIR-Based model: A critical analysis about the application to COVID-19 epidemic, Physica D: Nonlinear Phenomena, 413 (2020), 132674.
[19] Cooper, I., Mondal, A. and Antonopoulos, C.G. A SIR Model Assump-tion for The Spread of COVID-19 in Different Communities, Chaos. Solitons Fractals. 139 (2020), 110057.
[20] Das, M. and Samanta, G.P. A fractional order COVID-19 epidemic transmission model: Stability analysis and optimal control, Comput. Math. Biophys. 9 (2021), 22–45.
[21] Diekmann, O. and Heesterbeek, J.A.P. Mathematical epidemiology of infectious diseases: model building, analysis and interpretation, Wiley Series in Mathematical and Computational Biology, Chichester, Wiley, 2000.
[22] Eubank, S., Eckstrand, I., Lewis, B., Venkatramanan, S., Marathe, M. and Barrett, C.L. Commentary on Ferguson et al. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand, Bull. Math. Biol. 82 (2020), 1–7.
[23] He, S., Tang, S., Xiao, Y. and Cheke, R.A. Stochastic modelling of air pollution impacts on respiratory infection risk, B. Math. Biol. 80 (2018), 3127–3153.
[24] Hengamian Asl, E., Saberi-Nadjafi, J. and Gachpazan, M. 2D-fractional Muntz–Legendre polynomials for solving the fractional partial differen-tial equations, Iranian Journal of Numerical Analysis and Optimization, 10(2) (2020), 1–31.
[25] Ketabdari, A., Farahi, M. and Effati, S. An approximate method based on Bernstein polynomials for solving fractional PDEs with proportional delays, Iranian Journal of Numerical Analysis and Optimization, 10(2) (2020), 223–239.
[26] Khan, M.K. and Spurgeon, S.K. Robust MIMO water level control in in-terconnected twin-tanks using second order sliding mode control, Control Eng. Pract. 14(4) (2006), 375–386.
[27] Khanbehbin, T., Gachpazan, M., Effati, S. and Miri, S. Shooting con-tinuous Runge–Kutta method for delay optimal control problems, Iranian Journal of Numerical Analysis and Optimization, 12(3) (2022), 680–703.
[28] Koshkouei, A.J. and Zinober, A.S.I. Robust frequency shaping sliding mode control, IEE Proc. Control Theory Appl. 147 (2000), 312–320.
[29] Lee, H. and Utkin, V.I. Chattering suppression methods in sliding mode control systems, Annu. Rev. Control. 31(2) (2007), 179–188.
[30] Levant, A. Sliding order and sliding accuracy in sliding mode control, Int. J. Control, 58 (1993), 1247–1263.
[31] Li, J., Xiao, Y., Zhang, F. and Yang, Y. An algebraic approach to proving the global stability of a class of epidemic models, Nonlinear Anal. Real World Appl. 13(5) (2012), 2006–2016.
[32] Li, Y., Wang, B., Peng, R., Zhou, C., Zhan, Y., Liu, Z. and et al. Mathematical modeling and epidemic prediction of COVID-19 and its significance to epidemic prevention and control measures, Int. J. Curr. Res. 5(1) (2020), 19–36.
[33] Mirhosseini-Alizamani, S.M. Solving linear optimal control problems of the time-delayed systems by Adomian decomposition method, Iranian Journal of Numerical Analysis of Optimization, 9(2) (2019), 165–185.
[34] Mirhosseini-Alizamani, S.M., Effati, S. and Heydari, A. An iterative method for suboptimal control of a class of nonlinear time-delayed sys-tems, Systems and Control Letters, 82 (2015), 40–50.
[35] Mukandavire, Z., Malunguza, N., Cuadros, D., Shiri, T., Musuka, G. and Nyabadza, F. Quantifying early COVID-19 outbreak transmission in south Africa and exploring vaccine efficacy scenarios, SSRN Electronic Journal, 15(7) (2020), e0236003.
[36] Murray, J.D. Mathematical biology: An Introduction (interdisciplinary applied mathematics), New York, Springer, 2007.
[37] Ngonghala, C.N., Iboi, E., Eikenberry, S., Scotch, M., MacIntyre, C.R., Bonds, M.H. and Gumel, A.B. Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel coron-avirus, Math. Biosci. 325 (2020), 108364.
[38] Perruquetti, W. and Pierre-Barbot, J., Sliding mode control in engineer-ing, Marcel Dekker, 2002.
[39] Prem, K., Liu, Y., Russell, T.W., Kucharski, A.J., Eggo, R.M., Davies, N., Flasche, S., Clifford, S., Pearson, C.A., Munday, J.D. and Abbott, S. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study, The Lancet Public Health, 5(5) (2020), 261–270.
[40] Saad-Roy, C.M., Wingreen, N.S., Levin, S.A. and Grenfell, B.T. Dy-namics in a simple evolutionary epidemiological model for the evolution of an initial asymptomatic infection stage, Proc. Natl. Acad. Sci. USA, 117(21) (2020), 11541–11550.
[41] Shu, H., Fan, D. and Wei, J. Global stability of multi-group SEIR epi-demic models with distributed delays and nonlinear transmission, Non-linear Anal. Real World Appl. 13(4) (2012), 1581–1592.
[42] Silverman, J.D., Hupert, N. and Washburne, A.D. Using influenza surveillance networks to estimate state-specific prevalence of SARS-CoV-2 in the United States, Sci Transl. Med. 12(554) (2020), eabc1126.
[43] Singh, V., Poonia, R.C., Kumar, S., Dass, P., Agarwal, P., Bhatnagar, V. and Raja, L. Prediction of COVID-19 corona virus pandemic based on time series data using Support Vector Machine, J. Discrete Math. Sci. Cryptogr. 23(8) (2020), 1583–1597.
[44] Su, J.-P. and Wang, C.-C. Complementary sliding control of non-linear systems , Int. J. Control, 75(5) (2002), 360–368.
[45] Tang, B., Bragazzi, N.L., Li, Q., Tang, S., Xiao, Y. and Wu, J. An updated estimation of the risk of transmission of the novel coronavirus(2019-ncov), Infect. Dis. Model. 5 (2020), 248–255.
[46] Tang, B., Wang, X., Li, Q., Bragazzi, N.L., Tang, S., Xiao, Y. and Wu, J. Estimation of the transmission risk of the 2019- ncov and its implication for public health interventions, J. Clin. Med. 9(2) (2020), 462.
[47] Verity, R., Okell, L.C., Dorigatti, I. and et al. Estimates of the severity of coronavirus disease 2019: A model-based analysis, Lancet Infect Dis. 20(6) (2020), 669–677.
[48] Wu, J.T., Leung, K. and Leung, G.M. Nowcasting and forecasting the potential domestic and international spread of the 2019 nCoV outbreak originating in Wuhan, China: a modeling study, The Lancet. 395(10225) (2020), 689–697.
[49] Xiong, H. and Yan, H. Simulating the infected population and spread trend of 2019-ncov under different policy by EIR model, Available at SSRN 3537083, 2020.
[50] Yang, C., Yang, Z., Huang, X., Li, S. and Zhang, Q. Modeling and robust trajectory tracking control for a novel six-rotor unmanned aerial vehicle, Math. Probl. Eng. 2013(1) (2013), 673525.
[51] Young, K.D. and Özgüner, U. Frequency shaping compensator design for sliding mode, Int. J. Control, 57 (1993), 1005–1019.
[52] Zhang, M., Wang, X. and Cui, J. Sliding mode of compulsory treatment in infectious disease controlling, Math. Biosci. Eng. 16(4) (2019), 254–2561.
[53] Zhang, X.Y., Zhao, Y.X., Xin, D.X. and He, K.P. Sliding mode control for mass moment aerospace vehicles using dynamic inversion approach, Math. Probl. Eng. 2013(1) (2013), 284869.
[54] Zhou, X. and Cui, J. Analysis of stability and bifurcation for and SEIR epidemic model with saturated recovery rate, Commun. Nonlinear Sci. Numer. Simul. 16(11) (2011), 4438–4450.
[55] Zhou, W., Xiao, Y. and Heffernan, J.M. A two-thresholds policy to inter-rupt transmission of West Nile Virus to birds, J. Theor. Biol. 463 (2019), 22–46.
Send comment about this article