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Abstract

This paper aims to extend a Krylov subspace technique based on an in-
complete orthogonalization of Krylov tensors (as a multidimensional exten-
sion of the common Krylov vectors) to solve generalized Sylvester tensor
equations via the Einstein product. First, we obtain the tensor form of
the quasi-GMRES method, and then we lead to the direct variant of the
proposed algorithm. This approach has the great advantage that it uses
previous data in each iteration and has a low computational cost. More-
over, an upper bound for the residual norm of the approximate solution
is found. Finally, several experimental problems are given to show the
acceptable accuracy and efficiency of the presented method.
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1 Introduction

As a common notation in the research literature, tensors are written in calli-
graphic font, for example, A. For a positive integer N , an Nth order tensor
(in some literature N -mode tensor, e.g., [6]) A = (ai1···iN )(1 ≤ ij ≤ Ij , j =

1, . . . , N) is a multidimensional N -way array with I (I = I1I2 · · · IN ) entries
[25]. Let RI1×···×IN be the set of Nth order tensors of size I1 × · · · × IN over
the real field R. The tensor O ∈ RI1×···×IN with all entries zero denotes the
zero tensor.

In this paper, we suggest an efficient iterative method to solve the gener-
alized Sylvester tensor equation

A ⋆N X ⋆M B + C ⋆N X ⋆M D = F , (1)

where A, C ∈ RI1×···×IN×I1×···×IN , B,D ∈ RK1×···×KM×K1×···×KM , F ∈
RI1×···×IN×K1×···×KM are known tensors, and X ∈ RI1×···×IN×K1×···×KM

is an unknown tenor to be determined. We denote the Einstein product by
⋆N , which will be described in detail in Section 2.

Tensor equations arise from various fields of science and engineering mul-
tidimensional applications, including signal processing, data mining, thermal
radiation, information retrieval, and three-dimensional (3D) microscopic heat
transfer problems in heat transfer, and so many other modern applications
in machine learning [31, 32, 33, 34, 39, 44].

Tensor equations involving the Einstein product have been studied in
[7, 15, 38], which have many applications in continuum physics, engineering,
isotropic, and anisotropic elastic models [26]. For example, Wang and Xu [41]
introduced some iterative methods for solving different types of these tensor
equations. Huang, Xie, and Ma [23] proposed the Krylov subspace methods
to solve a class of tensor equations via the Einstein product. Huang and Ma
[22] presented an iterative algorithm to solve the generalized Sylvester tensor
equation. In [21], they also presented the global least squares methods based
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on tensor form to solve the tensor equation (1). Liang, Zheng, and Zhao
[30] discussed the tensor inversion and its applications for solving the tensor
equations via the Einstein product.

The high order Sylvester tensor equation via the Tucker product of tensors
is as follows:

X ×1 A1 + X ×2 A2 + · · ·+ X ×N AN = D, (2)

where Aj ∈ RIj×Ij , j = 1, 2, . . . , N , D ∈ RI1×···×IN are known, and X ∈
RI1×···×IN is unknown. The product ×k will be defined in the next Section.

Recently, Li, Wang, and Zhang [29] proposed a modified conjugate resid-
ual method to solve the generalized coupled variant of (2), and Dehdezi and
Karimi [11] extended the conjugate gradient squared method and the con-
jugate residual squared method to obtain their iterative solutions. Zhang,
Ding, and Li [45] mainly focused on proposing the tensor form of the gen-
eralized product-type biconjugate gradient method to solve the generalized
Sylvester quaternion tensor equations (2). Heyouni, Movahed, and Tajaddini
[20] used the Hessenberg process instead of the Arnoldi process to generate a
basis of the Krylov subspace and then proposed an iterative method to solve
the real tensor equation. In addition, Zhang and Wang [44] introduced the
CGNR and CGNE methods for the third-order Sylvester tensor equation (2).

Let us contemplate the following partial differential equation (see, e.g.,
[3, 21]): −∆u+ cT∇u = f, in Ω = [0, 1]N ,

u = 0, on ∂Ω.

The use of the finite-difference discretization together with a second-order
convergent scheme for the convection term leads us to a linear system that is
expressed in the form (2). Chen and Lu [9] established the projection method
to solve the tensor equation (2). They also applied the Kronecker product
preconditioner to accelerate the convergence of the iterative method. Later,
Beik, Movahed, and Ahmadi-Asl [6] derived the Krylov subspace methods to
solve the Sylvester tensor equation (2) in the case of 3-mode tensors. Shi,
Wei, and Ling [37] investigated the backward error and perturbation bounds
for the tensor equation (2) for the 3-mode tensors.
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The high order Sylvester tensor equation, which uses the Einstein product,
is defined in [38] and is given by

A ⋆N X + X ⋆M B = C, (3)

where A ∈ RI1×···×IN×I1×···×IN ,B ∈ RJ1×···×JM×J1×···×JM ,
C ∈ RI1×···×IN×J1×···×JM and X ∈ RI1×···×IN×J1×···×JM . It is noteworthy
that the Sylvester tensor equation given in (3) comes from the discretiza-
tion of the linear partial differential equation by the finite difference, finite
element, and spectral methods in high dimension [19, 27, 28, 26].

Recently, Sun et al. [38] investigated the generalized inverses of ten-
sors via the Einstein product. Using the generalized inverses of tensors,
they also gave the general solutions of the tensor equation (3). Behera and
Mishra [4] derived further results on generalized inverses of tensors via the
Einstein product. Later, Wang and Xu [41] considered the iterative algo-
rithms for solving the tensor equation (3). Moreover, Dehdezi and Karimi
[12] presented an extended version of a gradient-based iterative method for
solving large multilinear systems via the Einstein product. They introduced
a new preconditioner to accelerate the convergence rate of the new iterative
methods. As the gradient-based and the gradient-based least-squares algo-
rithms, Dehdezi [10] derived iterative methods for the Sylvester-transpose
tensor equation as (1). Erfanifar and Hajarian [16] also proposed a method
for solving the nonlinear tensor equation

X +AT ⋆M X−1 ⋆N A = I

along with the Einstein product.

Brown and Hindmarsh [8] and then Jia [24] analyzed an incomplete gener-
alized minimal residual method for solving large unsymmetric linear systems
with low computational cost, which is a truncated version of the generalized
minimal residual method (GMRES) [35]. Later, Saad and Wu [36] extracted
a direct form of the incomplete generalized minimal residual method, abbrevi-
ated by DQGMRES, using QR decomposition of the Hessenberg matrix that
appeared in the incomplete GMRES method. This motivates us to present
an effective high order iterative algorithm as the DQGMRES method based
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on the tensor format to solve the generalized Sylvester tensor equation (1)
via the Einstein product.

The outline of this paper is as follows. In Section 2, we concisely recall
some definitions and properties of tensor operators that are useful in the
rest of the paper. In Section 3, we derive the tensor form of the DQGM-
RES method for solving the generalized Sylvester tensor equation (1) via
the Einstein product. In Section 4, we analyze the convergence properties
of the proposed method and find an upper bound for the residual norm of
the approximate solution. Moreover, in Section 5, we report some numeri-
cal experiments on solving (1) using the presented method to illustrate its
effectiveness and accuracy. Finally, a conclusion is drawn in Section 6.

2 Preliminaries

In this section, some preliminary definitions, and a number of technical lem-
mas are given, which will be used in what follows.

Definition 1. [38] Let N,M,L be the positive integers, let
A ∈ RI1×···×IN×K1×···×KM , and let B ∈ RK1×···×KM×J1×···×JL . The Einstein
product of two tensors A and B is defined by the operation ⋆M via

(A ⋆M B)i1···iN j1···jL =

KM∑
kM=1

· · ·
K1∑

k1=1

ai1···iNk1···kM
bk1···kM j1···jL . (4)

Thus A ⋆M B ∈ RI1×···×IN×J1×···×JL and the associative law of this tensor
product holds.

For A = (ai1···iN j1···jM ) ∈ RI1×···×IN×J1×···×JM , let B = (bi1···iM j1···jN ) ∈
RJ1×···×JM×I1×···×IN be a tensor with bi1···iM j1···jN = aj1···jN i1···iM . We call
B the transpose of A and denote it by AT .

When N = M = 1, the tensor equation (1) reduces to

AXB + CXD = F, (5)

which is the generalized Sylvester matrix equation and arises frequently from
the areas of systems and control theory [13, 14]. According to the repre-
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943 Extending quasi-GMRES method to solve generalized Sylvester ...

sentation (5), the tensor equation (1) is called generalized Sylvester tensor
equation.

Definition 2. [38] Let A = (ai1···iN i1···iN ) ∈ RI1×···×IN×I1×···×IN . The trace
of A is defined as

tr(A) =

IN∑
iN=1

· · ·
I1∑

i1=1

ai1···iN i1···iN . (6)

The inner product of two tensors X ,Y ∈ RI1×···×IN×J1×···×JM is defined
as

〈X ,Y〉 = tr(YT ⋆N X ) =

JM∑
jM=1

· · ·
J1∑

j1=1

IN∑
iN=1

· · ·
I1∑

i1=1

xi1···iN j1···jM yi1···iN j1···jM .

(7)
Therefore, the tensor norm induced by the inner product (7) is acquired as

‖A‖ =
√

〈X ,X〉 =

√√√√ JM∑
jM=1

· · ·
J1∑

j1=1

IN∑
iN=1

· · ·
I1∑

i1=1

|xi1···iN j1···jM |2, (8)

which is called the tensor Frobenius norm.
Let us set I = I1I2 . . . IN and, similarly, J = J1J2 . . . JN , K =

K1K2 . . .KM , and L = L1L2 . . . LM .

Definition 3. The transformation ΦIJ : RI1×···×IN×J1×···×JN → RI×J with
ΦIJ (A) = A is defined component-wisely as

(A)i1···iN j1···jN → (A)st,

whereA ∈ RI1×···×IN×J1×···×JN , A ∈ RI×J , s = iN+
∑N−1

p=1

(
(ip − 1)

∏N
q=p+1 Iq

)
,

and t = jN +
∑N−1

p=1

(
(jp − 1)

∏N
q=p+1 Jq

)
.

Routine computations verify that the tensor equation (1) is equivalent to
the following large system of linear equations:

Mx = b, (9)

with x = vec(ΦIK(X )), b = vec(ΦIK(F)), and

M = BT ⊗A+DT ⊗ C,
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where A = ΦII(A)), B = ΦKK(B)), C = ΦII(C)), and D = ΦKK(D)).
The notation ⊗ represents the Kronecker product and the operator “vec”

corresponds to a vector; see [17] for more details. The system of linear
equations (9) is consistent if and only if (1) is consistent, which means that
the coefficient matrix M needs to be nonsingular. In this study, it is assumed
that the tensor equation (1) has a unique solution.

The jth frontal slice of an Nth order tensor X ∈ RI1×···×IN (also known
as the column tensor of X ) is denoted by

X:: · · · :︸ ︷︷ ︸ j
(N−1)−times

, for j = 1, 2, . . . , IN ,

which is a tensor in RI1×···×IN−1 and is obtained by fixing the last index.

Definition 4. The operator ×n stands for the n-mode matrix product of a
tensor X ∈ RI1×···×IN with a matrix A ∈ RJ×In as X ×nAn, which is an Nth
order tensor of size I1 × I2 × · · · Ik−1 × J × Ik+1 · · · × IN . For each element,
we have

(X ×n A)i1···in−1jin+1···iN =

In∑
in=1

xi1···iNajin . (10)

Definition 5. The operator ×̄n (for n = 1, 2, . . . , N) represents the n-mode
(vector) product of a tensor X ∈ RI1×···×IN with a vector v ∈ RIn is indicated
by X×̄nv, which is an (N − 1)th order tensor of size I1 × I2 × · · · In−1 ×
In+1 · · · × IN . The elements are defined as follows:

(X×̄nv)i1i2···in−1in+1···iN =

In∑
in=1

xi1i2···iN vin .

Based on Definitions 4 and 5, one can establish some simple calculation
rules for the matrix and the vector k-mode products representations; see [25]
for further details.

Lemma 1. If X ∈ RI1×···×IN , A ∈ RJk×Ik and v ∈ RJk , then

X ×k A×̄kv = X×̄k(A
T v).

We can see the validity of the following proposition in [25], which is useful
for our development.
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Proposition 1. If X ∈ RI1×···×IN , A ∈ RJk×Ik , and B ∈ RPk×Jk , then

(X ×k A)×k B = X ×k (BA).

Proposition 2. Let X ∈ RI1×···×IN be an Nth order tensor and v = ej such
that ej is the jth column of the identity matrix I(IN ). Then

X×̄Nv = X::···:j , j = 1, 2, . . . , IN .

Consider two N -mode tensors X and Y. We define ⊠(N) product for
N = 1, 2, . . ., by beginning 1-mode tensor as a vector and developing the
2-mode tensor as a matrix. In point of fact, the ⊠(1) and ⊠(2) products are
naturally written in the following forms:

X ⊠(1) Y = X TY, X ,Y ∈ RI1 ,

and
X ⊠(2) Y = X TY, X ∈ RI1×I2 ,Y ∈ RI1×Ĩ2 .

In general case, the ⊠(N) product between two tensors X ∈ RI1×I2×···IN−1×IN

and Y ∈ RI1×I2×···IN−1×ĨN is defined as an IN × ĨN matrix whose (i, j)th
element is[

X ⊠(N) Y
]
ij
= tr(X::···:i ⊠(N−1) Y::···:j), N = 2, 3, . . . .

The following proposition from [6] presents some constructive relations for
the ⊠(N+1) product and the ×̄k vector product, which are useful for the
convergence analysis of the proposed method.

Proposition 3. Suppose that B ∈ RI1×I2×···IN×m is an (N+1)-mode tensor
with the N -mode column tensors B1,B2, . . . ,Bm ∈ RI1×I2×···IN and z =

(z1, z2, . . . , zm)T ∈ Rm. For an arbitrary (N + 1)-mode tensor A with N -
mode column tensors A1,A2, . . . ,Am, we have the following statements:

A⊠(N+1) (B×̄N+1z) =
(
A⊠(N+1) B

)
z, (11)

and
(B×̄N+1z)⊠(N+1) A = zT

(
B ⊠(N+1) A

)
. (12)
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In the spirit of the fact that ‖X‖2 = tr(X ⊠(N) X ) = X ⊠(N+1) X , and
also using Proposition 3, the next proposition is acquired.

Definition 6. The set of N -mode tensors V1,V2, . . . ,Vm ∈ RI1×I2×···IN is
called orthonormal if

〈Vi,Vj〉 = 0, i, j = 1, 2, . . . ,m(i 6= j),

and 〈Vi,Vi〉 = 1 for i = 1, 2, . . . ,m.

Remark 1. Suppose that A is a given (N + 1)-mode tensor with the col-
umn tensors A1,A2, . . . ,Am ∈ RI1×I2×···IN . If the set of N -mode tensors
A1,A2, . . . ,Am is orthonormal, then

A⊠(N+1) A = I(m).

Proposition 4. Let X ∈ RI1×I2×···×IN be an N -mode tensor, and let v ∈
RIN . Then,

‖X×̄Nv‖ ≤ ‖X‖‖v‖2.

Remark 2. In the case that the frontal slices of a tensor F ∈ RI1×I2×···×IN

is orthonormal, then for v ∈ RIN , Remark 1 concludes

‖F×̄Nv‖ = ‖v‖2.

3 Tensor form of the quasi-GMRES method

By using given tensorsA, C ∈ RI1×···×IN×I1×···×IN , B,D ∈ RK1×···×KM×K1×···×KM ,
we define the following linear operator:

L : RI1×···×IN×K1×···×KM → RI1×···×IN×K1×···×KM ,

as
X 7→ L(X ) := A ⋆N X ⋆M B + C ⋆N X ⋆M D.

Based on the above definition, the generalized Sylvester tensor equation (1)
is stated as L(X ) = F .

Thanks to the above discussion, the kth tensor Krylov subspace associated
with the linear operator L and a tensor V ∈ RI1×···×IN×K1×···×KM is defined
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947 Extending quasi-GMRES method to solve generalized Sylvester ...

as
Kk(L,V) = span{V,L(V), . . .Lk−1(V)},

where Li(V) = L(Li−1(V)) and L0(V) = V.
First, we introduce a useful alternative to the well-known Arnoldi process

by truncating the orthogonalization process [24]. In this way, we achieve
a strategy with low computational cost and a small truncation parameter
m. It is emphasized that the truncation parameter m for the kth tensor
Krylov subspace must be satisfied 2 ≤ m ≤ k. Here, we start with the tensor
form of the incomplete orthogonalization process (IOP_BTF), described by
Algorithm 2.

Algorithm 2: IOP_BTF
1. Input: Given tensors A, C ∈ RI1×···×IN×I1×···×IN ,

B,D ∈ RK1×···×KM×K1×···×KM and V ∈ RI1×···×IN×K1×···×KM .
2. Set β = ‖V‖ and V1 = V/β
3. For given k, define (k + 1)× k matrix H̄k, and set H̄k = 0;
4. for j = 1, 2, . . . , k do
5. Compute Wj = L(Vj)

6. for i = max{1, j −m+ 1}, . . . , j do
7. hij = 〈Wj ,Vi〉
8. Wj = Wj − hijVi

9. end
10. Compute hj+1,j = ‖Wj‖ and Vj+1 =

Wj

hj+1,j

11. end
12. Output: Tensors Vj , for j = 1, 2, . . . , k + 1 and matrix H̄k.

It is plain to verify that the IOP_BTF strategy produces the locally or-
thonormal basis V1,V2, . . . ,Vk (only the last m tensors Vi’s are orthonormal)
for the tensor Krylov subspace Kk(L,V) [35].

Let H̄k = [hij ](k+1)×k be the matrix whose nonzero entries are those
computed in lines 7 and 10 of Algorithm 2. We denote Hk as the matrix
obtained from H̄k by deleting its last row. Note that the Hessenberg matrix
Hk has a band structure with a bandwidth m + 1. Assume that Ṽk is the
(M + N + 1)-mode tensor with the frontal slices V1,V2, . . . ,Vk obtained by
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Algorithm 2 with the truncation parameter m. Beik, Movahed, and Ahmadi-
Asl [6] have proven the following statement for the Arnoldi_BTF process

[L(V1), · · · ,L(Vk)] = Ṽk+1 ×(N+M+1) H̄
T
k , (13)

which is also satisfied for the IOP_BTF strategy in Algorithm 2.
Here, we briefly recall how the well-known GMRES method can be ex-

tended based on the basis of the tensor form. Let X0 ∈ RI1×···×IN×K1×···×KM

be a given initial tensor guess for the exact solution of (1) with the corre-
sponding residual tensor R0 = F − L(X0) ∈ RI1×···×IN×K1×···×KM . For
the approximate solution Xk computed at the kth iterative step of the GM-
RES_BTF method [23], we consider

Xk ∈ X0 +Kk(L,R0),

and
‖F − L(Xk)‖ = min

X∈X0+Kk(L,R0)
‖F − L(X )‖. (14)

So, the quasi-GMRES method (QGMRES) consists of performing the IOP_BTF
and constructing Xk = X0+ Ṽk×̄(M+N+1)yk, where yk is obtained as the con-
dition (14) holds true; see [23] for more details.

As Saad and Wu mentioned in [36], the dimension of the Krylov subspace
in the GMRES method increases by one at each step, which makes the pro-
cedure impractical for large dimensions. There are two standard remedies
to this problem. The first is to restart the algorithm. In a simple way, the
dimension is fixed, and the algorithm is restarted as many times as neces-
sary, defining the initial vector defined as the latest approximation from the
previous outer iteration. An alternative is to truncate the long-recurrence of
the Arnoldi process as described in the IOP_BTF strategy in Algorithm 2.

Following the incomplete GMRES method presented by Brown and Hind-
marsh [8], we now describe the QGMRES method based on the tensor format
(QGMRES_BTF) in Algorithm 3.
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Algorithm 3: QGMRES_BTF
1. Input: Given tensors A, C ∈ RI1×···×IN×I1×···×IN ,

B,D ∈ RK1×···×KM×K1×···×KM and F ∈ RI1×···×IN×J1×···×JM ,
truncation parameter m, and initial guess X0 ∈ RI1×···×IN×K1×···×KM .

2. Compute R0 = F − L(X0), set β = ‖R0‖ and V1 = R0/β

3. For given k, define (k + 1)× k matrix H̄k, and set H̄k = 0

4. for j = 1, 2, . . . , k do
5. Compute Wj = L(Vj)

6. for i = max{1, j −m+ 1}, . . . , j do
7. hij = 〈Wj ,Vi〉
8. Wj = Wj − hijVi

9. end
10. Compute hj+1,j = ‖Wj‖ and Vj+1 =

Wj

hj+1,j

11. end
12. Solve the problem yk = argminy∈Rk‖H̄ky − βe1‖
13. Compute Xk = X0 + Ṽk×̄(M+N+1)yk

14. Output: Approximate solution Xk.

Constructing of V̂k+1 and its first frontal slice as V1 = R0/β, yields
R0 = V̂k+1×̄(M+N+1)(βe1), where e1 is the first column of the identity matrix
I(k+1). By using Lemma 1 and also making use of (13), the residual tensor
Rk for the QGMRES_BTF approximate solution Xk generated by Algorithm
3 is given by

Rk = R0 − (Ṽk+1 ×(M+N+1) H̄
T
k )×̄(M+N+1)yk,

= Ṽk+1×̄(M+N+1)[βe1 − H̄kyk].

The norm of the residual tensor Rk is then formulated as

‖Rk‖ = ‖Ṽk+1×̄(M+N+1)[βe1 − H̄kyk]‖, (15)

where, as before in Algorithm 3, yk minimizes the norm ‖βe1 − H̄ky‖2 over
all vectors y in Rk. This approach does not minimize the actual norm of
the residual tensor over X0 +Kk(L,R0). This idea leads us to minimize the
norm ‖βe1 − H̄ky‖2 by the QR factorization method. We implement the

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 938–969



Izadkhah 950

direct variant of the QGMRES idea motivated from [36] by using the Givens
rotation matrices to transform H̄k and βe1, to get

R̄k =

(
Rk

0

)
, and ḡk = (γ1, γ2, . . . , γk+1)

T , (16)

respectively, in which Rk is an upper triangular matrix. Actually, we con-
struct the following unitary matrix of order k + 1

Qk = Ωk · · ·Ω2Ω1, (17)

where the (k + 1)× (k + 1) Givens rotation matrices

Ωi =


I(i−1)

ci si

−si ci

I(k−i)

 ≡

(
ci si

−si ci

)
, i = 1, 2, . . . , k, (18)

are used with c2i + s2i = 1 in which I(n) indicates the identity matrix of order
n. We now construct the following pre-multiplication operations on the kth
column of H̄k:

Ωk−1Ωk−2 · · ·Ωk−m



...
0

0

hk−m+1,k

...
hkk

hk+1,k

...



=



...
0

tk−m,k

tk−m+1,k

...
tkk

hk+1,k

...



. (19)

By adopting Ωk in the kth column of the result vector in (19), we get
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(
ck sk

−sk ck

)


...
0

tk−m,k

...
tkk

hk+1,k

...


=



...
0

tk−m,k

...
tkk

0
...


, (20)

with ck = tkk√
t2kk+h2

k+1,k

and sk =
hk+1,k√

t2kk+h2
k+1,k

. For elements of ḡk, we have
the recurrence relations γk+1 = −skγk and γk = ckγk, with the initial term
γ1 = β.

Then, for any vector y ∈ Rk, one has

‖βe1 − H̄ky‖22 = ‖Qk(βe1 − H̄ky)‖22
= ‖ḡk − R̄ky‖22
= |γk+1|2 + ‖gk −Rky‖22. (21)

The minimum of the left-hand side is reached when the second term on
the right-hand side of (21) has disappeared. Since Rk is nonsingular, the
minimum of (21) is obtained by yk = R−1

k gk, in which gk is the vector
obtained by removing the last element γk+1 from ḡk. We therefore have
‖βe1 − H̄kyk‖2 = |γk+1|.

Following the above discussion and making use of Lemma 1, we obtain

Xk = X0 + Ṽk×̄N+1yk

= X0 + Ṽk×̄N+1(R
−1
k gk)

= X0 + (Ṽk ×N+1 R
−T
k )×̄N+1gk

= X0 + P̃k×̄N+1gk

= X0 + P̃k−1×̄N+1gk−1 + γkPk

= Xk−1 + γkPk,

where P̃k = Ṽk ×N+1 R
−T
k with the frontal slices Pi’s. By using Proposition

1, we conclude that Ṽk = P̃k ×N+1 RT
k , and straightforward computations

yield
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P1 = V1/t11,

P2 = (V2 − t12P1)/t22,

...

Pk = t−1
kk

(
Vk −

k−1∑
i=k−m

tikPi

)
,

where tik for i = k − m, . . . , k − 1, k are the elements of the kth column of
the upper triangular matrix Rk in (20). We can describe the DQGMRES
algorithm based on the tensor format (DQGMRES_BTF) for solving the
generalized Sylvester tensor equation (1) via the Einstein product as done in
Algorithm 4.

Algorithm 4: DQGMRES_BTF
1. Input: Given tensors A, C ∈ RI1×···×IN×I1×···×IN ,

B,D ∈ RK1×···×KM×K1×···×KM and F ∈ RI1×···×IN×J1×···×JM ,
truncation parameter m, and initial guess X0 ∈ RI1×···×IN×K1×···×KM .

2. Compute R0 = F − (A ⋆N X0 ⋆M B + C ⋆N X0 ⋆M D), γ1 = ‖R0‖,
V1 = R0/γ1

3. for k = 0, 1, . . . until convergence do
4. Compute hik, i = max{1, k −m+ 1}, . . . , k, and Vk+1 as in lines 2 to 10

of Algorithm 2
5. Update the QR factorization of H̄k according (19) and (20): i.e.
6. Apply Ωi, i = k −m, . . . , k − 1, to the kth column of H̄k

7. Compute the rotation coefficients ck and sk

8. Apply rotation Ωk to the last column of H̄k and to ḡk; i.e. compute
9. γk+1 = −skγk, γk = ckγk

10. tkk =
√
h2
k+1,k + t2kk

11. Pk =

(
Vk −

k−1∑
i=k−m

tikPi

)
/tkk

12. Xk = Xk−1 + γkPk

13. If |γk+1| is small enough the Stop
14. End
15. Output: Approximate solution Xk for (1)
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4 Convergence analysis of the QGMRES_BTF method

We prove here some convergence results for the DQGMRES_BTF method.
The next theorem provides a representation of the residual tensor Rk of the
DQGMRES_BTF method.

Lemma 2. Let Ṽk be an (M + N + 1)-mode tensor with column tensors
Vi for i = 1, 2, . . . , k which is generated by Algorithm 2 and Qk the unitary
matrix specified in (17). The residual tensor Rk of the DQGMRES_BTF
method is then given by

Rk = γk+1Ṽk+1 ×(M+N+1) Qk×̄(M+N+1)ek+1, (22)

where γk+1 is the last element of ḡk in (16).

Proof. As discussed earlier in (16), the kth residual iterate of the DQGM-
RES_BTF method has the following form:

Rk = R0 − L(Ṽk)×̄(M+N+1)yk

= Ṽk+1×̄(M+N+1)(βe1 − H̄kyk)

= Ṽk+1×̄(M+N+1)(QT
k (ḡk − R̄kyk)).

In view of (21), one can see that yk minimizes the 2-norm of ḡk − R̄ky over y
and thus annihilates all components of the right-hand side ḡk except the last
one, which is equal to γk+1ek+1. Now, it follows that

Rk = Ṽk+1×̄(M+N+1)(QT
k (γk+1ek+1)).

Finally, making use of Lemma 1 completes the proof of the lemma.

Next, we present a suitable upper bound for the residual norm of the
DQGMRES_BTF method, which depends on the specific parameter com-
puted in the proposed Algorithm 4 in a cost-effective way. For this purpose,
we prove the following Lemma.

Lemma 3. The residual Rk obtained by the DQGMRES_BTF algorithm
with the truncation parameter m for the generalized Sylvester tensor equa-
tions of the form (1) satisfies the following inequality:
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‖Rk‖ ≤ |γk+1|
√
k −m+ 1.

Proof. From Lemmas 1 and 2, we have

Rk = γk+1Ṽk+1×̄(M+N+1)(QT
k ek+1).

Let q = QT
k ek+1 be the unit vector with components η1, η2, . . . , ηk+1. Then

by using Proposition 4, we get

‖Rk‖ = |γk+1|‖Ṽk+1×̄(M+N+1)q‖

≤ |γk+1|

(∥∥∥∥∥
m+1∑
i=1

ηiVi

∥∥∥∥∥+
∥∥∥∥∥

k+1∑
i=m+2

ηiVi

∥∥∥∥∥
)

≤ |γk+1|

[m+1∑
i=1

η2i

]1/2
+

k+1∑
i=m+2

|ηi|‖Vi‖


≤ |γk+1|

[m+1∑
i=1

η2i

]1/2
+
√
k −m

[
k+1∑

i=m+2

η2i

]1/2
≤ |γk+1|

√
k −m+ 1,

where the last inequality follows by the Cauchy–Schwarz inequality and
‖q‖2 = 1.

The next corollary is come to the conclusion by Lemma 3 together with
the useful relation between the last elements γk+1 and γk of ḡk and ḡk−1,
respectively; that is, γk+1 = −skγk.

Corollary 1. Let Rk be the residual tensor of the DQGMRES_BTF kth
iterate. Then

‖Rk‖ ≤ |s1s2 · · · sk|‖R0‖
√
k −m+ 1,

where si’s are defined as (18).

An extension of the Gram–Schmidt orthogonalization process based on
the tensor format concludes the following lemma for the linear independent
tensors Vi for i = 1, 2, . . . , k, which are generated by Algorithm 2.

Lemma 4. Suppose that Ṽk+1 is an (M + N + 1)-order tensor with the
k+1 frontal slices Vi for i = 1, 2, . . . , k+1 obtained by using the IOP_BTF
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Algorithm 2. Then, there is an (k + 1)× (k + 1) nonsingular matrix U such
that Ṽk+1 = F̃k+1 ×(M+N+1) U, where F̃k+1 is an (M +N + 1)-order tensor
with the k + 1 orthonormal frontal slices Fi for i = 1, 2, . . . , k + 1; that is,

F̃k+1 ⊠(M+N+1) F̃k+1 = I(k+1). (23)

Proof. The proof is a direct result of the tensor form of the Gram–Schmidt
orthogonalization process described in [35].

In the last theorem of this section, an inequality is found that can be
usefully applied in the convergence analysis of the DQGMRES_BTF method.
This is a comparison of the residual tensor obtained after k steps of using
the DQGMRES_BTF method with that of the GMRES_BTF method [9].

Theorem 1. Assume that Ṽk+1 is an (M +N + 1)-order tensor with k + 1

frontal slices Vi for i = 1, 2, . . . , k + 1 obtained by using the IOP_BTF
Algorithm 2, Ṽk+1 = F̃k+1 ×(M+N+1) UT , where F̃k+1 is satisfied (23) and
UT is nonsingular. Let RQ

k and RG
k be the residual obtained after k steps of

using DQGMRES_BTF and GMRES_BTF methods, respectively. Then

‖RQ
k ‖ ≤ κ2(U)‖RG

k ‖, (24)

where κ2(U) is the condition number of the matrix U.

Proof. Consider the subset of Kk+1(L,V1) given by

N = {R : R = Ṽk+1×̄(M+N+1)t; t = βe1 − H̄ky; y ∈ Rk}.

Denote by yk the minimizer of ‖βe1 − H̄ky‖2 over y and tk = βe1 − H̄kyk.
Thus, Lemma 2 concludes that RQ

k = Ṽk+1×̄(M+N+1)tk. For any member
R ∈ N , there exists t such that R = F̃k+1 ×(M+N+1) UT ×̄N+1t, which is
defined by Lemma 1, it is equivalent to R = F̃k+1×̄(M+N+1)(Ut). Hence,
Proposition 3 yields Ut = F̃k+1 ⊠(M+N+1) R. Since U is nonsingular, thus

t = U−1(F̃k+1 ⊠(M+N+1) R).

From the unitary property of F̃k+1, we deduce that

‖RQ
k ‖ = ‖Utk‖2 ≤ ‖U‖2‖tk‖2. (25)
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Note that ‖tk‖2 is the minimum of the 2-norm of βe1−H̄ky over y. Therefore,

‖tk‖2 = ‖U−1(F̃k+1 ⊠(M+N+1) RQ
k )‖

≤ ‖U−1(F̃k+1 ⊠(M+N+1) R)‖

≤ ‖U−1‖2‖F̃k+1 ⊠(M+N+1) R‖.

It is convenient to obtain ‖F̃k+1 ⊠(M+N+1) R‖ = ‖R‖, and then

‖tk‖2 ≤ ‖U−1‖2‖R‖, for all R ∈ N

≤ ‖U−1‖2‖RG
k ‖.

Consequently, equation (25) is revealed as

‖RQ
k ‖ ≤ ‖U‖2‖U−1‖2‖RG

k ‖

= κ2(U)‖RG
k ‖.

The result is now concluded.

5 Numerical results

In this section, we present some numerical results to illustrate the effective-
ness and accuracy of the proposed DQGMRES_BTF method for solving
several types of the generalized Sylvester tensor equation (1) via the Einstein
product. To this end, we compare the DQGMRES_BTF method with the
CGNR_BTF method given in [10], the CGNE_BTF method proposed in [12]
as the tensor format of the CGNR and CGNE algorithms in [35], respectively.
We compare also our results with those of the RNSD_BTF method proposed
in [5]. All computations were performed using double-precision floating-point
arithmetic in Matlab codes. The computer we used is a system with the
specification Intel(R) Core(TM) i3 CPU 2.13GHz, 4G RAM, and 64-bit op-
erating system. In all examples, we choose zero tensor X0 = O as the initial
guess. It must be emphasized that no preconditioning was used for any of
the test problems. We consider the stopping criterion

ERR ≡ ‖Rk‖
‖R0‖

≤ 10−6,
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where Rk is the residual tensor corresponding to the approximate solution
Xk; that is,

Rk = F −A ⋆N Xk ⋆M B − C ⋆N Xk ⋆M D.

If the stopping criterion mentioned above does not apply, then we consider
the maximum number of iterations Max-Iter = 1000 in each example. In all
tensor computations, we get help from the Matlab Tensor Toolbox, devel-
oped by Bader and Kolda [1, 2] to implement Matlab.

Example 1. [7, 23] Consider the 3D Poisson problem−∇2v = f, in Ω = {(x, y, z), 0 < x, y, z < 1},

v = 0, on ∂Ω
(26)

where f is a given function and

∇2v =
∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2
.

Several problems in physics and mechanics are modeled by (26), where
the solution v means, for example, temperature, electromagnetic potential, or
displacement of an elastic membrane fixed at the boundary. Now, we consider
an approximation of the unknown function v(x, y, z) in (26) corresponding
to the uniform mesh step sizes, namely, ∆x in the x-direction, ∆y in the
y-direction, and ∆z in the z-direction, satisfy ∆x = ∆y = ∆z = h = 1

N+1 .
By the standard central finite difference formulas for the three dimensions,
we obtain the following difference relationship:

6vijk−vi−1,j,k−vi+1,j,k−vi,j−1,k−vi,j+1,k−vi,j,k−1−vi,j,k+1 = h3fijk. (27)

Hence, the higher order tensor representation of the 3D discretized Poisson
problem (26) as described in (27) is given by

ĀN ⋆3 V = F , (28)

where the Laplacian tensor ĀN ∈ RN×N×N×N×N×N and V,F ∈ RN×N×N .
Both V and F are discretized on the unit cube. The entries on the tensor
block (ĀN )

(2,4,6)
l,m,n of ĀN in (28) follow a seven-point stencil as
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((ĀN )
(2,4,6)
α,β,γ )α,β,γ =

6

h3
,

((ĀN )
(2,4,6)
α,β,γ )α−1,β,γ = ((ĀN )

(2,4,6)
α,β,γ )α+1,β,γ = − 1

h3
,

((ĀN )
(2,4,6)
α,β,γ )α,β−1,γ = ((ĀN )

(2,4,6)
α,β,γ )α,β+1,γ = − 1

h3
,

((ĀN )
(2,4,6)
α,β,γ )α,β,γ−1 = ((ĀN )

(2,4,6)
α,β,γ )α,β,γ+1 = − 1

h3
,

for α, β, γ = 2, . . . , N−1. We use the notation (ĀN )
(2,4,6)
l,m,n = ĀN (:, l, :,m, :, n)

for the block tensors of ĀN . For different grids N = 4, 6, 8, the iteration
number and the CPU time of the CGNR_BTF and the CGNE_BTF meth-
ods are reported in Table 1, compared with the proposed DQGMRES_BTF
method with the truncation parameter m = 5. The corresponding conver-
gence histories of the numerical results are depicted in Figures 1 and 2 with
the truncation parameterm = 10 of the DQGMRES_BTF method for N = 8

and N = 10, respectively. These results show that the DQGMRES_BTF al-
gorithm is more effective and less expensive than the other solvers.

Table 1: Results of the iteration number (Iter) and CPU time (Time) for Example 1
with different Grids and the truncation parameter m = 10.

Methods CGNE_BTF CGNR_BTF DQGMRES_BTF
Grid Time Iter Time Iter Time Iter

4× 4× 4 0.1635 6 0.1626 6 0.0126 6
6× 6× 6 5.9706 19 5.9789 19 0.1311 19
8× 8× 8 67.7331 38 67.5701 38 0.5693 26

Example 2. Let us consider Sylvester tensor equation,

A ⋆N X + X ⋆M B = C, (29)

where various cases for the coefficient tensors A and B are given by

(a) A = tenrand([4 2 4 2]), B = tenrand([5 3 5 3]),

(b) A = tenrand([6 4 6 4]), B = tenrand([8 5 8 5]),

(c) A = tenrand([10 5 10 5]), B = tenrand([12 6 12 6]).
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Figure 1: Comparison of convergence histories for Example 1 with Grid N = 8 and the
truncation parameter m = 10.
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Figure 2: Comparison of convergence histories for Example 1 with Grid N = 10 and the
truncation parameter m = 10.
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The iteration number and CPU time of the CGNR_BTF, CGNE_BTF,
and RNSD_BTF methods are reported in Table 2, compared with the pro-
posed DQGMRES_BTF method with the truncation parameter m = 5 for
cases (a)-(b). The corresponding convergence histories of the numerical re-
sults are depicted in Figure 3 with the truncation parameter m = 5 of the
DQGMRES_BTF method. Theses results show that the DQGMRES_BTF
algorithm is more effective and less expensive than the other methods. If
we apply the DQGMRES_BTF algorithm, we obtain the more efficient ap-
proximate solution of Example 2. The result curves for case (c) are de-
picted in Figure 4. These results confirm the acceptable convergence of
the proposed DQGMRES_BTF method. In other words, we can say that
the proposed method is efficient for solving this type of tensor equation
equipped with the Einstein product for small truncation parameters. The
corresponding convergence histories of the numerical results for large-size
A = tenrand([20 10 20 10]) and B = tenrand([10 10 10 10]) are depicted
in Figure 5 with the truncation parameter m = 5 of the DQGMRES_BTF
method and superior property of the DQGMRES_BTF method is observed
compared to those of the CGNR_BTF method.

Table 2: Results of iteration number (Iter) and CPU time (Time) for Example 2.

Methods RNSD_BTF CGNE_BTF CGNR_BTF DQGMRES_BTF
Time Iter Time Iter Time Iter Time Iter

case (a) 1.8173 † 0.9166 200 0.6954 151 0.1387 29
case (b) 17.7077 † 14.6543 416 6.8674 195 1.0540 29
case (c) 54.3223 † 41.6364 121 16.6119 303 2.8529 21

According to Definition 3, one can reduce the Sylvester tensor equation
(29) to the associated Sylvester matrix equation and then solve it by the
block QGMRES method [18]. We present the numerical results of applying
the block QGMRES method to the reduced matrix equation and compare
them with those of the DQGMRES_BTF method with the small truncation
parameter m = 5. The advantage of the DQGMRES_BTF method is the
short elapsed CPU time. We use the global conjugate gradient method [18]
to solve the minimization problem in the block QGMRES method with inner
max-iter=1000. As the conclusion, in the case I1 = 10, I2 = 6, J1 = 10, J2 =
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Figure 3: Comparison of convergence histories for case (a) (Up) and case (b) (Down) in
Example 2 with the truncation parameter m = 5.

4, the results of Figure 6 (Up) have been obtained. It seems we have a better
number of iterations for the block QGMRES, but the elapsed time is worse
than the DQGMRES-BTF methods as depicted in Figure 6 (Down).
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Figure 4: Comparison of convergence histories for case (c) in Example 2 with the trun-
cation parameter m = 5.
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Figure 5: Comparison of convergence histories in Example 2 with the truncation pa-
rameter m = 5.

Example 3. Consider generalized Sylvester tensor equation

A ⋆N X ⋆M B + C ⋆N X ⋆M D = F ,
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Figure 6: Comparison of the convergence behavior (Up) and the elapsed times (Down)
for the block QGMRES and DQGMRES_BTF methods in Example 2 with the trunca-
tion parameter m = 5.

where A = tenrand([6 6 6 6]), B = tenrand([8 8 8 8]), C = tenrand([6 6 6 6]),
D = tenrand([8 8 8 8]).

In Table 3, we report the numerical results of the iteration number and the
CPU time of the CGNR_BTF and CGNE_BTF methods, compared to the
proposed DQGMRES_BTF method with the different truncation parameters
m. The convergence curves of the numerical results are depicted in Figure 7
with the truncation parameter m = 5 of the DQGMRES_BTF method. The
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effectiveness of the DQGMRES_BTF method and the less elapsed time are
shown in Table 3 and Figure 7.

Table 3: Results of iteration number (Iter) and CPU time (Time) for Example 3 with
various truncation parameters m in the DQGMRES_BTF method.

Methods Time(Iter)
CGNR_BTF 11.8351(70)
CGNE_BTF 32.6890(191)

DQGMRES_BTF
m=5 2.7033(16)
m=10 2.8392(16)
m=15 2.5292(15)

Iteration Number
0 10 20 30 40 50 60 70 80 90 100

lo
g(

||R
k||/

||R
0
||)

10-7

10-6

10-5

10-4

10-3

DQGMRES_BTF
CGNR_BTF
CGNE_BTF

Figure 7: Comparison of convergence histories for Example 3 with the truncation pa-
rameter m = 5.
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6 Conclusion

In this paper, we proposed an iterative method for solving generalized
Sylvester tensor equations via the Einstein product using the tensor form
of the QGMRES method. We present some useful results on tensor com-
putations and propose a direct variant of the QGMRES method to utilize
previous data and practical implementation of the method. Also, some re-
sults proved to illustrate a prior convergence behavior of the new method.
In the numerical results of the experimental problems, we observed that the
presented method has more efficiency and accuracy properties with low com-
putational cost compared to the other tensor equation solvers such as CGNR,
CGNE, and RNSD methods.
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