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Uniformly convergent numerical solution
for caputo fractional order singularly
perturbed delay differential equation

using extended cubic B-spline collocation
scheme

N.A. Endrie*, and G.F. Duressa

Abstract

This article presents a parameter uniform convergence numerical scheme
for solving time fractional order singularly perturbed parabolic convection-
diffusion differential equations with a delay. We give a priori bounds on the
exact solution and its derivatives obtained through the problem’s asymp-
totic analysis. The Euler’s method on a uniform mesh in the time direction
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763 Uniformly convergent numerical solution for caputo fractional order ...

and the extended cubic B-spline method with a fitted operator on a uniform
mesh in the spatial direction is used to discretize the problem. The fitting
factor is introduced for the term containing the singular perturbation pa-
rameter, and it is obtained from the zeroth-order asymptotic expansion of
the exact solution. The ordinary B-splines are extended into the extended
B-splines. Utilizing the optimization technique, the value of µ (free param-
eter, when the free parameter µ tends to zero the extended cubic B-spline
reduced to convectional cubic B-spline functions) is determined. It is also
demonstrated that this method is better than some existing methods in
the literature.

AMS subject classifications (2020): Primary 65L11; Secondary 65N12.

Keywords: Singularly perturbed problem; Fractional derivative; Artificial
viscosity; Delay differential equation.

1 Introduction

In this work, we consider the singularly perturbed parabolic delay differential
equation of fractional order in time,

Ly(x, t) ≡ Dγ
t y(x, t)− ε

∂2y(x, t)

∂x2
+ q(x)

∂y(x, t)

∂x
+ r(x, t)y(x, t)

= −s(x, t)y(x, t− δ) + f(x, t), (x, t) ∈ Ω = (0, 1)× (0,T], (1)

with  y(x, t) = φb(x, t), for (x, t) ∈ [0, 1]× [−δ, 0],

y(0, t) = φl(t), y(1, t) = φr(t), for t ∈ (0,T),
(2)

where Dγ
t is the Caputo fractional derivative of order 0 < γ < 1, δ is delay

parameter, and 0 < ε ≪ 1 is the singular perturbation parameter. For the
domain Ω̄ = [0, 1]× [0,T], if

q(x) ≥ β > 0, r(x, t) ≥ 0, s(x, t) ≥ α > 0,

are bounded and smooth functions, then initial data and boundary conditions
are also smooth and bounded in their respective domains. The solution of
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Endrie and Duressa 764

model problem (1) has a boundary layer of regular type at x = 1 with a
width of O(ε).

Parameter-dependent differential equations, whose solution behavior de-
pends on the magnitude of the parameters, are used to model many physical
and biological phenomena. If the highest-order derivative of a differential
equation is multiplied by a small positive parameter, ε(0 < ε < 1), then
the differential equation is said to be singularly perturbed. Such issues arise
in modeling of reaction-diffusion processes, chemical reactor theory, aerody-
namics, elasticity, quantum mechanics, plasma dynamics, and many other
related domains [3].

Fractional calculus has an origin as old as classical calculus, although it
was not used for a very long period to solve scientific and engineering prob-
lems. Indeed, fractional calculus started attracting the attention of scientists
and researchers in recent decades due to its numerous applications [6, 35].
Noninteger derivatives were first introduced by Leibnitz in 1695, as far as the
authors can tell.

Derivatives of arbitrary order were mentioned by Euler and Fourier, but
no examples or applications were provided. The honor of being the first to
apply in real-world scenarios belongs to Niels Henrik Abel [1] in 1823. How-
ever, as stated in [6], fractional calculus began to be essential by Riemann
and Liouville. Fractional-order differential equations are used to model a wide
range of real-world phenomena, including protein dynamics, dielectric relax-
ation phenomena in polymeric materials, visco-elastic behavior, transport of
passive tracers carried by fluid flow in a porous medium in groundwater hy-
drology, transport dynamics in systems subject to anomalous diffusion, and
long-term memory in financial time series [21, 15].

Singularly perturbed delay differential equations (SPDDEs) are employed
to model physical problems that evolve based on both their current condition
and history. To make a model more realistic, it may be important to repre-
sent former system states in addition to the current state. Delay differential
equations (DDEs) are useful for describing time-dependent phenomena that
rely on a past state [17]. Because delay differential equations have so many
applications in the fields, including bio-sciences, control theory, economics,
material science, medicine, robotics, and more, there has been a major rise
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765 Uniformly convergent numerical solution for caputo fractional order ...

in interest in studying problems during the past several decades. The field
of delay differential equations theory is extensive, with notable works includ-
ing in [7, 11, 12, 33, 22, 19, 22, 23, 24], and there are various real-world
examples of delay differential equations in the works by Nelson and Perelson
[32], Villasana and Radunskaya [41], and Zhao [44]. Singularly perturbed
problem (SPP) solutions are not smooth and contain boundary layer-related
singularities. When the perturbation parameter (ε) and mesh length are low-
ered, even advanced numerical algorithms do not perform consistently well.
The results of classical numerical methods on uniform meshes fail to provide
a reasonably accurate approximate solution of the exact solution, and the
truncation error becomes unbounded as the singular perturbation parameter
tends to zero unless a large number of mesh points are used in the approxi-
mation process [13]. However, this highlights the numerical method’s compu-
tational inefficiency. When the number of mesh points grows, the resulting
algebraic system of equations may become ill-conditioned. The shortcoming
encourages the creation of a suitable numerical approach whose accuracy is
independent of the perturbation parameter, highlighting the key advantage
of the proposed method [16].

Xu [43] has proposed the extended cubic B-spline, a generalization of the
B-spline. In [42] investigation, the three extended B-splines with degrees 4,
5, and 6 were provided. To modify the shape of the cubic B-spline curve
for extended B-splines, a free parameter is added to the cubic B-spline base
functions. The degree of the piecewise polynomials is raised, and a one-free
parameter is included, but the continuity of the extended cubic B-splines
stays in the order of 3. This encourages us to develop an extended cubic B-
spline trial function as part of a numerical technique [10]. The spline-based
approach has gained a lot of popularity these days among the various algo-
rithms for solving SPDDEs. Daba and Duressa [8] gave a uniform convergent
numerical method for the singularly perturbed parabolic convection-diffusion
equation with a small delay and advance parameter in the spatial variable of
the reaction term using an extended cubic B-spline approach. Additionally,
they [9] suggested a uniformly convergent numerical solution based on a cu-
bic B-spline and uniform mesh for this problem. Kumar and Kadalbajoo [26]
suggested a parameter-uniform numerical method for the problem using a
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cubic B-spline on a Shishkin mesh. Kumar and Kadalbajoo [25] and Negero
and Duressa [31] developed a parameter uniform convergent method to solve
time-dependent singularly perturbed delay parabolic convection-diffusion ini-
tial boundary value problems, respectively, using the cubic B-spline colloca-
tion method on a piecewise uniform Shishkine mesh and a uniform mesh.
In [18], they devised a fitted extended cubic B-spline collocation method to
solve singularly perturbed parabolic equations with nonsmooth convection
coefficient and discontinuous source terms.

The numerical solution of time-fractional singularly perturbed ordinary
differential equations (ODEs) and partial differential equations (PDEs) has
not received much attention in the literature. Bijura [5] presented fraction-
ally ordered nonlinear SPPs using higher-order asymptotic solutions. Using
the finite element method, Roop [36] developed the numerical solution of
fractional ODEs. Qasem and Muhammed [2] used the Pade approximation
to estimate the solution of fractional-order nonlinear singularly perturbed
two-point boundary-value problems. The matched asymptotic scheme for
fractional-order boundary layer problems has been expanded in [4]. Sayevand
and Pichaghchi[39] tackled the fractional order boundary value problem by
presenting a method to solve singularly perturbed ODEs. Based on the char-
acteristics of a local fractional derivative, they defined the local fractional
derivative and expanded the matching asymptotic expansion approach. A
linear B-spline operational matrix of fractional derivatives for singularly per-
turbed ODEs and PDEs has been proposed in [38]. Sahoo and Vikas [37]
devised a finite difference method to address a class of time-fractional sin-
gularly perturbed convection-diffusion problems. Kumar and Vigo-Aguiar
[27] constructed by discretizing time domains using uniform step size and
piece-wise-uniform Shishkin meshes for space domains in the study of delay
parabolic and time-fractional SPDEs.

To most of our understanding, there is only one paper in the literature that
discusses the construction and analysis of a numerical scheme for the class
of SPFODDEs under review [27]. This article aims to present and analyze
implicit Euler’s scheme for time discretization and spatial discretization based
on the extended cubic B-spline method by introducing fitting factors. These
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767 Uniformly convergent numerical solution for caputo fractional order ...

methods yield robust numerical results while preserving important features
of the corresponding continuous problems.

This article has been organized into the following sections as follows: The
preliminary notions are defined in section 2. In Section 3, the formulation
of the continuous problem is discussed along with an analytical solution and
an analysis of the derivative behavior using defined bounds. We analyze im-
plicit Euler’s scheme for time discretization and spatial discretization based
on the extended cubic B-spline method by introducing the fitting factor pre-
sented in section 4. Section 5 discusses the uniform convergence analysis of
the approach. The numerical experiments carried out to confirm theoretical
findings and show the method’s accuracy are described in detail in Section
6. An overview of the paper’s main conclusions is given in the concluding
section.

2 Preliminaries

The definitions and tools needed for this study are provided in this section
(see [28, 29, 27]).

Definition 1 (Singularly-perturbed problem). If the highest-order derivative
of a differential equation is multiplied by a small parameter ε, where ε is
the perturbation parameter and 0 < ε << 1, the differential equation is
considered singularly perturbed.

Definition 2 (Gamma function). If z is a complex number with a nonnega-
tive real part, then the gamma function (R(z) > 0) is given by the following
definition:

Γ(z) =

∫ ∞

0

xz−1e−xdx. (3)

Definition 3 (Caputo fractional derivative). For m ∈ N and γ ∈ (m−1,m),
the Caputo fractional derivative of a function g(t) with lower limit zero is
defined as

Dγ
0g(t) =

1

Γ(m− γ)

∫ t

0

g(m)(s)

(t− s)γ−m+1
ds. (4)

Definition 4. The function v(x, t) can be defined as the γ-order differen-
tiation, with lower bound zero, of a function m ∈ N with regard to tin the
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Caputo sense, as follows:

∂γv(x, t)

∂tγ
=


1

Γ(m−γ)

∫ t

0
∂mv(x,s)

∂sm
1

(t−s)γ−m+1 ds if γ ∈ (m− 1,m),

∂mv(x,t)
∂tm if γ = m.

(5)

3 Properties of continuous problem

Assuming sufficiently smoothness of φl(t), φr(t), and φb(x, t) and satisfying
the following compatibility conditions at the corner points (0, 0), (1, 0), and
(0,−δ) as well as the delay term, the existence and uniqueness of the solution
of (1)–(2) can be established. Let φb(0, 0) = φl(0),

φb(1, 0) = φr(0),
(6)

and 

dγφl

dγt

∣∣∣∣
t=0

− ε
∂2φb

∂x2

∣∣∣∣
(0,0)

+ q(0)
∂φb

∂x

∣∣∣∣
(0,0)

+ r(0, 0)φb(0, 0)

= −s(0, 0)φb(0,−δ) + f(0, 0),

dγφl

dγt

∣∣∣∣
t=0

− ε
∂2φb

∂x2

∣∣∣∣
(1,0)

+ q(1)
∂φb

∂x

∣∣∣∣
(1,0)

+ r(1, 0)φb(1, 0)

= −s(1, 0)φb(0,−δ) + f(1, 0).

(7)

The reduced problem obtained by putting ε = 0 in (1) is

Dγ
t y(x, t) + q(x)

∂y(x, t)

∂x
+ r(x, t)y(x, t) =− s(x, t)y(x, t− δ) + f(x, t),

(x, t) ∈ Ω. (8)

This is a hyperbolic partial differential equation of first order. Because (8)
contains first-order derivatives, the reduced problem is not required to meet
the boundary conditions. Thus, the solution to the problem in (1) displays
a boundary layer.

Now, we will show that the operator L satisfies the maximum principle.
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769 Uniformly convergent numerical solution for caputo fractional order ...

Lemma 1 (Continuous maximum principle). Consider the function ϕ(x, t) ∈
C2(Ω) ∩ C0(Ω̄), with Lϕ(x, t) ≥ 0 in Ω and ϕ(x, t) ≥ 0, for all (x, t) ∈ Λ =

{0}× (0,T]∪{1}× (0,T]∪ [0, 1]× [−δ, 0]. Then ϕ(x, t) ≥ 0, for all (x, t) ∈ Ω̄.

Proof. Let us assume that there exists (ς, ι) ∈ Ω̄ with

ϕ(ς, ι) = min
(x,t)∈Ω̄

ϕ(x, t), and ϕ(ς, ι) < 0.

Based on this assumptions, one may confirm that (ς, ι) /∈ Λ, which implies
that (ς, ι) ∈ Ω. Using the operator L on ϕ(x, t), we get

Lϕ(x, t) = Dγ
t ϕ(x, t)− εϕxx(x, t) + q(x)ϕx(x, t) + r(x, t)ϕ(x, t).

At the point of minimum (ς, ι), we obtain

Lψ((ς, ι)) = Dγ
t ϕ(ς, ι)− εϕxx(ς, ι) + q(ς)ϕx(ς, ι) + r(ς, ι)ψ(ς, ι).

The function ϕ has minimum at the point (ς, ι), so Dγ
t ϕ ≥ 0, ϕx = 0, ϕxx ≥ 0

at point (ς, ι), and r(ς, ι) ≥ 0 for (ς, ι) ∈ Ω. Therefore, we have

Lψ(ς, ι) < 0.

This contradicts our assumption Lϕ(x, t) in Ω.
Thus, we conclude that ϕ(x, t) ≥ 0, for all (x, t) ∈ Ω̄.

Lemma 2. The differential equation (1)–(2) has a solution y(x, t) that sat-
isfies this estimate:

|y(x, t)− φb(x, 0)| ≤ Ct, (x, t) ∈ Ω̄,

in which C is a constant that does not depend on ε.

Proof. See reference [30].

Lemma 3. With its initial and boundary conditions in (2), the solution to
problem (1) is bounded as follows:

|y(x, t)| ≤ C, for all (x, t) ∈ Ω̄. (9)

Proof. From Lemma 2
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|y(x, t)| = |y(x, t)− φb(x, 0) + φb(x, 0)|

≤ |y(x, t)− φb(x, 0)|+ |φb(x, 0)|

≤ Ct+ |φb(x, 0)|

≤ Ct+ C

≤ C since t ∈ (0,T], t is bounded.

4 Numerical schemes

We are going to develop the numerical scheme in this section as well. After
discretizing the temporal derivative using implicit Euler’s scheme, we dis-
cretize the spatial derivative based on the extended cubic B-spline approach
by applying a fitting factor on a uniform mesh to solve the resulting system
of ordinary differential equations.

4.1 Temporal discretization

We first partition the time domain [0,T] intoMτ subintervals having uniform
step size τ = T/Mτ . We chose Mτ so that for some positive integer k ∈
(0,Mτ ), δ = kτ needs to be a mesh point. A collection of all mesh points
in the time direction is represented by the set ΩMτ ; we then have ΩMτ =

{t0 = 0 < t1 < t2 < · · · < tk = δ < tMτ−1 < tMτ
= T}. We employ ΩMτ

δ as
the collection of all mesh points between zero and −δ; ΩMτ

δ = {t−k = −δ <
t−k+1 < · · · < t−1 < t0 = 0}.

According to Definition 4,

z(x, tj+1) =
∂γy(x, tj+1)

∂tγ

=
1

Γ(1− γ)

∫ tj+1

0

∂y(x, tj+1)

∂t
(tj+1 − η)−γdη

=
τ)−γ

Γ(2− γ)

j∑
i=0

Bi (y(x, tj−i+1)− y(x, tj−i)) +Rτ
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771 Uniformly convergent numerical solution for caputo fractional order ...

= σ

j∑
i=0

Bi (y(x, tj−i+1)− y(x, tj−i)) +Rτ

= σy(x, tj+1)− σy(x, tj+1)σ

j∑
i=1

Bi (y(x, tj−i+1)− y(x, tj−i)) +Rτ ,

where

Rτ = O(τ)

∫ tj+1

0

(tj+1 − η)−γdη is the truncation error,

and
σ =

τ)−γ

Γ(2− γ)
, Bi = (i+ 1)1−γ − (i)1−γ .

Hence we obtain

z(x, tj+1) = σy(x, tj+1)−σy(x, tj)+σ
j∑

i=1

Bi (y(x, tj−i+1)− y(x, tj−i))+Rτ .

(10)
Substituting (10) into (1) On ΩMτ , we get

z(x, tj+1)− ε
∂2yj+1(x)

∂x2
+ q(x)

∂yj+1(x)

∂x
+ rj+1(x)yj+1(x)

= −sj+1(x)yj−k+1(x) + f j+1(x).

Once the expressions are rearranged and the operator form has been put in,
we get

L̃yj+1(x) = −ε∂
2yj+1(x)

∂x2
+ q(x)

∂yj+1(x)

∂x
+ νj+1(x)yj+1(x) = F j(x) (11)

for j = 1, 2, . . . ,Mτ with y(x, t) = φb(x, tj), for(x, t) ∈ [0, 1]× [−δ, 0],

y(0, tj) = φl(tj), y(1, tj) = φr(tj), for t ∈ (0,T),
(12)

where

ν(x, tj+1) = rj+1(x) + σ,
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F j+1(x) =



−sj+1(x)φb(x, tj−k+1) + f(x, tj+1) + σBjφb(x, tj)

+σ
∑j

i=1Bi (y(x, tj−i+1)− y(x, tj−i)) , for j = 1, 2, . . . , k,

−sj+1(x)yj−k+1(x) + f j+1(x) + σψb(x, tj)

+σ
∑j

i=1Bi (y(x, tj−i+1)− y(x, tj−i)) , for j = k + 1, . . . ,Mτ .

After some rearrangement of (11) we obtain(
1 + α0L

∗
ε,δ

)
yj+1(x) = F j+1(x), (13)

where

α0 = Γ(2− γ)∆tγ ,

L∗
ε,δ = −ε ∂

2

∂x2
+ q(x)

∂

∂x
+ rj+1(x),

F j+1(x) =



−α0r
j+1(x)φb(x, tj−k+1) + α0fj + 1(x) + φb(x, tj)

+
∑j

i=1Bi (y(x, tj−i+1)− y(x, tj−i)) , for j = 1, 2, . . . , k,

−α0r
j+1(x)yj−k+1(x) + α0fj + 1(x) + φb(x, tj)

+
∑j

i=1Bi (y(x, tj−i+1)− y(x, tj−i)) , for j = k + 1, . . . ,Mτ .

Lemma 4 (Semi-discrete Maximum Principle). Let ψ(x, tj+1) be a smooth
function such that ψ(x, tj+1) ≥ 0 and, ψ(x, tj+1) ≥ 0, for all (x, tj+1) ∈
Λ = {0}× (0,T]∪ {1}× (0,T]∪ [0, 1]× [−δ, 0]. Then (1+L∗

ε,δ)ψ(x, tj+1) ≥ 0

in Ω̃ implies that ψ(x, tj+1) ≥ 0, for all (x, tj+1) ∈ Ω̄.

Proof. Suppose that there exists (ι, tj+1) ∈ Ω̄ with

ψ(ι, tj+1) = min
(x,tj+1)∈Ω̄

ψ(x, tj+1), and ψ(ι, tj+1) < 0,

and that ψ(ι, tj+1) < 0. Then

(ι, tj+1) /∈ {(0, tj+1), (1, tj+1)} and ψx(ι, tj+1) = 0, ψxx(ι, tj+1) > 0.

Applying the operator L∗
ε,δ on ψ(x, tj+1), we get

(1 + α0L
∗
ε,δ)ψ(x, tj+1) = ψ(ι, tj+1) + α0 (−εψxx(x, tj+1) + q(x)ψx(x, tj+1)
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773 Uniformly convergent numerical solution for caputo fractional order ...

+r(x, tj+1)ψ(x, tj+1)) .

At the point of minimum (ι, tj+1), we obtain

(1 + α0L
∗
ε,δ)ψ(ι, tj+1) = ψ(ι, tj+1) + α0(−εψxx(ι, tj+1) + q(ι)φx(ι, tj+1)

+ r(ι, tj+1)ψ(ι, tj+1)).

At the point (ι, tj+1), the function ψ has minimum, so ψx = 0, ψxx ≥ 0 at
point (ι, tj+1) and r(ι, tj+1) ≥ 0 for (ι, tj+1) ∈ Ω. Therefore, we have

(1 + α0L
∗
ε,δ)ψ(ι, tj+1) < 0,

which contradicts our assumption (1 + L∗
ε,δ)ψ(x, tj+1) in Ω.

Therefore, we conclude that ψ(x, tj+1) ≥ 0, for all (x, tj+1) ∈ Ω̄.
Hence from the above prove the operator (1 + α0L

∗
ε,δ) satisfies the maxi-

mum principle, and consequently∥∥(1 + α0L
∗
ε,δ)

−1
∥∥ ≤ 1

1 + θτ
. (14)

Lemma 5. [Truncation error] The local truncation error corresponding to
the semi-discretized problem (12) satisfies∣∣Rj+1

τ

∣∣ ≤ Cτ2−γ . (15)

Proof. From semi-discretized problem, we have

Rj+1
τ =

O(τ)

Γ(1− γ)

∫ tj+1

0

(tj+1 − η)−γdη

=
O(τ)

Γ(1− γ)

∫ (j+1)τ

0

((j + 1)τ − η)−γdη

=
O(τ)

Γ(1− γ)

((j + 1)τ)1−τ

1− γ

=
((j + 1)τ)1−τ

Γ(2− γ)
O(τ)(τ1−τ )

≤ ((j + 1)τ)1−τ

Γ(2− γ)
τ2−τ

≤ Cτ2−τ .
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Therefore, we obtain ∣∣Rj+1
τ

∣∣ ≤ Cτ2−τ .

Lemma 6. [Global error bound:] The global error estimation at tj+1 satisfies

∥Ej+1∥ ≤ Cτ2−γ .

Proof. Since the function y(x, tj+1) satisfies

(1 + α0L
∗
ε,δ)y(x, tj+1) = F j+1(x), (16)

and also the solution of the continuous problem (1)–(2) is smooth enough,
then we have

F j+1(x) = (1 + α0L
∗
ε,δ)y(x, tj+1) +Rj+1

τ

= (1 + α0L
∗
ε,δ)y(x, tj+1) + Cτ2−γ , (17)

From (16)–(17), the error corresponding to (13) satisfies the following
boundary value problem:

(1 + α0L
∗
ε,δ)Ej+1 = Cτ2−γ ,

=⇒ Ej+1 = (1 + α0L
∗
ε,δ)

−1τ2−γ ,

∥Ej+1∥ ≤ 1

1 + θτ
Cτ2−γ .

hence, we obtain the result

∥Ej+1∥ ≤ Cτ2−γ .

Theorem 1. The semi-discretize solution y(x, tj+1) and its derivatives sat-
isfy the following bounds:∣∣∣∣diy(x, tj+1)

dxi

∣∣∣∣ ≤ C(1 + ε−i exp(−β(1− x)/ε)), for i = 0, 1, 2, 3, 4.

Proof. For the proof, refer [14].
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We can write (11) as operator form,

L̃τ
εy

j+1(x) = F j(x), (18)

where L̃τ
εy(x) = −ε∂

2y(x)
∂x2 + q(x)∂y(x)∂x + ν(x)y(x) and

F j(x) =



−sj+1(x)φb(x, tj−k+1) + f(x, tj+1) + σBjφb(x, tj)

+σ
∑j

i=1Bi (y(x, tj−i+1)− y(x, tj−i)) , for j = 1, 2, . . . , k,

−sj+1(x)yj − k + 1(x) + f j+1(x) + σψb(x, tj)

+σ
∑j

i=1Bi (y(x, tj−i+1)− y(x, tj−i)) , for j = k + 1, . . . ,Mτ .

4.2 Spatial discretization

To solve the semi-discretized problem (11), we use the extended cubic B-spline
collocation scheme. To take into consideration the exponential properties of
exact solution on the uniform mesh, artificial viscosity will be introduced.
Thus, an artificial viscosity σ(x, ε) replaces the perturbation parameter ε,
which disrupts the highest derivative.

4.3 Extended cubic B-spline collocation method

We divided the spatial domain using uniform mesh such that the set ΩNh
x is

the collection of all mesh points in the spacial direction; with xi = ih, i =

0, 1, 2, . . . , Nh.

The extended cubic B-spline Gi of degree 4 for µ ∈ (−8, 1), has the
following form [10]:
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Gi(x) =
1

24h4



4h(1− µ)(x− xi)
3 + 3µ(x− xi−2)

4, x ∈ [xi−1, xi−1],

(4− µ)h4 + 12h3(x− xi−1) + 6h2(2 + µ)(x− xi−1)
2

−12h(x− xi−1)
3 − 3µ(x− xi−1)

4, x ∈ [xi−1, xi],

(4− µ)h4 + 12h3(xi+1 − x) + 6h2(2 + µ)(xi+1 − x)2

−12h(xi+1 − x)3 − 3µ(xi+1 − x)4, x ∈ [xi, xi+1],

4h(1− µ)(xi+2 − x)3 + 3µ(xi+2 − x)4, x ∈ [xi+1, xi+2],

0, otherwise.
(19)

Consider that the approximation yi to the exact solution Y (x, µ) at the point
(x, tj+1). It can be defined as follows using combinations of the cubic B-
splines and unknown time-dependent parameters:

Y (x, µ) =

Nh+1∑
k=−1

akGk, (20)

where ak are time dependent parameters to be determined from the colloca-
tion method with the boundary and initial conditions.

Outside of the region [xi−1, xi+2], the extended cubic B-splines and their
four principle derivatives vanish. Principle four spline functions cover the
interval [xi−1, xi]. Thus, the y(x, t) variation over the element can be written
as

Y (x, µ) =

i+2∑
k=i−1

akGk, (21)

where ai−1, ai, ai+1, and ai+2 are the element parameters. Equation (21) can
be used to compute the values of the cubic B-splineGk(x, µ) and its successive
derivatives G′

k(x, µ), G
′′
k(x, µ) at the knots. These values are provided in

Table 1 below.
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Table 1: Values of Gk(x, µ) and its principle two derivatives at the node points

Gi xi−2 xi−1 xi xi+1 xi+1

Gi(xi, µ) 0 4−µ
12

8+µ
12

4−µ
24 0

G′
i(xi, µ) 0 − 1

2h 0 1
2h 0

G′′
i (xi, µ) 0 2+µ

2h2 − 2+µ
h2

2+µ
2h2 0

Substituting the values of Table 1 in (11) and its first and second deriva-
tives at node xi gives

y(xi, µ) =
4− µ

24
ai−1 +

8 + µ

12
ai +

4− µ

24
ai+1,

y′(xi, µ) = − 1

2h
ai−1 +

1

2h
ai+1,

y′′(xi, µ) =
2 + µ

2h2
ai−1 −

2 + µ

h2
ai +

2 + µ

2h2
ai+1.

(22)

Substituting (22) into (11), then we obtain

− ξ(i)(2 + µ)

2h2
(ai−1 − 2ai + ai+1)−

qi
2h

(ai−1 − ai+1)

+ νj+1
i

(
4− µ

24
ai−1 +

8 + µ

12
ai +

4− µ

24
ai+1

)
= F j

i . (23)

Let us introduce the artificial viscosity ξ(xi, ε) into (11). Artificial diffusion
(or artificial viscosity) is added to the term in the given differential equation
that contains the singular perturbation parameter to generate the discretiza-
tion scheme. This artificial diffusion is introduced by means of fitting factor
ξi(ε) = ξ(xi, ε). The zero order asymptotic solution of (18) exists and unique
(see [29, 34]) given as

y(x) = y0(x) + [φr − y0(1)] exp
(
−
∫ 1

0

(
q(x)

ε
− r(x)

q(x)

)
dx

)
+O(ε). (24)

Approximation for q(x) and r(x) confined to their first terms about x = 1

from Taylor’s series can be obtained as

y(x) = y0(x) + [φr − y0(1)] exp
(
−q(x)(1− x)

ε

)
, (25)

where y0(x) is the solution of the reduced problem. The convection-diffusion
problem in (2) has a right layer, and we have the uniform discretization
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point xi = ih and ρ = h
ε . By taking the limit h −→ 0, for (25) at

xi−1, xi and xi+1, then we obtain

lim
h→0

yi = y0(0) + [φr − y0(1)] e
− q(x)

ε (1−x),

lim
h→0

yi−1 = y0(0) + [φr − y0(1)] e
− q(x)

ε (1−x)e−q(0)ρ,

lim
h→0

yi+1 = y0(0) + [φr − y0(1)] e
− q(x)

ε (1−x)eq(0)ρ.

(26)

Now, we determine the fitting factor ξ by considering the fitted operator (18);
that is,

lim
h→0

ξi = lim
h→0

q(i)

2 + µ

(
ai−1 − ai+1

ai−1 − 2ai + ai+1

)
. (27)

By substituting (26) into (27) and simplifying it, we have

ξ(i) =
ρq(i)

2 + µ
coth

(
q(i)ρ

2

)
. (28)

Hence by using the artificial viscosity into (23) and simplifying it, then we
get [

−ξ(i)(2 + µ)

2h2
− qi

2h
+ νj+1

i

4− µ

24

]
ai−1 +

[
ξ(2 + µ)

2h2
+

8 + µ

12

]
ai

+

[
−ξ(2 + µ)

2h2
− qi

2h
+

4− µ

24
νj+1
i

]
ai+1 = F j

i .

(29)

Let

H−
i = −ξ(2 + µ)

2h2
− qi

2h
+ νj+1

i

4− µ

24
,

H0
i =

ξ(2 + µ)

2h2
+

8 + µ

12
,

H+
i = −ξ(2 + µ)

2h2
− qi

2h
+

4− µ

24
νj+1
i .

Then
H−

i ai−1 + H0
i ai + H+

i ai+1 = F j
i . (30)

For the given boundary conditions, we have

4− µ

24
a−1 +

8 + µ

12
a0 +

4− µ

24
a1 = φl(tj+1),

4− µ

24
aNh−1 +

8 + µ

12
aNh

+
4− µ

24
aNh+1 = φr(tj+1).

(31)
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For (Nh + 3)×(Nh + 3) systems, (30)–(31) provide the (Nh + 3) unknowns
a−1, a0, a1, . . . , aNh+1. The (Nh+1) system of equations in (Nh+1) unknowns
a0, a1, . . . , aNh

, can be expressed in the matrix form by eliminating a−1 and
aNh+1 from (30)–(31),

HA = F, (32)
where

H =



−2
(

8+µ
4−µ

)
H−

0 + H0
0 −H−

0 + H+
0

H−
1 H0

1 H+
1

. . .
. . .

. . .
H−

i H0
i H+

i

. . .
. . .

. . .
H−

Nh−1 H0
Nh−1 H+

Nh−1

H−
Nh

− H+
Nh

−2
(

8+µ
4−µ

)
H−

Nh
+ H0

Nh


,

A = [a0 a1 . . . aNh−1 aNh
]
T

and

F =

[
F j
0 − 24

4− µ
H−

0 φl(tj+1) F j
1 F j

2 ... F j
Nh−1 F j

Nh
− 24

4− µ
H−

Nh
φr(tj+1)

]T
.

5 Convergence analysis

Lemma 7. Consider the extended cubic B-spline

G = {G−1(x, µ), G0(x, µ), G1(x, µ), . . . , GNh
(x, µ), GNh+1(x, µ)}

given in (19). It satisfies the inequality

Nh+1∑
i=−1

|(Gi(x, µ))| ≤
7

4
. (33)

Proof. We start from the known properties∣∣∣∣∣
Nh+1∑
i=−1

Gi(xi, µ)

∣∣∣∣∣ =
Nh+1∑
i=−1

|Gi(xi, µ)| ,

where Gi(x, µ) is nonzero at three nodal points only. Thus, using Table 1, at
every nodal value xi, we obtain
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Nh+1∑
i=−1

|Gi(xi, µ)| = |Gi−1(xi, µ)|+ |Gi(xi, µ)|+ |Gi+1(xi, µ)|

=
4− µ

24
+

8 + µ

12
+

4− µ

24
= 1 <

7

4
.

From Table 1, for xi−1 ≤ x ≤ xi, we have

|Gi(xi, µ)| ≤
8 + µ

12
, |Gi−1(xi, µ)| ≤

8 + µ

12
.

Similarly, for xi−1 ≤ x ≤ xi, we get

|Gi+1(xi, µ)| ≤
8 + µ

12
, |Gi−2(xi, µ)| ≤

8 + µ

12
.

Now, for any point x ∈ [xi−1, xi], we obtain

Nh+1∑
i=−1

|Gi(xi, µ)| = |Gi−1(xi, µ)|+ |Gi(xi, µ)|+ |Gi+1(xi, µ)|

=
4− µ

24
+

8 + µ

12
+

4− µ

24
=

20− µ

12
.

Since −8 < µ < 1, thus

Nh+1∑
i=−1

|Gi(xi, µ)| =
20− µ

12
<

7

4
.

Let Ψ̄ be a unique cubic spline interpolate obtained from an approximately
solution Y (x, µ) of the problems (11) to the given solution y(x). Then

ψ̄(x) =

Nh+1∑
i=−1

ĀGi(x, µ). (34)

For z > 0, let α(z) = z coth(z) satisfy α(0) = 1, α(z) = α(−z). Then
|α(z)− 1| ≤ Cz2 for 0 < z ≤ 1. Since coth z −→ 1 as z −→ ∞, so
|α(z)− 1| ≤ Cz. Hence for z > 0, we have

|ξ(z)− 1| ≤ Cz2

1 + z
and ε(h/ε)2

h/ε+ 1
=

h2

h+ ε
. (35)

Lemma 8. Set a cubic spline interpolant Ψ̄ ∈ C2(0, 1) to a solution Y (x).
For x ∈ (xi, xi+1), the standard cubic spline interpolation approximate holds
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if Y (x) ∈ C4(0, 1). According to Hall’s estimate [20], we have∣∣∣Y (k)(x)− Ψ̄(x)(k)
∣∣∣ ≤ ci

∥∥∥Y (4)
∥∥∥N−(4−k)

h , (36)

where ci’s are constants independent of h and Nh.

Theorem 2. [Parameter uniform convergence] Let S(x, µ) be the collocation
approximation from the space of splines to the solution, Y j+1(x) be the
approximate solution of the semi-discretized problem (11), and let y(xi, tj+1)

be the continuous solution of (1) and (2). Therefore, the following error
bound is valid for suitably large N :

∥∥Y j+1(xi)− yj+1(xi)
∥∥ ≤

N−2
h

N−1
h + ε

. (37)

Proof. To prove the theorem, we start by using Lemma 5. We get the bounds

∣∣Y j+1(xi)− Ψ̄(xi)
∣∣ ≤ c0

∥∥∥∥d4Y j+1(xi)

dx4

∥∥∥∥N−4
h ,∣∣∣∣dY j+1(xi)

dx
− dΨ̄(xi)

dx

∣∣∣∣ ≤ c1

∥∥∥∥d4Y j+1(xi)

dx4

∥∥∥∥N−3
h ,∣∣∣∣d2Y j+1(xi)

dx2
− d2Ψ̄(xi)

dx2

∣∣∣∣ ≤ c2

∥∥∥∥d4Y j+1(xi)

dx4

∥∥∥∥N−2
h .

(38)

Using the triangle inequality, we have∣∣Y j+1(xi)− yj+1(xi)
∣∣ ≤ ∣∣Y j+1(xi)− Ψ̄(xi)

∣∣+ ∣∣Ψ̄(xi)− yj+1(xi)
∣∣ .

The collocating condition gives

L̃h,τ
ε yj+1(xi) = L̃h,τ

ε Y j+1(xi).

Assume that L̃h,τ
ε Ψ̄(xi) = F̄ (xi, tj), which satisfies the boundary conditions,

Ψ̄(x0) = Ψ̄(xNh+1). Then∣∣∣L̃h,τ
ε yj+1(xi)− L̃h,τ

ε Ψ̄(xi)
∣∣∣ = ∣∣∣L̃h,τ

ε Y j+1(xi)− L̃h,τ
ε Ψ̄(xi)

∣∣∣
=

∣∣∣∣−ε(d2yj+1(xi)

dx2
− ξi(ε)

d2Ψ̄(xi)

dx2

)∣∣∣∣
+

∣∣∣∣q(xi)(dyj+1(xi)

dx
− dΨ̄(xi)

dx

)∣∣∣∣
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+
∣∣νj+1(x− i)(yj+1(xi)− Ψ̄(xi))

∣∣
≤ |ε| |ξ|

∥∥∥∥d2yj+1(xi)

dx2

∥∥∥∥
+ |ε| |ξ|

∣∣∣∣d2yj+1(xi)

dx2
− ξi(ε)

d2Ψ̄(xi)

dx2

∣∣∣∣
+ |q(xi)|

∣∣∣∣dyj+1(xi)

dx
− dΨ̄(xi)

dx

∣∣∣∣
+
∣∣νj+1

∣∣ ∣∣yj+1(xi)− Ψ̄(xi)
∣∣ . (39)

Now, using (35) and Lemma 1, then we obtain

max
0≤i,j≤Nh,Mτ

∣∣yj+1(xi)− Ψ̄(xi)
∣∣ ≤ N−2

h

N−1
h + ε

⇒
∥∥yj+1(xi)− Ψ̄(xi)

∥∥ ≤
N−2

h

N−1
h + ε

. (40)

The coefficient matrix associated with (20) is of size (Nh+1)× (Nh+1) with
its elements. For i = 1, 2, . . . , Nh − 1, we have

H−
i < 0, since all terms are positive,

H0
i > 0, since all terms are positive,

H+
i < 0, since all terms are positive coth

(
q(i)ε

2h

)
≥ 1.

Thus, the coefficient matrix of the proposed method, satisfies the properties
of M-matrix. This implies that the inverse matrix exists and it is nonnegative.
This implies [40] ∣∣H−1

∣∣ < CN−2
h . (41)

From (32) and Lh,τ
ε yj+1(xi)− L̃h,τ

ε Ψ̄(xi), we get the result

H(A− Ā) = F − F̄, (42)

where A−Ā = (a0 − ā0, a1 − ā1, a2 − ā2, . . . , aNh
− āNh

) and F−F̄ =(
F (x0, tj)− F̄ (x0, tj), F (x1, tj)− F̄ (x1, tj), . . . , F (xNh

, tj)− F̄ (xNh
, tj)

)
.

Using (41), so the boundary conditions are bounded. Therefore, (39) and
(42) give ∣∣A− Ā

∣∣ ≤ N−2
h

N−1
h + ε

.
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Hence, by using (21) for Y (x, µ) and Lemma 34 for Ψ̄(x), we get

∣∣Y (xi, µ)− Ψ̄(xi)
∣∣ = ∣∣A− Ā

∣∣Nh+1∑
0

|Gi(xi, µ)| ≤
N−2

h

N−1
h + ε

. (43)

Thus, using (40) and (43), also the triangle inequality, we obtain our result

∥∥Y j+1(xi)− yj+1(xi)
∥∥ ≤

N−2
h

N−1
h + ε

. (44)

Theorem 3. If y and Y be exact and cubic B-spline approximation solution
of the problem (1), respectively, then the following error bound holds:

max
0≤i,j≤Mh,Mt

|y(xi, tj)− Y (xi, µ)| ≤ C

(
h2

h+ ε
+ (τ)2−γ

)
. (45)

Proof. By combining Theorems 6 and 2, we get our result.

6 Numerical result

In this section, we show two numerical examples that demonstrate the ac-
curacy of the method and the result of the error analysis. Separate tables
display the error and corresponding convergence rates for each of these two
test examples. Since the exact solution to the example is unknown, double
mesh will be used in this article to determine the accuracy of the numerical
solution. The maximum point-wise absolute error is determined as

ENh,Mτ
ε = max

0≤i,j≤Nh,Mτ

∣∣∣Y Nh,Mτ

i,j (xi, tj)− Y 2Nh,2Mτ

i,j (x2i, t2j)
∣∣∣ ,

where Nh andMτ are the number of mesh points in the spatial and temporal
directions, respectively. The parameter uniform error estimation is defined
as

eNh,Mτ = max
ε

{ENh,Mτ
ε }.

Next, we also determine the rate of convergence of the method by using the
formula

RoCNh,Mτ
ε = log2

(
ENh,Mτ

ε

E2Nh,2Mτ
ε

)
.
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The parameter uniform rate of convergence is defined as

RNh,Mτ = max
ε

{RoCNh,Mτ
ε }.

Example 1. Consider the time-fractional SPPPDE

Dγ
t y(x, t)− ε

∂2y(x, t)

∂x2
+

(
2− x2

) ∂y(x, t)
∂x

+ ((x+ 1)(t+ 1))y(x, t)

= y(x, t− 1) + 10t2 exp(−t)x(1− x),

on (x, t) ∈ Ω = (0, 1)× (0,T], with initial and boundary conditions φb(x, t) =

0, φl(t) = 0 and φr(t) = 0.

(a) ε = 20 (b) ε = 2−6

(c) ε = 2−10 (d) ε = 2−20

Figure 1: Three-dimensional plot of the numerical solution for Example 1 for different
values of ε with γ = 0.5, Nh = 32, and Mτ = 40.
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Table 2: Absolute maximum error and rate of convergence for Example 1 for different
values of ε, with fix γ = 0.5

(Nh,Mτ ) ⇒ (16,20) (32,40) (64,80) (128, 160) (256, 320) (512, 400)
ε = 20 4.1605e-03 1.9136e-03 8.5272e-04 3.6840e-04 1.5434e-04 6.2758e-05

1.1205 1.1662 1.2108 1.2551 1.2983 -
ε = 2−2 7.8335e-03 3.3678e-03 1.3897e-03 5.5457e-04 2.1515e-04 8.1537e-05

1.2179 1.2771 1.3253 1.3661 1.3998 -
ε = 2−4 9.5332e-03 3.9931e-03 1.6048e-03 6.2416e-04 2.3637e-04 8.7649e-05

1.2554 1.3151 1.3624 1.4009 1.4312 -
ε = 2−6 9.8688e-03 4.1357e-03 1.6591e-03 6.4279e-04 2.4217e-04 8.9302e-05

1.2548 1.3177 1.3680 1.4083 1.4393 -
ε = 2−8 9.8893e-03 4.1566e-03 1.6705e-03 6.4735e-04 2.4366e-04 8.9726e-05

1.2505 1.3151 1.3676 1.4097 1.4413 -
ε = 2−10 9.8893e-03 4.1568e-03 1.6711e-03 6.4798e-04 2.4397e-04 8.9826e-05

1.2504 1.3147 1.3668 1.4093 1.4415 -
ε = 2−12 9.8893e-03 4.1568e-03 1.6711e-03 6.4798e-04 2.4398e-04 8.9840e-05

1.2504 1.3147 1.3668 1.4092 1.4414 -
ε = 2−14 9.8893e-03 4.1568e-03 1.6711e-03 6.4798e-04 2.4398e-04 8.9840e-05

1.2504 1.3147 1.3668 1.4092 1.4414 -
ε = 2−20 9.8893e-03 4.1568e-03 1.6711e-03 6.4798e-04 2.4398e-04 8.9840e-05

1.2504 1.3147 1.3668 1.4092 1.4414 -
ε = 2−25 9.8893e-03 4.1568e-03 1.6711e-03 6.4798e-04 2.4398e-04 8.9840e-05

1.2504 1.3147 1.3668 1.4092 1.4414 -
ε = 2−30 9.8893e-03 4.1568e-03 1.6711e-03 6.4798e-04 2.4398e-04 8.9840e-05

1.2504 1.3147 1.3668 1.4092 1.4414 -
eNh,Mτ 9.8893e-03 4.1568e-03 1.6711e-03 6.4798e-04 2.4398e-04 8.9840e-05
RNh,Mτ 1.2504 1.3147 1.3668 1.4092 1.4414 -
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Table 3: Comparison of absolute maximum error and rate of convergence for Example
1 for different values of ε, with fix γ = 0.5

(Nh,Mτ ) ⇒ (16,20) (32,40) (64,80) (128, 160)
Proposed Method

ε = 2−6 9.8688e-03 4.1357e-03 1.6591e-03 6.4279e-04
1.2548 1.3177 1.3680 -

ε = 2−8 9.8893e-03 4.1566e-03 1.6705e-03 6.4735e-04
1.2505 1.3151 1.3676 -

ε = 2−10 9.8893e-03 4.1568e-03 1.6711e-03 6.4798e-04
1.2504 1.3147 1.3668 -

ε = 2−12 1.4000e-02 5.5760e-03 2.1233e-03 7.8272e-04
1.3281 1.3929 1.4398 -

ε = 2−14 1.4000e-02 5.5760e-03 2.1233e-03 7.8272e-04
1.3281 1.3929 1.4398 -

ε = 2−20 9.8893e-03 4.1568e-03 1.6711e-03 6.4798e-04
1.2504 1.3147 1.3668 -

ε = 2−25 9.8893e-03 4.1568e-03 1.6711e-03 6.4798e-04
1.2504 1.3147 1.3668 -

ε = 2−30 9.8893e-03 4.1568e-03 1.6711e-03 6.4798e-04
1.2504 1.3147 1.3668 -

eNh,Mτ 9.8893e-03 4.1568e-03 1.6711e-03 6.4798e-04
RNh,Mτ 1.2504 1.3147 1.3668 -

Method in reference [27]
ε = 2−6 1.0088E-02 4.9401e-03 2.0143e-03 7.1385E-04

1.0300 1.2943 1.4966 -
ε = 2−8 1.1863e-02 6.3546e-03 3.3404e-03 1.8221e-03

0.9006 0.9278 0.8744 -
ε = 2−10 1.2246e-02 6.6457e-03 3.4625e-03 1.7661e-03

0.8818 0.9406 0.9712 -
ε = 2−12 1.2336e-02 6.7141e-03 3.5082e-03 1.7930e-03

0.8776 0.9365 0.9683 -
ε = 2−20 1.2365e-02 6.7364e-03 3.5230e-03 1.8022e-03

0.8762 0.9352 0.9670 -
ε = 2−25 1.2365e-02 6.7364e-03 3.5230e-03 1.8022e-03

0.8762 0.9352 0.9670 -
ε = 2−30 1.2365e-02 6.7364e-03 3.5230e-03 1.8022e-03

0.8762 0.9352 0.9670 -
eNh,Mτ 1.2365e-02 6.7364e-03 3.5230e-03 1.8022e-03
RNh,Mτ 0.8762 0.9352 0.9670 -
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Example 2. Consider the time-fractional SPPPDE

Dγ
t y(x, t)− ε

∂2y(x, t)

∂x2
+
(
2− x2

) ∂y(x, t)
∂x

+ xy(x, t)

= y(x, t− 1) + 10t2 exp(−t)x(1− x),

on (x, t) ∈ Ω = (0, 1)× (0,T], with initial and boundary conditions φb(x, t) =

0, φl(t) = 0 and φr(t) = 0.

(a) ε = 20 (b) ε = 2−6

(c) ε = 2−10 (d) ε = 2−20

Figure 2: Three-dimensional plot of the numerical solution for Example 2 for different
values of ε with γ = 0.5,Mx = 32, and Mt = 40.

The numerical results are described in terms of maximum absolute errors
and numerical rate of convergence in Tables 2 and 4. These results are
compared with those of a previously developed numerical approach found in
the literature in [27], using Tables 3 and 5. Additionally, the log-log plot
(Figure 3) and the numerical solution for Examples 1 and 2 (refer to Figures
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Table 4: Maximum error and rate of convergence for Example 2 for different values of
ε, with fix γ = 0.5

(Nh,Mτ ) ⇒ (16,20) (32,40) (64,80) (128, 160) (256, 320) (512, 400)
ε = 20 5.0614e-03 2.2923e-03 1.0036e-03 4.2492e-04 1.7424e-04 6.9357e-05

1.1427 1.1916 1.2400 1.2861 1.3290 -
ε = 2−2 1.1193e-02 4.6126e-03 1.8150e-03 6.8997e-04 2.5570e-04 9.3106e-05

1.2789 1.3456 1.3954 1.4321 1.4575 -
ε = 2−4 1.4655e-02 5.8083e-03 2.1878e-03 7.9856e-04 2.8584e-04 1.0112e-04

1.3352 1.4087 1.4540 1.4822 1.4992 -
ε = 2−6 1.5546e-02 6.0863e-03 2.2785e-03 8.2711e-04 2.9408e-04 1.0330e-04

1.3529 1.4175 1.4620 1.4919 1.5094 -
ε = 2−8 1.5610e-02 6.1249e-03 2.2975e-03 8.3410e-04 2.9620e-04 1.0386e-04

1.3497 1.4146 1.4618 1.4937 1.5119 -
ε = 2−10 1.5610e-02 6.1253e-03 2.2986e-03 8.3507e-04 2.9663e-04 1.0399e-04

1.3496 1.4140 1.4608 1.4932 1.5122 -
ε = 2−12 1.5610e-02 6.1253e-03 2.2986e-03 8.3507e-04 2.9666e-04 1.0401e-04

1.3496 1.4140 1.4608 1.4931 1.5121 -
ε = 2−14 1.5610e-02 6.1253e-03 2.2986e-03 8.3507e-04 2.9666e-04 1.0401e-04

1.3496 1.4140 1.4608 1.4931 1.5121 -
ε = 2−20 1.5610e-02 6.1253e-03 2.2986e-03 8.3507e-04 2.9666e-04 1.0401e-04

1.3496 1.4140 1.4608 1.4931 1.5121 -
ε = 2−30 1.5610e-02 6.1253e-03 2.2986e-03 8.3507e-04 2.9666e-04 1.0401e-04

1.3496 1.4140 1.4608 1.4931 1.5121 -
eNh,Mτ 1.5610e-02 6.1253e-03 2.2986e-03 8.3507e-04 2.9666e-04 1.0401e-04
RNh,Mτ 1.3496 1.4140 1.4608 1.4931 1.5121 -

1 and 2) demonstrate the ε-uniform convergence of the scheme. A boundary
layer, as shown in Figures 1 and 2, is located at the right side of the space
domain in the numerical solution of Examples 1 and 2 above. Figures 1 and
2 also display the computed solutions yi,j for various perturbation parameter
values, along with the influence of fractional order. Figure 3 displays the
log-log plots of the maximum absolute errors against the number of meshes
for both cases, demonstrating the developed numerical scheme’s convergent
nature regardless of the perturbation value. The suggested scheme is ε-
uniformly convergent, as illustrated by the numerical results shown in Tables
2 and 4, by combining extended cubic B-spline collocation with artificial
viscosity numerical method in the spatial direction with the implicit Euler’s
method in the temporal direction. We can see that, for each value of ε, the
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Table 5: Comparison of maximum error and rate of convergence for Example 2 for
different values of ε, with fix γ = 0.5

(Nh,Mτ ) ⇒ (16,20) (32,40) (64,80) (128, 160)
Proposed Method

ε = 2−6 1.5546e-02 6.0863e-03 2.2785e-03 8.2711e-04
1.3529 1.4175 1.4620 -

ε = 2−8 1.5610e-02 6.1249e-03 2.2975e-03 8.3410e-04
1.3497 1.4146 1.4618 -

ε = 2−10 1.5610e-02 6.1253e-03 2.2986e-03 8.3507e-04
1.3496 1.4140 1.4608 -

ε = 2−12 1.5610e-02 6.1253e-03 2.2986e-03 8.3507e-04
1.3496 1.4140 1.4608 -

ε = 2−14 1.5610e-02 6.1253e-03 2.2986e-03 8.3507e-04
1.3496 1.4140 1.4608 -

ε = 2−20 1.5610e-02 6.1253e-03 2.2986e-03 8.3507e-04
1.3496 1.4140 1.4608 -

ε = 2−30 1.5610e-02 6.1253e-03 2.2986e-03 8.3507e-04
1.3496 1.4140 1.4608 -

eNh,Mτ 1.5610e-02 6.1253e-03 2.2986e-03 8.3507e-04
RNh,Mτ 1.3496 1.4140 1.4608 -

Method in reference ([27])
ε = 2−6 1.5818e-02 7.8811e-03 2.9140e-03 8.1121E-04

1.0051 1.4354 1.8449 -
ε = 2−8 2.1516e-02 9.5195e-03 4.7373e-03 2.2942e-03

1.1765 1.0068 1.0461
ε = 2−10 2.4877e-02 1.1527e-02 5.4771e-03 2.6471e-03

1.1098 1.0735 1.0490 -
ε = 2−12 2.5768e-02 1.2070e-02 5.7971e-03 2.8303e-03

1.0942 1.0580 1.0344 -
ε = 2−15 2.6068e-02 1.2257e-02 5.9063e-03 2.8933e-03

1.0887 1.0533 1.0295 -
ε = 2−25 2.6069e-02 1.2258e-02 5.9068e-03 2.8935e-03

1.0886 1.0533 1.0296 -
ε = 2−30 2.6069e-02 1.2258e-02 5.9068e-03 2.8935e-03

1.0886 1.0533 1.0296 -
eNh,Mτ 2.6069e-02 1.2258e-02 5.9068e-03 2.8935e-03
RNh,Mτ 1.0886 1.0533 1.0296 -
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(a) Log-log plot of the max error for Ex-
ample 1

(b) Log-log plot of the max error for Ex-
ample 2

Figure 3: Log-log plot of maximum absolute errors for Examples 1 and 2 for different
values of ε.

maximum point-wise error decreases as Nh,Mτ grows from the results in
Tables 2 and 4. It is evident that, for every Nh,Mτ , the maximum point-
wise error is ε −→ 0 stable. By utilizing these two examples, we verify that
the suggested numerical technique is more accurate, stable, and ε-uniformly
convergent, with a convergence rate that is almost one. The execution of the
proposed method is done by using the MATLAB R2022b software package.

7 Conclusion

We solved the time delay singularly perturbed parabolic convection-diffusion
problem with the time-fractional order of derivative using the extended cubic
B-spline collocation method. The solution to the problem showed a boundary
layer on the right side of the spatial domain. The layer region of the solu-
tion has a steep gradient due to the existence of ε. Because of the rapidly
changing solution behavior in the layer region, it is computationally chal-
lenging to determine the solution analytically or using standard numerical
approaches. To control this effect, we came up with a plan that makes use of
an extended cubic B-spline collocation scheme in the spatial direction and an
implicit Euler’s scheme in the temporal direction. It has been demonstrated
that the developed numerical approach is stable and converges uniformly.
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Two model problems have been taken into consideration for the numerical
experimentation for various values of the perturbation parameter and frac-
tional order derivatives in order to confirm the method’s compatibility. The
scheme was shown to have an order of convergence of O(

N−2
h

N−1
h +1

+ τ2−γ) and
to be ε-uniformly convergent.
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