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Abstract

In this work, we propose a mathematical model that describes citizens’ be-
havior toward a product, where individuals are generally divided into three
main categories: potential consumers, boycotters who abstain from it for

*Corresponding author

Received 16 February 2024; revised 15 April 2024; accepted 25 April 2024

Oumaima Aarabate
Laboratory of Fundamental Mathematics and their Applications, Department of Mathe-
matics, Faculty of Sciences, University of Chouaib Doukkali, El jadida, Morocco. e-mail:
oumaimaaarabate@gmail.com

Salaheddine Belhdid
Laboratory of Fundamental Mathematics and their Applications, Department of Mathe-
matics, Faculty of Sciences, University of Chouaib Doukkali, El jadida, Morocco. e-mail:
salaheddine.belhdid@gmail.com

Omar Balatif
Laboratory of Fundamental Mathematics and their Applications, Department of Mathe-
matics, Faculty of Sciences, University of Chouaib Doukkali, El jadida, Morocco. e-mail:
balatif.maths@gmail.com

How to cite this article
Aarabate, O., Belhdid, S. and Balatif, O., Stability analysis and optimal strategies for
controlling a boycotting behavior of a commercial product. Iran. J. Numer. Anal.
Optim., 2024; 14(3): 708-735. https://doi.org/10.22067/ijnao.2024.86892.1394

708

https://doi.org/10.22067/ijnao.2024.86892.1394
https://ijnao.um.ac.ir/
https://orcid.org/0009-0005-3645-0307
https://orcid.org/0009-0002-3532-9028
https://orcid.org/0000-0003-1887-5350
https://doi.org/10.22067/ijnao.2024.86892.1394


709 Stability analysis and optimal strategies for controlling ...t

various reasons, and actual consumers. Therefore, our work contributes to
understanding product boycott behavior and the factors influencing this
phenomenon. Additionally, it proposes optimal strategies to control boy-
cott behavior and limit its spread, thus protecting product marketing and
encouraging consumer reuse.

We use mathematical theoretical analysis to study the local and global
stability, as well as sensitivity analysis to identify parameters with a high
impact on the reproduction number R0. Subsequently, we formulate an
optimal control problem aimed at minimizing the number of boycotters
and maximizing consumer participation. Pontryagin’s maximum principle
is employed to characterize the optimal controls. Finally, numerical sim-
ulations conducted using MATLAB confirm our theoretical results, with
a specific application to the case of the boycott of Centrale Danone by
several Moroccan citizens in April 2018.

AMS subject classifications (2020): Primary 03C45; Secondary 90C31, 35F21.

Keywords: Modeling a boycott behavior; Local and global stability; Sensi-
tivity analysis; Optimal control problem.

1 Introduction

Boycotting a product is a conscious decision to refrain from buying or using
a particular product as a way to express disapproval or disagreement with
the company responsible for producing or selling it. This is due to various
reasons that may be related to the company’s practices, policies, or ethical
standards. Boycott behavior may include actively encouraging others to join
in abstaining from the product.

Ireland is where the word “boycott” first appeared in the late 1800s. It
comes from the name of Captain Charles Boycott, an English land agent
who worked in Ireland and rose to prominence as a representative of harsh
landlordism. Charles Boycott was singled out by the Irish Land League in
1880 during the Irish Land War for his inequitable treatment of tenants.
Boycott was effectively isolated and found it difficult to manage his land as a
result of the League’s encouragement of other farmers and laborers to refuse
to work for or conduct commerce with him. Over time, the act of isolating

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 708–735



Aarabate, Belhdid and Balatif 710

and refusing to comply has been referred to as a “boycott” and has been
employed globally as a means of political protest against unfair behaviors or
individuals [15].

Similar to what has been witnessed in many countries of the world, es-
pecially North African countries; Morocco has also witnessed the emergence
of protest movements and boycotts of many goods and products due to high
prices and the decline in purchasing power of citizens. On April 20, 2018,
this boycott first appeared on social media. The campaign targeted three
main suppliers to Morocco-Centrale Danone (dairy products), Sidi Ali Water
brand (bottled water), and African gas stations owned by the Aqua Group
(gasoline). As for other Arab countries, such as Egypt, Tunisia, and Jordan,
they chose to organize general strikes to demand improved living standards,
lower prices, and an end to austerity measures. Morocco has taken a differ-
ent tack by using the boycott to quietly express its anger at high costs and
destitution [7]. Moroccans gathered through this boycott to express their
dissatisfaction with high prices and the social and economic conditions in
which they live.

This and other similar topics have been the subject of many studies and
research projects in the social, economic, and political sciences [7, 11, 19,
9, 4, 1, 21]. However, there are still few mathematical studies and research
available on this topic [23, 24, 5, 13, 25].

In this paper, we adopt a compartment modeling approach commonly
used in epidemiology to model the spread of product boycott behavior in
a population. The compartment model is a widely used approach for ex-
plaining the transmission of infectious diseases. In epidemiological models,
populations are divided into several categories based on their disease status
(i.e., “susceptible,” “infected,” or “removed”), and the process of infection
depends on interaction with infected individuals. Likewise, we consider cit-
izens toward a product to be either potential adopters or boycotters and
consumers of the product. It closely resembles the phenomenon of conta-
gious, since boycotters have an important impact on prospective consumers
not using the product. It is, therefore, reasonable to model product boycotts
using the epidemiological approach. Hence, our work contributes to under-
standing the behavior of product boycotting and the factors influencing this
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711 Stability analysis and optimal strategies for controlling ...t

phenomenon. Additionally, in this work, we propose optimal strategies for
controlling boycotting behavior and limiting its spread, thereby safeguarding
product marketing and encouraging consumer reuse.

We propose a mathematical model that describes citizens’ behavior to-
wards consuming a specific product, where individuals are divided into three
basic categories: Potential consumers of the product, boycotters who ab-
stain from purchasing, using, and consuming the product for various reasons,
and attempt to influence other individuals to adopt boycott behavior for
the product, and the class of consumers already using the product. By us-
ing Routh–Hurwitz criteria and constructing Lyapunov functions, we study
the local and global stability of the equilibriums. We examine the sensitivity
analysis of the model parameters in order to determine which parameters sig-
nificantly affect the reproduction number R0. Using the theoretical results of
optimal control theory, we also propose optimal strategies to encourage po-
tential customers to purchase and use a company’s product and to persuade
and satisfy boycotters of the product.

The structure of this article is as follows. Section 2 is split into two parts:
the first part contains the proposed mathematical model, while the second
part contains some of the model’s fundamental characteristics. Section 3 is
also divided into parts. We start by analyzing the local and global stability
after some numerical simulations, and finally, we discuss the problem of the
parameter’s sensitivity. The optimal control problem for the suggested model
is presented in Section 4, where we also provide some results regarding the
existence of the optimal controls and use Pontryagin’s maximum principle to
characterize them. Numerical simulations are also provided in this section.
In Section 5, the paper is brought to its conclusion.

2 Mathematical model and fundamental characteristics

2.1 Mathematical model
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Figure 1: Description of the model.

We consider a mathematical model PBC that captures the behavior of
citizens who might use a product, those that boycott the product, and those
who consume it. The graphical representation of the proposed model is shown
in Figure 1. The total population represented by N is split up into three
compartments:

The potential consumers (P ) are a category of people that could consume
the product. The compartment P is increasing at the rate of A and represents
the number of people who can access the product and purchase or consume
it. It is decreased when potential consumers become actual consumers at rate
λ. It is presumed that potential consumers can also become boycotters of the
product at rate k through meaningful interactions with existing boycotters.
Finally, the number of potential consumers due to natural death decreases at
a rate of µ.

The boycotters (B) who abstain from purchasing, using, and consuming
the product for various reasons, and attempt to influence other individuals
to adopt boycott behavior for the product. This compartment is increased
through effective contact with potential consumers who stop using the prod-
uct as a result, at a rate k. It is lowered, either by natural death at a rate of
µ when boycotters change their opinions about the product and become new
actual consumers, at a rate δ.

The actual consumers (C) are those who buy and consume the product.
When boycotters change their position and start using the product, the con-
sumer’s compartment is increased at a rate of δ. Likewise, it increases at a
rate λ when potential consumers are convinced to use the product. Natural
death reduces it at the rate µ.
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The numbers of people in each of the three classes at time t are represented
by the variables P (t), B(t), and C(t), respectively. Time can be measured in
years, months, days, or other intervals depending on how frequently survey
studies are conducted as needed.

The equation N(t) = P (t)+B(t)+C(t) represents the overall population
size at time t. We suppose in this work that N is constant. This model’s
dynamics are controlled by the nonlinear system of differential equations
below. 

Ṗ = A− k
PB

N
− (µ+ λ)P,

Ḃ = k
PB

N
− (δ + µ)B,

Ċ = λP + δB − µC,

(1)

where P (0) ≥ 0, B(0) ≥ 0, and C(0) ≥ 0 are the given initial states.

2.2 Fundamental characteristics

Since system (1) reflects the population of humans, it is necessary to demon-
strate that all of the system’s solutions with positive initial data are bounded
and will remain positive for all times t > 0. The following lemma and theorem
will establish this.

2.2.1 The positivity of the model’s solutions

Theorem 1. If the initial conditions are positive, that is, P (0) ≥ 0, B(0) ≥
0, and C(0) ≥ 0, then the solutions P (t), B(t), and C(t) of system (1) are
positive for all t ≥ 0.

Proof. The first equation of system (1) indicates that

dP (t)

dt
+

(
k
B(t)

N
+ (λ+ µ)

)
P (t) ≥ 0. (2)

Multiplying the inequality (2) by

exp
[∫ t

0

(
k
B(v)

N
+ (λ+ µ)

)
dv

]
,
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we have

dP (t)

dt
exp

[∫ t

0

(kB(v)/N + (λ+ µ)) dv

]
+ [kB(t)/N + (λ+ µ)].P (t) exp

[∫ t

0

(kB(v)/N + (λ+ µ)) dv

]
≥ 0.

Then,
d

dt

[
P (t) exp

[∫ t

0

(
k
B(v)

N
+ (λ+ µ)

)
dv

]]
≥ 0. (3)

Integrating (3) gives

P (t) ≥ P (0) exp
[∫ t

0

(
−kB(v)

N
− (λ+ µ)

)
dv

]
.

So, the solution P (t) is positive.

Likewise, utilizing system (1)’s second and third equations, we have

B(t) ≥ B(0) exp [−(δ + µ)t] ≥ 0

and
C(t) ≥ C(0) exp(−µt) ≥ 0.

Thus, we can observe that system (1)’s solutions P (t), B(t), and C(t) are
positive for all t ≥ 0.

2.2.2 Invariant region

Lemma 1. If the initial conditions are positive, that is, P (0) ≥ 0, B(0) ≥ 0,
and C(0) ≥ 0, then the region Ω defined by

Ω =

{
(P (t), B(t), C(t)) ∈ R3

+, P (t) +B(t) + C(t) ≤ A

µ

}
is positive invariant for system (1).

Proof. When we sum up the system equations (1), we get

dN

dt
≤ A− (λ+ µ)N.

Then,

N(t) ≤ N(0) +At+

∫ t

0

−µN(v)dv.
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Using a Gronwall lemma, we get

N(t) ≤ N(0) exp(−µt) + A

µ
(1− exp(−µt)),

for the population’s initial values as a whole. So, lim
t→∞

supN(t) =
A

µ
. For

system (1), it suggests that the region Ω is a positively invariant set.
Thus, the dynamics of the system must be considered in the set Ω.

3 Analysis of stability and model parameter sensitivity

This section investigates the system (1)’s stability behavior at both a boy-
cotted equilibrium point and a boycott-free equilibrium point. System (1)

possesses the subsequent two equilibrium points:

(1) boycott-free equilibrium given by E0 =

(
A

λ+ µ
, 0,

λA

µ(λ+ µ)

)
. The

situation in which there are no boycotters in the population.

(2) boycotted equilibrium point, if R0 > 1, given by E∗ = (P ∗, B∗, C∗),

where P ∗ =
A(δ + µ)

µk
, B∗ =

A(λ+ µ)(R0 − 1)

µk
, and

C∗ =
λA(δ + µ)2 + δA(λ+ µ)(δ + µ)(R0 − 1)

µ2(δ + µ)k
. This equilibrium re-

flects the situation in which a product boycott becomes widespread
among the populace.

Here, R0 is the basic reproduction number given by

R0 =
µk

(λ+ µ)(δ + µ)
.

In the field of epidemiology, the basic reproduction number R0 denotes the
mean quantity of secondary infections among a fully susceptible population.

This threshold, as it relates to our work, denotes the mean number of
prospective consumers that a boycotter will convince not to use the product
during his interaction time.

In fact, if we assume that x = (B,C, P ), then the system (1) may be
expressed as

dx

dt
= F(x)−W(x),
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where

F(x) =


k
BP

N
0

0


and

W(x) =


(δ + µ)B

−λP − δB + µC

−A+ k
BP

N
+ (λ+ µ)P

 .

At the free equilibrium E0, the Jacobian matrices of F(x) and W(x) are

DF(E0) =


F2×2 0

0

0 0 0


and

DW(E0) =


W2×2 0

−λ
µk

(λ+ µ)
0 0

 ,

where

F =

 µk

(λ+ µ)
0

0 0


and

W =

(
δ + µ 0

−δ µ

)
.

At last, we have

R0 = ρ
(
FW−1

)
=

µk

(λ+ µ)(δ + µ)
.

3.1 Analysis of local stability

This section examines the boycotted equilibrium’s and the boycott-free equi-
librium’s local stability.
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Theorem 2. If R0 < 1, then the boycott-free equilibrium E0 is locally
asymptotically stable; if R0 > 1, then E0 is unstable.

Proof. At E0, the Jacobian matrix is provided by

J(E0) =


−(λ+ µ) − µk

(λ+ µ)
0

0
µk

(λ+ µ)
− (δ + µ) 0

λ δ −µ

 .

Consequently, eigenvalues of J(E0)’s characteristic equation are

ζ1 = −µ,

ζ2 = −(λ+ µ),

ζ3 = (δ + µ)(R0 − 1).

Clearly, the first and second eigenvalues ζ1 and ζ2, respectively, are negative.
The third eigenvalue is also negative supplied that R0 < 1.

We deduce that the boycott-free equilibrium E0 is locally asymptotically
stable if R0 < 1, while it is unstable if R0 > 1.

After that, we assert the following theorem to ascertain the stability of
the boycotted equilibrium E∗.

Theorem 3. The boycotted equilibrium E∗ is locally asymptotically stable
if R0 ≥ 1.

Proof. At E∗, the Jacobian matrix is provided by

J(E∗) =


−k B

∗

N∗ − (λ+ µ) −k P
∗

N∗ 0

k
B∗

N∗ k
P ∗

N∗ − (δ + µ) 0

λ δ −µ

 ,

which is provided by its characteristic equation

ζ3 + a1ζ
2 + a2ζ + a3 = 0,

where

a1 =
kµ

(µ+ λ)
+ µ,

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 708–735
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a2 =
kµ2

(µ+ λ)
+ (µ+ λ)(µ+ δ)(R0 − 1),

a3 =
kµ3

(µ+ λ)N
+ µ(µ+ λ)(µ+ δ)(R0 − 1).

Applying the Routh–Hurwitz criterion [6], if a1 > 0, a3 > 0, and a1a2 > a3,
then system (1) is locally asymptotically stable.

Therefore, if R0 ≥ 1, then E∗ is locally asymptotically stable.

3.2 Analysis of global stability

The boycotted equilibrium E∗ and boycott-free equilibrium E0 of the model
(1), respectively, constitute the global asymptotic stability that we are now
concerned with.

Theorem 4. The free equilibrium E0 of system (1) is globally asymptotically
stable on Ω if R0 ≤ 1.

Proof. Consider the Lyapunov function V1 : Ω −→ R in the manner men-
tioned below:

V1(P,B) =
1

2

[
(P − P 0) +B

]2
+

(λ+ δ + 2µ)N

k
B.

Computing the time derivation of V1, we get

V̇1(P,B) = (P −P 0+B) [A− (λ+ µ)P − (δ + µ)B]+
(λ+ δ + 2µ)N

k
Ḃ. (4)

Due to A = P 0(λ+ µ), (4) becomes

V̇1(P,B) = (P − P 0 +B)[−(λ+ µ)(P − P 0)− (δ + µ)B]

+
(λ+ δ + 2µ)N

k
Ḃ

= −(λ+ µ)
(
P − P 0

)2 − (δ + µ)B2

−(λ+ δ + 2µ).
(δ + µ)N

k
(1−R0)B.

Consequently, V̇1(P,B) ≤ 0 for R0 ≤ 1.

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 708–735



719 Stability analysis and optimal strategies for controlling ...t

Moreover, if R0 ≤ 1, then V̇1(P,B) = 0 is equivalent to B = 0 and
P = P 0.

Thus, Theorem 4 has been proved, and we can now say that by LaSalle’s
invariance principle [12], the boycott-free equilibrium E0 is globally asymp-
totically stable on Ω.

The global asymptotic stable theorem for the boycott-free equilibrium E∗

is then presented as follows.

Theorem 5. The boycotted equilibrium E∗ of system (1) is globally asymp-
totically stable on Ω if R0 > 1.

Proof. Consider the Lyapunov function V2 : Ω −→ R in the manner men-
tioned below:

V2(P,B) = Y1

[
P − P ∗

(
1 + ln

(
P

P ∗

))]
+Y2

[
B −B∗

(
1 + ln

(
B

B∗

))]
,

where Y1 and Y2 are positive constants to be chosen later.

Computing the time derivation of V2, we get

V̇2(P,B) =
k

N
(Y1 − Y2)(B −B∗)(P − P ∗)

−AY1
(P − P ∗)2

PP ∗ .

For Y1 = Y2 = 1, we get

V̇2(P,B) = −A (P − P ∗)2

PP ∗ ≤ 0,

and
V̇2(P,B) = 0 is equivalent to P = P ∗.
Thus, Theorem 5 has been proved, and we can now say that by LaSalle’s
invariance principle [12], the boycotted equilibrium E∗ is globally asymptot-
ically stable on Ω.
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3.3 Sensitivity analysis of the model’s parameters

Sensitivity analysis is widely used to determine which parameters significantly
affect the reproduction number R0 or to evaluate a model’s resilience to
parameter values. In the context of [2, 14, 18], a sensitivity analysis of the
model (1) is conducted.

Definition 1. If ξ is a variable that depends differently on t, then its nor-
malized forward sensitivity index (S.I.) is defined as follows:

Υt
ξ =

∂ξ

∂t
.
t

ξ
.

Specifically, the following are the computerized S.I.s of the fundamental
reproduction number R0 concerning the model parameters:

ΥR0
µ =

∂R0

∂µ
.
µ

R0
=

λδ − µ2

(λ+ µ)(δ + µ)
,

ΥR0

k =
∂R0

∂k
.
k

R0
= 1,

ΥR0

δ =
∂R0

∂δ
.
δ

R0
= − δ

δ + µ
,

ΥR0

λ =
∂R0

∂λ
.
λ

R0
= − λ

λ+ µ
.

A positive value of the S.I., that isΥR0

k indicates that an increase (decrease) in
the value of each parameter in this instance results in a proportional increase
(decrease) in the basic reproduction number of the disease. Conversely, the
negative sign of S.I. suggests that an increase (decrease) in the value of each
of the parameters leads to a corresponding decrease (increase) in the basic
reproduction number R0. As an illustration, ΥR0

k = 1 implies that a 15%
increase or decrease in the effective contact rate k will result in a 15% increase
or reduction in the basic reproduction number R0. In Table 1, we present
the sensitivity indices of all model parameters.

Therefore, sensitivity analysis provides information on the appropriate
intervention tactics to stop and manage the emergence of a product boycott
across the communities outlined in the model (1).
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Table 1: Description and S.I. of parameters

Parameter Description Value S.I.
µ The natural death rate 0.053 +0.077

k The effective impact rate of boycotters 0.4 +1

δ The rate at which boycotters convert to 0.01 −0.15

actual consumers
λ The rate of transition of potential consumers 0.6 −0.91

to actual consumers

3.4 The numerical simulation

To support our theoretical findings on the stability analysis of the system
(1), we provide some numerical simulations in this part. Certain simulation
parameters are taken from [16, 17, 10, 20], which discusses the Moroccans’
boycott of Centrale Danone [7]. The boycott lasted approximately one year,
starting on the 20th of April 2018 [17], so we take tf = 255 days. Each of the
two sections of our testing is intended to demonstrate a different feature of the
design. First, we aim to test Theorem 4, which states that the boycott free
equilibrium E0 of system (1) is globally stable on Ω. We choose parameters
A = 1375244, λ = 0.6, δ = 0.01, µ = 0.053, k = 0.4, and N = 25950000, and
we note that the parameter’s model units in this work are in days.

From Figure 2, where R0 < 1, we can easily observe the global stability
of the equilibrium E0 = (2.106 × 106, 0, 2.384 × 107) such that the variables
(P ), (B), and (C) converge to the equilibrium point E0.

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 708–735
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Figure 2: The convergence of the solutions to the equilibrium point E0.
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The second series of tests (see Figure 3) simulates the spread of boycott
behavior of Central Danone’s company in the population as a result of high
prices and low product quality [7]. By chosen A = 1375244, λ = 0.2, δ = 0.01,
µ = 0.053, k = 0.6, we have R0 > 1. Then, according to Theorem 5, the
equilibrium E∗ = (2.724× 106, 1.089× 107, 1.233× 107) is globally stable.
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Figure 3: The convergence of the solutions to the equilibrium point E∗.
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4 The Problem of optimal control

4.1 Problem synopsis

By targeting its products with boycott campaigns, each producing company
aims to protect the level of sales of its product and maintain its loyal cus-
tomers. To achieve this, appropriate strategies must be adopted to ensure
that the number of consumers C(t) is maximized and the number of inter-
rupters B(t) is minimized over the period [t0, tf ]. For that, we propose in
this work two controls. The control u1 represents the effort made to intro-
duce the product and encourage possible consumers to use it by promoting
it through social media, including promotions and offers. The control u2 in-
dicates the efforts to deal with boycotters by understanding the reasons for
their position and striving to meet their demands, including developing the
product, gradually lowering its price over time, and providing incentives to
the product’s users. Thus, we consider our controlled mathematical model:

Ṗ (t) = A− k
P (t)B(t)

N
− (µ+ λ)P (t)− u1(t)P (t),

Ḃ(t) = k
P (t)B(t)

N
− (δ + µ)B(t)− u2(t)B(t),

Ċ(t) = λP (t) + δB(t)− µC(t) + u1(t)P (t) + u2(t)B(t),

(5)

with the initial conditions P0 ≥ 0, C0 ≥ 0, and B0 ≥ 0.

The problem is to minimize the objective functional,

J(u1, u2) = B(tf )−C(tf )+
∫ tf

t0

[B(v)−C(v)+M1

2
u21(v)+

M2

2
u22(v)]dv, (6)

where tf is the final time, and the parameters M1 and M2 are the strictly
positive cost coefficients; they are selected to weigh the relative importance
of u1 and u2 at time t.

In other words, we look for the optimal controls u1 and u2 such that

J(u∗1, u
∗
2) = min

(u1,u2)∈U2
ad

J(u1, u2),

where Uad is the set of admissible controls defined by
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Uad = {ui(t) : 0 ≤ ui ≤ 1, for i = 1, 2, and t ∈ [t0, tf ]}.

4.2 Optimal controls’ existence

Fleming and Rishel’s result (see [8, Corollary 4.1]) can be used to determine
whether the optimal controls exist.

Theorem 6. Take into consideration the system (5) with control problem.
An optimal control (u∗1, u∗2) ∈ U2

ad exists such that

J(u∗1, u
∗
2) = min

(u1,u2)∈U2
ad

J(u1, u2)

if all of the following conditions hold:

1. The set of corresponding state variables and the controls is nonempty.

2. The Uad control set is closed and convex.

3. A linear function in the state and control variables bounds the state
system’s right side.

4. The integrand L(P,B,C, u1, u2) of the objective functional is convex
on Uad and there exist constants c1, c2 > 0, and ϵ > 1 such that:

L(P,B,C, u1, u2) ≥ −c1 + c2
(
|u1|2 + |u2|2

)ϵ/2
.

Proof. Condition 1. To prove that the set of corresponding state variables
and the controls is nonempty, a simplified version of an existing result (see
[3, Theorem 7.1.1]) is used.

Let Ṗ = OP (t;P,B,C), Ḃ = OB(t;P,B,C), and Ċ = OC(t;P,B,C),
where OP , OB , and OC from the equations system (5)’ right-hand side.

Let ui(t) = ci for i = 1, 2 for some constants, and because all parameters
are constants, and P , B, and C are continuous, then OP , OB , and OC are
also continuous.

Moreover, the partial derivatives ∂OP

∂P
, ∂OP

∂B
, ∂OP

∂C
, ∂OB

∂P
, ∂OB

∂B
, ∂OB

∂C
,

and ∂OC

∂P
, ∂OC

∂B
, ∂OC

∂C
are all continuous. Consequently, there exists a unique

solution (P,B,C) that fulfills the initial conditions.
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Therefore, the set of corresponding state variables and the controls is
nonempty, and Condition 1 is satisfied.

Condition 2. By definition, Uad is closed. Take any controls v1, v2 ∈ Uad

and ε ∈ [0, 1], then 0 ≤ εv1 + (1− ε)v2.

Moreover, we note that εv1 ≤ ε and (1− ε)v2 ≤ (1− ε). Then εv1 + (1−
ε)v2 ≤ ε+ (1− ε) = 1.

Therefore, 0 ≤ εv1 + (1 − ε)v2 ≤ 1, for all v1, v2 ∈ Uad and ε ∈ [0, 1].

Hence, Uad is convex and Condition 2 is fulfilled.

Condition 3. Using the differential equations system (5), we get

dN

dt
≤ A− µN.

So,
lim
t→∞

supN(t) ≤ A

µ
.

As a result, every solution for model (5) is bounded.

Thus, there exist positive constants R1, R2, and R3 such that for all t ∈
[t0, tf ],

P (t) ≤ R1,

B(t) ≤ R2,

C(t) ≤ R3.

We take into consideration
OP = Ṗ (t) ≤ A,

OB = Ḃ(t) ≤ kP (t)− u2(t)B(t),

OC = Ċ(t) ≤ λP (t) + δB(t) + u1(t)R1 + u2(t)R2

Then, system (5) can be rewritten in a matrix from as

O(t;P,B,C) ≤ Ā+BX(t)−RU(t),

where O(t;P,B,C) =
[
OP OB OC

]T
, Ā =

[
A 0 0

]T
, X(t) =

[
P B C

]T
,

U(t) =
[
u1 u2

]T
, and
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B =


0 0 0

k 0 0

λ δ 0

 , R =


0 0

0 B

−P −B

 .
The control vector and state variable vector are given by a linear function.
Consequently, we are able to write

∥O(t;P,B,C)∥ ≤ ∥Ā∥+ ∥B∥∥X(t)∥+ ∥R∥∥U(t)∥

≤ ψ +Φ(∥X(t)∥+ ∥U(t)∥) ,

where ψ = ∥Ā∥ and Φ = max (∥B∥, ∥R∥).

As a result, we can observe that the sum of the state and control vectors
bounds the right side. Consequently, condition 3 is met.

Condition 4. The integrand in the objective functional (6) is convex on
Uad. The goal is to demonstrate that there exist constants c1, c2 > 0 and
ϵ > 1 such that the integrand L(P,B,C, u1, u2) of the objective functional
satisfies

L(P,B,C, u1, u2) = B(t)− C(t) +
M1

2
u21 +

M2

2
u22

≥ −c1 + c2
(
|u1|2 + |u2|2

)ϵ/2
.

Since the state variables are bounded, let ϵ = 2, c1 = 2 sup
t∈[t0,tf ]

(B,C), and

c2 = inf(M1

2
,
M2

2
). Subsequently, it implies that

L(P,B,C, u1, u2) ≥ −c1 + c2
(
|u1|2 + |u2|2

)ϵ/2
.

4.3 The optimal controls’ characterization

In this part, we make use of Pontryagin’s maximal principle [22]. The key
idea is to use the adjoint function to produce the Hamiltonian function by
connecting the differential equations system to the objective function. This
idea transfers the problem of finding the control to optimize the objective
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functional subject to the state of differential equations with initial condition
and then finds the control to optimize the Hamiltonian pointwise (concerning
the control).

The Hamiltonian H in time t is defined as

H(t) = B(t)− C(t) +
M1

2
u21(t) +

M2

2
u22(t) +

3∑
i=1

ζifi,

where fi represents the right side of the ith state variable’s differential equa-
tions system (5).

Theorem 7. Given an optimal control u∗ = (u∗1, u
∗
2) ∈ U2

ad and correspond-
ing solutions P ∗, B∗, and C∗ of corresponding state system (5), there exist
adjoint functions ζ1, ζ2, and ζ3 fulfilling

ζ̇1 = ζ1{k
B(t)

N
+ λ+ µ+ u1(t)} − ζ2k

B(t)

N
− ζ3{λ+ u1(t)},

ζ̇2 = −1 + ζ1k
P (t)

N
− ζ2{k

P (t)

N
− δ − µ− u2(t)} − ζ3{δ + u2(t)},

ζ̇3 = 1 + ζ3µ.

(7)

At the time tf , given the transversality conditions, we have

ζ1(tf ) = 0,

ζ2(tf ) = 1,

ζ3(tf ) = −1.

Moreover, the optimal controls u∗1(t) and u∗2(t) for t ∈ [t0, tf ] are provided by

u∗1(t) = min
{
1,max

{
0,

1

M1
P (t)(ζ1(t)− ζ3(t))

}}
, (8)

u∗2(t) = min
{
1,max

{
0,

1

M2
B(t)(ζ3(t)− ζ2(t))

}}
. (9)

Proof. The Hamiltonian H in time t, is defined by

H(t) = B(t)− C(t) +
M1

2
u21(t) +

M2

2
u22(t)

+ζ1{A− k
B(t)P (t)

N
− (λ+ µ)P (t)− u1(t)P (t)}

+ζ2{k
B(t)P (t)

N
− (δ + µ)B(t)− u2(t)B(t)}

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 708–735



729 Stability analysis and optimal strategies for controlling ...t

+ζ3{λP (t) + δB(t)− µC(t) + u1(t)P (t) + u2(t)B(t)}.

Using Pontryagin maximum principle, one may obtain the transversality con-
ditions and adjoint equations, for t ∈ [t0, tf ], such that

ζ1(tf ) = 0, ζ̇1(t) = −∂H
∂P

,

ζ2(tf ) = 1, ζ̇2(t) = −∂H
∂B

,

ζ3(tf ) = −1, ζ̇3(t) = −∂H
∂C

.

The optimality condition can be used to solve the optimal controls u∗1(t) and
u∗2(t) for t ∈ [t0, tf ]. We have

∂H

∂u1
=M1u1(t) + ζ1(t){−P (t)}+ ζ3(t){P (t)} = 0,

∂H

∂u2
=M2u2(t) + ζ2(t){−B(t)}+ ζ3(t){B(t)} = 0.

That is,

u1(t) =
1

M1
P (t)(ζ1(t)− ζ3(t)),

u2(t) =
1

M2
B(t)(ζ3(t)− ζ2(t)).

It is easy to obtain u∗1(t) and u∗2(t) in the form of (8) and (9) by the bounds
in Uad of the controls.

4.4 The numerical simulation

We have starting conditions for the state variables and terminal conditions
for the adjoints in our control problem. The optimality system is a two-point
boundary value problem with discrete boundary conditions at periods step
i = t0 and i = tf . We solve the optimality system iteratively by solving
the adjoint system backward after solving the state system forward. We first
estimate the controls in the first iteration. Next, we adjust the controls before
the subsequent iteration based on the characterization. We continue until the
next iteration converges. The following data are used to create and compile
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a code in MATLAB: A = 900000, λ = 0.05, δ = 0.011, µ = 0.053, k = 0.95,
and N = 25950000 (the parameter’s model units are in days).

Strategy 1: Correcting fallacies and restoring confidence in the product.
In this strategy, we concentrate the efforts, using optimal control u2, to

deal with boycotters by understanding the reasons for their position and
striving to meet their demands, including developing the product, addressing
negative rumors, restoring their confidence, and gradually lowering its price.
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Figure 4: Optimal consumers and boycotters with and without control u∗
2.

From Figures 4a and 4b, we can see that the number of consumers of
the product has grown from 4 × 106 to 8.243 × 106. Also, the number of
boycotters has decreased from 1.125× 107 to 1.392× 106.

Strategy 2: Publicity and Marketing.
Using the optimal control u1, this strategy focuses on stimulating and

compelling advertising to encourage and motivate potential consumers to
use the product and protect them from being affected by boycott campaigns.
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Figure 5: Optimal consumers and boycotters with and without control u∗
1.

From Figures 5a and 5b, we observe that the number of consumers in-
creased from 4×106 to 1.616×107. Also, the number of boycotters decreased
from 1.125× 107 to 3.174× 106.

Strategy 3: Encouraging and motivating potential consumers and tar-
geting boycotters.

This strategy aims to improve the numerical outcomes of cases 1 and 2
by activating simultaneously the two optimal controls u1 and u2.
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Figure 6: Optimal consumers and boycotters with and without controls u∗
1 and u∗

2.
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From Figure 6a, we show clearly that the number of consumers grows
significantly from 4 × 106 to 1.617 × 107. Also, Figure 6b shows that the
number of boycotters dropped from 1.125× 107 to 3.255× 105, which means
the proposed strategy is more effective when we combine two optimal controls
u∗1 and u∗2.

Ultimately, we deduce that the suggested approach becomes more suc-
cessful when we combine the two optimal controls, u∗1 and u∗2.

Therefore, we observe that as the number of boycotters decreases, their
influence on potential consumers diminishes as well, and thus trust is renewed
between the product and the consumer. Consequently, a large number of
consumers tend to give the product another try, often in a shorter time. This
is particularly evident with the introduction of marketing campaigns that
address misconceptions, highlight new features of the product, and interact
positively with citizens’ demands to respect reasonable prices.

5 Conclusion

In this research, we proposed a mathematical model that describes the boy-
cott behavior of citizens regarding a product. We studied the stability anal-
ysis of the equilibriums of the proposed model, as well as the sensitivity
analysis, in order to know more about the parameters that have a high im-
pact on the reproduction number R0. Using the results of optimal control
theory, we have presented optimal strategies to persuade boycotters of a
product to retract their position and thus reduce their influence on potential
consumers. We ultimately concluded that both the number of boycotters
and their influence on potential consumers decreased, leading to a renewal
of trust between the product and the consumer. Consequently, a large num-
ber of consumers tend to give the product another try, often in a shorter
period, especially with the launch of marketing campaigns that rectify mis-
conceptions, highlight new features of the product, and interact positively
with citizens’ demands to respect reasonable prices. This study could have
other interesting extensions, such as studying stochastic stability and opti-
mal control in a stochastic version of our model through stochastic outcomes.
This approach provides an additional degree of realism compared to its de-
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terministic counterpart via a stochastic differential equation and includes the
effect of a fluctuating environment.
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