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Abstract

In this paper, a singularly perturbed one-dimensional initial boundary
value problem of a quasilinear Sobolev-type equation is presented. The
nonlinear term of the problem is linearized by Newton’s linearization
method. Time derivatives are discretized by implicit Euler’s method on
nonuniform step size. A uniform trigonometric B-spline collocation method
is used to treat the spatial variable. The convergence analysis of the scheme
is proved, and the accuracy of the method is of order two in space and order
one in time direction, respectively. To test the efficiency of the method,
a model example is demonstrated. Results of the scheme are presented in
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tabular, and the figure indicates the scheme is uniformly convergent and
has an initial layer at t = 0.

AMS subject classifications (2020): 65M06, 65M12, 65M22, 65M50.

Keywords: Singularly perturbed; Quasilinear; Sobolev; Trigonometric B-
spline.

1 Introduction

A singularly perturbed differential equation is a differential equation in which
the highest order derivative is multiplied by a small positive parameter ε that
is recognized as a perturbation parameter. While solving these types of prob-
lems, the use of classical numerical methods on a uniform mesh may cause
large oscillations as the perturbation parameter approaches zero in the entire
domain of interest due to the boundary layer behavior. Therefore, to ignore
this oscillation, several researchers constructed suitable numerical methods
for these problems, whose accuracy does not depend on the perturbation
parameter [7, 13, 12, 14, 15, 16].

This study deals also with the singularly perturbed initial boundary value
problem of quasilinear Sobolev equation in the domain Q̄ = Ω̄ × [0, T ], Ω̄ =

[0, l], Q = (0, l)× (0, T ],Ω = (0, l) of the form:
Lu+ f(x, t, u) = ε

[
∂u
∂t

]
− α∂2u

∂x2 + βu∂u
∂x + f(x, t, u) = 0, (x, t) ∈ Q,

u(x, 0) = φ(x), x ∈ Ω̄,

u(0, t) = u(l, t) = 0, t ∈ (0, T ],

(1)
where

[
∂u
∂t

]
= − ∂3u

∂t∂x2 + ∂u
∂t , ε is a small perturbation parameter 0 < ε <

1, and α > 0 and β are given constants. Moreover, φ(x) and f(x, t, u)

are assumed to be sufficiently continuously differentiable functions in Ω̄ and
Q̄× R, respectively.

Sobolev types equation arises in several mathematical problems, such as
homogeneous fluid flow in fissured rocks [4], thermodynamics and propa-
gation of long waves of small amplitude [20], quasi-stationary processes in
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semiconductors [5], shear in second-order fluid [11], application of control
theory [21], and other physical models. The analysis, development, and im-
plementation of numerical methods for the solution of singularly perturbed
pseudo-parabolic/Sobolev types of problems have received wide attention and
developed in [3, 2, 1, 6, 8, 9, 10, 17].

The numerical method of (1) has been studied in the difference schemes for
the singularly perturbed one-dimensional initial boundary value problem of
Sobolev equations with initial jump [1]. Finite elements with piece-wise linear
functions in space and exponential functions in time variables are applied.

Trigonometric B-spline is a nonpolynomial B-spline with a sine function,
which was introduced by Schoenberg in 1964 [19]. Even though the trigono-
metric B-spline function is used to approximate several types of differential
equations, it is not applied to quasilinear Sobolev types of equations. Moti-
vated by this, we present the cubic trigonometric B-spline collocation method
for solving the one-dimensional initial boundary value problem of singularly
perturbed quasilinear Sobolev types of the equation. Implicit Euler and cu-
bic trigonometric B-spline collocation methods are used to control the time
and space variables, respectively.

The outline of this study is the following sequences. A linearization of the
numerical scheme is presented in Section 2. In Section 3, the properties of
the continuous solution are discussed. Numerical formulation of the problem
is presented in Section 4. Convergence analysis and numerical results are
considered in Sections 5 and 6, receptively. Finally, the conclusion of the
study is given in Section 7.

2 Linearization of the problem

The one-dimensional singularly perturbed initial boundary value problem of
Sobolev equation (1) can be rewritten as

−ε
∂3u

∂t∂x2
+ ε

∂u

∂t
− α

∂2u

∂x2
+ F (x, t, u,

∂u

∂x
) = 0, (x, t) ∈ Q, (2)

where F (x, t, u, ∂u
∂x ) = βu∂u

∂x + f(x, t, u).
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641 Nonpolynomial B-spline collocation method ...

To linearize (2), we consider an initial guess for the function u(x, t) by
denoting u(0)(x, t) that satisfies both initial and boundary conditions:

u(0)(x, t) =
1

2
φ(x)

(
1 + e

−2t
ε

)
. (3)

Applying Newton’s linearization method on F (x, t, u, ∂u
∂x )) for the function

u(0)(x, t), we obtain an (n+ 1)th iteration:

F (x, t, u(n+1),
∂u(n+1)

∂x
) = F (x, t, u(n),

∂u(n)

∂x
)

+
(
u(n+1) − u(n)

) ∂F

∂u
|(

u(n), ∂u(n)

∂x

)
+

(
∂u(n+1)

∂x
− ∂u(n)

∂x

)
∂F

∂(∂u∂x )
|(

u(n), ∂u(n)

∂x

). (4)

Substituting (4) into (2) and after some rearrangements we obtain

−ε∂3u(n+1)

∂t∂x2 + ε∂u(n+1)

∂t − α∂2u(n+1)

∂x2

+a(x, t)∂u
(n+1)

∂x + b(x, t)u(n+1) = g(x, t),

u(x, 0) = φ(x), x ∈ Ω̄,

u(0, t) = u(l, t) = 0, t ∈ (0, T ],

(5)

where

a(x, t) =
∂F

∂(∂u∂x )
|(

u(n), ∂u(n)

∂x

), b(x, t) =
∂F

∂u
|(

u(n), ∂u(n)

∂x

),
g(x, t) = u(n) ∂F

∂u
|(

u(n), ∂u(n)

∂x

) +

(
∂u(n)

∂x

)
∂F

∂(∂u∂x )
|(

u(n), ∂u(n)

∂x

)

− F (x, t, u(n),
∂u(n)

∂x
).

3 Properties of continuous solution

Lemma 1. Let φ(x) ∈ C2[0, l] and the derivatives ∂sf
∂xs ,

∂sf
∂us (s = 1, 2), ∂f

∂t ∈
C(Q̄). Then, for the solution u(x, t) of (1), the following estimate holds:∣∣∣∣∂r+su(x, t)

∂tr∂xs

∣∣∣∣ ≤ Cε−r, for all (x, t) ∈
(
Q
)
, r = 0, 1, s = 0, 1, 2 (6)
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for any fixed l and T , and provided that

M0α
−1 |β| l

2π
< 1,

where

α0 =

(
α−M0α

−1 |β| l
2π

π2

e2 + π2

)
, (7)

M0 =

√
l

2

(
∥φ∥1 +

l2 + π2

απ2
max
0≤t≤T

∥f(·, t, 0)∥0

)
, (8)

and C is a generic positive constant,which is independent of ε and mesh
parameters.

Proof. Consider the integral identity

(Lu, u)0 + (f, u)0 = 0,

and taking into account that
(
u∂u

∂x , u
)
0
= 0. Then,(

ε
∂u

∂t
, u

)
0

−
(
ε

∂3u

∂t∂x2
, u

)
0

−
(
α
∂2u

∂x2
, u

)
0

+

(
βu

∂u

∂x
, u

)
0

+(f(x, t, u), u)0 = 0.

Estimating these inner products on an interval 0 to l, we obtain

ε

∫ l

0

∂u

∂t
udx− ε

∫ l

0

∂3u

∂t∂x2
udx− α

∫ l

0

∂2u

∂x2
udx+

∫ l

0

f(x, t, u)udx = 0.

From the linearization by assuming f(x, t, u) ≈ f(x, t, u(0)) + ∂f
∂uu and F =

f(x, t, u(0)), we have

ε

2

d

dt
(u, u)0 −

ε

2

d

dt

(
∂u

∂x
,
∂u

∂x

)
0

− α

(
∂u

∂x
,
∂u

∂x

)
0

+ (F, u)0 +

(
∂f

∂u
u, u

)
0

= 0.

This become

ε

2

d

dt

(∥∥∥∥∂u∂x
∥∥∥∥2
0

+ ∥u∥20

)
+ α

∥∥∥∥∂u∂x
∥∥∥∥2
0

+ (F, u)0 +

(
∂f

∂u
u, u

)
0

= 0. (9)

Applying an inequality (F, u)0 ≥ −∥F∥0 ∥u∥0, γ = l2

l2+π2 for 0 < γ < 1 into
(9), and after rearrangement, we get

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 638–661



643 Nonpolynomial B-spline collocation method ...

ε
d

dt

(∥∥∥∥∂u∂x
∥∥∥∥2
0

+ ∥u∥20

)
+ 2α

(
π2

l2 + π2

)(∥∥∥∥∂u∂x
∥∥∥∥2
0

+ ∥u∥20

)
≤ 2 ∥F∥0 ∥u∥0 .

(10)
Choosing C1 = α π2

l2+π2 and δ =
∥∥∂u
∂x

∥∥2
0
+ ∥u∥20, the inequality (10) is written

as
εδ′(t) + 2C1δ(t) ≤ 2 ∥F∥0 ∥u∥0 . (11)

Solving the differential inequality (11), we obtain

δ(t) ≤ δ0e
−C1t

ε +

(
1

C2
1

max
0≤τ≤t

∥f(·, t, 0)∥20
(
1− e

−C1t
ε

))
(12)

with δ0 = ∥φ∥21 = ∥φ∥20 + ∥φ′∥20.

Using by the virtue of embedding inequality l
4

∥∥∂u
∂x

∥∥2
0
≥ ∥u∥2∞,Ω into (12)

and after some mathematical manipulation, we obtain

|u(x, t)| ≤
√
l

2

(
δ

1
2
0 e

−C1t
2ε +

1

C1
max
0≤τ≤t

∥f(·, t, 0)∥0

)
. (13)

Using an identity(
Lu,

∂2u

∂x2

)
0

=

(
f,

∂2u

∂x2

)
0

, (14)

ε

2

d

dt

(
∂u

∂x
,
∂u

∂x

)
0

+
ε

2

d

dt

(
∂2u

∂x2
,
∂u

∂x

)
0

+ α

(
∂2u

∂x2
,
∂u

∂x

)
0

+

(
F,

∂2u

∂x2

)
0

+

(
∂f

∂u
u,

∂2u

∂x2

)
0

= 0. (15)

Using of Friedrich’s inequality (15) then, after some rearrangement, we obtain

ε
d

dt

(∥∥∥∥∂2u

∂x2

∥∥∥∥2
0

+

∥∥∥∥∂u∂x
∥∥∥∥2
0

)
0

+ 2α

(
π2

l2 + π2

)(∥∥∥∥∂2u

∂x2

∥∥∥∥2
0

+

∥∥∥∥∂u∂x
∥∥∥∥2
0

)

≤ 2 ∥F∥0

∥∥∥∥∂2u

∂x2

∥∥∥∥
0

, (16)

which is written as

εδ′(t) + 2C1δ(t) ≤ 2 ∥F∥0

∥∥∥∥∂2u

∂x2

∥∥∥∥
0

, (17)

where δ(t) =
∥∥∥∂2u
∂x2

∥∥∥2
0
+
∥∥∂u
∂x

∥∥2
0
and C1 = α π2

l2+π2 .
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By solving the differential inequality (17) and applying embedding in-
equality, we get

|∂
2u

∂x2
| ≤ C. (18)

With the same process from an identity(
Lu,

∂3u

∂t∂x2

)
0

=

(
f,

∂3u

∂t∂x2

)
0

, (19)

we obtain∥∥∥∥ ∂3u

∂t∂x2

∥∥∥∥2
0

+

∥∥∥∥ ∂2u

∂t∂x

∥∥∥∥2
0

≤

(
∥u∥20 +

∥∥∥∥∂u∂x
∥∥∥∥2
0

+

∥∥∥∥∂2u

∂x2

∥∥∥∥2
0

+
C

ε2
∥F∥20

)
, (20)

which leads to (6) for r = 1, s = 1, 2, by using the proved estimate for∥∥∂su
∂x2

∥∥
0
, s = 0, 1, 2.

Finally, we can write (1) as a form

ε
∂3u

∂t∂x2
+ α

∂2u

∂x2
= ϕ(x, t), (21)

where ϕ(x, t) = ε∂u
∂t + βu∂u

∂x + f(t, x, u) and |ϕ(x, t)| ≤ C with the estimate
of (6) immediately for r = 0, 1, s = 2.

Lemma 2. Under the assumption of Lemma 1, the following inequality holds:∥∥∥∥∂u∂t
∥∥∥∥
1

≤ C{1 + ε−1e−
ϖ0t
ε }, t ∈ [0, T ], (22)

where ϖ0 = C1

2 with C1 = α π2

l2+π2 , which is given in the above.

Proof. Differentiating (1) with respect t and proceeded with ∂u
∂t , we have

d

dt

(
ε
∂u

∂t
− ε

∂3u

∂t∂x2
− α

∂2u

∂x2
+ βu

∂u

∂x
+ f(x, t, u) = 0

)
. (23)

With an assumption d
dtβu

∂u
∂x = 0, we can have(

ε
∂2u

∂t2
,
∂u

∂t

)
0

−
(
ε

∂4u

∂t2∂x2
,
∂u

∂t

)
0

−
(
α

∂3u

∂t∂x2
,
∂u

∂t

)
0

+

(
∂f

∂t
,
∂u

∂t

)
0

= 0.

For
(

∂f
∂t ,

∂u
∂t

)
0
≥ −

∥∥∥∂f
∂t

∥∥∥
0

∥∥∂u
∂t

∥∥
0
, we have
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645 Nonpolynomial B-spline collocation method ...

ε

2

d

dt

(∥∥∥∥∂u∂t
∥∥∥∥2
0

+

∥∥∥∥ ∂2u

∂t∂x

∥∥∥∥2
0

)
+ α

∥∥∥∥ ∂2u

∂t∂x

∥∥∥∥2
0

≤
∥∥∥∥∂f∂t

∥∥∥∥
0

∥∥∥∥∂u∂t
∥∥∥∥
0

.

Applying an inequality relation
∥∥∥∂f

∂t

∥∥∥
0

∥∥∂u
∂t

∥∥
0
≤ 1

C1

∥∥∥∂f
∂t

∥∥∥2
0
+C1

∥∥∂u
∂t

∥∥2
0
, it gives

ε
d

dt

(∥∥∥∥∂u∂t
∥∥∥∥2
0

+

∥∥∥∥ ∂2u

∂t∂x

∥∥∥∥2
0

)
+ C1

(∥∥∥∥ ∂2u

∂t∂x

∥∥∥∥2
0

+

∥∥∥∥∂u∂t
∥∥∥∥2
0

)
≤ C, (24)

where C = (C1 − 2α)
∥∥∥ ∂2u
∂t∂x

∥∥∥2
0
+ 3C1

∥∥∂u
∂t

∥∥2
0
+ 2

C1

∥∥∥∂f
∂t

∥∥∥2
0
.

Inequality (24) is written as

εδ′(t) + C1δ(t) ≤ C, (25)

where δ(t) =
∥∥∂u

∂t

∥∥2
1
=
∥∥∂u

∂t

∥∥2
0
+
∥∥∥ ∂2u
∂t∂x

∥∥∥2
0
.

This is similar to δ(t) = ∥v∥20 + ∥v′∥20 for v =
∥∥∂u

∂t

∥∥2
0
and C1 = α π2

l2+π2 .
Solving inequality (25), we get

δ(t) ≤ C

(
1 +

1

ε2
e

−C1t
ε

)
, (26)

which yields ∥∥∥∥∂u∂t
∥∥∥∥
1

≤ C

(
1 +

1

ε
e

−C1t
2ε

)
.

With ϖ0 = C1

2 , it gives ∥∥∥∥∂u∂t
∥∥∥∥
1

≤ C
(
1 + ε−1e

−ϖ0t
ε

)
.

4 Numerical scheme formulation

4.1 Temporal discretization

Mesh generation
Based on (22), there is an initial layer in the neighborhood of t = 0 of order
ϖ−1

0 ε|ln ε| thickness, where ϖ0 is given by (7). We divide two nonoverlapping
subintervals [0, ϱ] and [ϱ, T ], with the transition parameter
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ϱ = min{T
2
, ϖ−1

0 ε|ln ε|}.

Let ΩN

t = {tj}Nj be the set of mesh points. Now, we define piece-wise uniform
mesh points as

tj =


−ϖ−1

0 ε lnN
[
1− (1− ε) 2j

N

]
, j = 0, . . . , N

2 , ifϱ = T
2 ,

−ϖ−1
0 ε lnN

[
1−

(
1− e

−ϖ0T
2ε

)
2j
N

]
, j = 0, . . . , N

2 , ifϱ < T
2 ,

ϱ+
(
1− N

2

)
τ, j = N

2 , . . . , N, τ = 2 (T−ϱ)
N .

To discretize time derivative of (5), we use the implicit Euler method on
nonuniform step size on the domain: ΩN

t = 0 = t0 < t1 < · · · < tj < tj+1 <

· · · < tM = T, j = 0.1, . . . ,M − 1, τ(j) = t(j + 1) − t(j) at the point
(x, tj). Then, (5) becomes

−
(

ε
τ(j) +

α
2

)
∂2uj+1

∂x2 (x) + a (x, tj+1)
∂uj+1

∂x (x) +
(

ε
τ(j) + b (x, tj+1)

)
uj+1(x)

= −ε
τ(j)

∂2uj

∂x2 (x) + ε
τ(j)u

j(x) + g(x, tj+1).

(27)

Lemma 3 (Semi-discrete maximum principle). For each j = 1, 2, . . . , N − 1,
let Zj+1 be a sufficiently smooth function on domain Ω̄. If Zj+1(0) ≥ 0,
Zj+1(1) ≥ 0, and Lτ(j)uj+1(x) ≥ 0, x ∈ Ω, then Zj+1 ≥ 0, for all x ∈ Ω̄.

Proof. Assume that there is (x∗) such that

Zj+1(x
∗) = min

x∈Ωx

Zj+1(x) ≥ 0.

From the assumption it indicates that x∗ /∈ {1, 2}, which implies x∗ ∈ (0, 1).
Applying the property of extreme values in calculus gives d

dxZj+1(x
∗) = 0,

and d2

dx2Zj+1(x
∗) ≥ 0, given that Lτ(j)uj+1(x

∗) < 0, which contradicts to
Lτ(j)uj+1(x

∗) ≥ 0, x ∈ Ω. Therefore, we conclude that Zj+1 ≥ 0, for all x ∈
Ω. Hence, the operator Lτ(j) satisfies a semi-discrete maximum principle.

Lemma 4 (Local truncation error). Consider the bound on the derivatives
of u(x, t) with respect to tgiven by

∣∣∣∂ku(x,t)
∂xk

∣∣∣ ≤ C, for all (x, t) ∈
(
Ω
)
.

Then the local error estimate in the temporal direction is given by

∥ej+1∥ ≤ C (τ)
2
,
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647 Nonpolynomial B-spline collocation method ...

where ej+1 = uj+1(x) − U j+1(x) is the local error estimate in the temporal
direction at (j + 1)th time level.

Proof. From (27), we have

ε

(
uj+1(x)− uj(x)

τ(j)
− τ(j)

2

∂2uj

∂x2
(x)

)
− ε

∂2

∂x2

(
uj+1(x)− uj(x)

τ(j)
− τ(j)

2

∂2uj

∂x2
(x)

)
− α

∂2uj+1

∂x2
+ a(x, tj+1)

∂uj+1

∂x
+ b(x, tj+1)u

= g(x, tj+1) +O(τ2(j))2, (x, t) ∈ Q.

(28)

Multiplying (28) by τ(j), it gives

ε

(
uj+1(x)− uj(x)− τ(j)2

2

∂2uj

∂t2
(x)

)
− ε

∂2

∂x2

(
uj+1(x)− uj(x)− τ(j)2

2

∂2uj

∂t2
(x)

)
− ατ(j)

∂2uj+1

∂x2
+ τ(j)a(x, tj+1)

∂uj+1

∂x
+ τ(j)b(x, tj+1)u

= τ(j)g(x, tj+1) +O(τ(j))3, (x, t) ∈ Q.

(29)

By rearranging this, we obtain(
ε− ε

∂2

∂x2
− τ(j)

2

(
α

∂2

∂x2
− a(x, tj+1)

∂

∂x
− b(x, tj+1)

))
uj+1(x)

=

(
ε− ε

∂2

∂x2

)
uj(x) + τ(j) (g(x, tj+1))

+ (τ(j))2
(
ε

2

∂2

∂x2
− ε

2

∂4

∂x4

)
uj(x) +O (∆t(j))

3
, (30)

which is written as

Lτ
εu

j+1(x) = Γ (x, tj+1) +O (τ(j))
2
, (31)

where

Lτ
ε =

(
ε− ε

∂2

∂x2
− τ(j)

2

(
α

∂2

∂x2
− a(x, tj+1)

∂

∂x
− b(x, tj+1)

))
Γ (x, tj+1) =

(
ε− ε

∂2

∂x2

)
uj(x, t) + τ(j) (g(x, tj+1)) .

From the boundedness of the solution, we have
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Lτ
εU

j+1(x) = Γ (x, tj+1) for all x ∈ Ω̄. (32)

Now, from the desired mesh, we consider two case:
Case 1: For τ(j) ∈ [0, σ], let us consider max{τ(j) = τ1}.

Now, from (31) and (32), it yields∥∥Lτ
ε

(
uj+1(x)− U j+1(x)

)∥∥ = ∥Lτ
εej+1∥ ≤ C (τ1)

2
.

Case 2: For τ(j) ∈ [σ, 1], let us consider max{τ(j) = τ2}.
Again from (31) and (32), we have∥∥Lτ

ε

(
uj+1(x)− U j+1(x)

)∥∥ = ∥Lτ
εej+1∥ ≤ C (τ2)

2

with the boundary conditions uj+1(0) − U j+1(0) = ej+1(0) = 0 and
uj+1(1) − U j+1(1) = ej+1(1) = 0. Hence applying the maximum principles
and choosing that τ = max{τ1, τ2} give

∥ej+1∥ ≤ C (τ)
2
.

Lemma 5. [Global error estimate] Under the hypothesis of the Lemma 4,
the global error estimate in the temporal direction is given by

∥Ej+1∥∞ ≤ C(τ)2, for all j ≤ T/∆t,

where Ej+1 is the global error estimate in the temporal direction at (j+1)th
time level.

Proof. Using local error estimates up to (j + 1)th time step given in Lemma
2, we get the following global error estimates at (j + 1)th time step

∥Ej+1∥∞ =

∥∥∥∥∥
j∑

k=1

ek

∥∥∥∥∥
∞

, j + 1 ≤ T/τ(j)

≤ ∥e1∥∞ + ∥e2∥∞ + ∥e3∥∞ + · · ·+ ∥e+1∥∞
≤ c1j + 1 (τ(j))

2
(by Lemma 4)

≤ c1 ((j + 1)τ(j)) (τ(j))

≤ c1T (τ(j)) , ((j + 1)τ(j) ≤ T )
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≤ C (τ(j)) choosing τ = max{τ(j)}

≤ C (τ) .

4.2 Spatial discretization

Descretizing the interval equally by knots xi into N subintervals [xi, xi+1],
i = 0, 1, . . . , N − 1, such that 0 = x0 < x1 < · · · < xN = l as a uniform
partition of the solution domain 0 ≤ x ≤ l with the step length h = xi+1 −
xi =

l
N , i = 0, 1, . . . , N − 1.

The piece-wise cubic trigonometric B-spline basis function TBi(x) over
the uniform mesh is defined as [22]:

TBi(x)

=
1

ω(h)



(sin)3
(

x−xi−2

2

)
, x ≤ xi−1,

sin
(

x−xi−2

2

)
[sin

(
x−xi−2

2

)
sin

(xi−x
2

)
+ sin

(
xi+1−x

2

)
sin

(
x−xi−1

2

)
]

+ sin
(

x−xi−2

2

)
sin2

(xi−x
2

)
, xi−1 ≤ x ≤ xi,

sin
(

xi+2−x

2

)
[sin

(
x−xi−1

2

)
sin

(
xi+1−x

2

)
+ sin

(
xi+2−x

2

)
sin

(x−xi
2

)
]

+ sin
(

x−xi−2

2

)
sin2

(
xi+1−x

2

)
, xi ≤ x ≤ xi+1,

sin3
(

xi+2−x

2

)
, x ≤ xi+2,

0, otherwise,

(33)

where ω(h = sin
(
h
2

)
sin (h) sin

(
3h
2

)
and {TB−1(x), TB0(x), . . . , TBN (x), TBN+1(x)}

form a basis over the region 0 ≤ x ≤ l. The coefficients of the approximate
function TBi(x) and its derivatives are given in Table 1.

Table 1: Coefficients of cubic B-splines and its derivatives at knots

x xi−2 xi−1 xi xi+1 xi+2

TBi(x) 0 η1 η2 η1 0
TB

′

i(x) 0 −η3 0 η3 0
TB”

i (x) 0 η4 η5 η4 0

We have
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η1 =
sin2 h

2

sin(h) sin( 3h2 )
, η2 =

2

1 + 2 cos(h) , η3 =
3

4 sin( 3h2 )
,

η4 =
3(1 + 3 cos(h))

16 sin2(h2 )
(
2 cos(h2 ) + cos( 3h2 )

) , η5 = −
3 cos2(h2 )

2 sin2(h2 ) (1 + 2 cos(h))
.

Let U(x) be the cubic trigonometric B-spline collocation to approximate (1)
and given as

U(x) ≈
M+1∑
i=−1

αi(t)TBi(x), (34)

where αi(t) is an unknown time-dependent parameter to be determined from
the collocation method together with using the boundary and initial condi-
tions. Using (34) and Table 1, an approximate values of U(x, t) and its first
and second derivatives at the knots are

Ui = η1αi−1 + η2αi + η1αi+1,

U
′

i = −η3αi−1 + η3αi+1,

U”
i = η4αi−1 + η5αi + η4αi+1.

(35)

By substituting (35) into (27), we obtain(
−η4

(
ε

τ(j)
+ α

)
− η3a

j+1
i + η1b

j+1
i

)
αj+1
i−1 +

(
−η5

(
ε

τ(j)
+ α

)
+ η2b

j+1
i

)
αj+1
i

+

(
−η4

(
ε

τ(j)
+ α

)
+ η3a

j+1
i + η1b

j+1
i

)
αj+1
i+1

=

(
− ε

τ(j)
(η4 − η1)

)
αj
i−1 +

(
− ε

τ(j)
(η5 − η2)

)
αj
i

+

(
− ε

τ(j)
(η4 − η1)

)
αj
i+1 + gj+1

i .

(36)

This can be written as

r−i α
j+1
i−1 + rciα

j+1
i + r+i α

j+1
i+1 = q−i α

j
i−1 + qciα

j
i + q+i α

j
i+1 + gj+1

i , (37)

where

r−i = −η4

(
ε

τ(j)
+ α

)
− η3a

j+1
i + η1b

j+1
i ,

rci = −η5

(
ε

τ(j)
+ α

)
+ η2b

j+1
i ,
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r+i = −η4

(
ε

τ(j)
+ α

)
+ η3a

j+1
i + η1b

j+1
i ,

q−i = − ε

τ(j)
(η4 − η1) ,

qci = − ε

τ(j)
(η5 − η2) ,

q+i = − ε

τ(j)
(η4 − η1) .

Imposing the boundary condition
Using the boundary conditions into (35), we have for i = 0,

η1α
j
−1 + η2α

j
0 + η1α

j
1 = ϕ0 ⇒ αj

−1 =
1

η1
ϕ0 −

η2
η1

αj
0 − αj

1, (38)

for i = N,

η1α
j
N−1 + η2α

j
N + η1α

j
N+1 = ϕN ⇒ αj

N+1 =
1

η1
ϕN − αj

N−1 −
η2
η1

αj
N . (39)

Substituting (38) and (39) into (37), we obtain


(
rc0 − η2

η1
r−0

)
αj+1

0 +
(
r+0 − r−0

)
αj+1

0

=
(
qc0 − η2

η1
q−0

)
αj

0 +
(
q+0 − q−0

)
αj

0 +

(
q
−
0
η1

ϕj
0 − r

−
0
η1

ϕj+1
0

)
+ gj+1

0 ,

r−i αj+1
i−1 + rciα

j+1
i + r+i αj+1

i+1 = q−i αj
i−1 + qciα

j
i + q+i αj

i+1 + gj+1
i ,(

r−N − r+N

)
αj+1

N−1 +
(
rcN − η2

η1
r+N

)
αj+1

N

=
(
q+N − q+N

)
αj

N−1 +
(
qcN − η2

η1
q+N

)
αj

N +

(
q
+
N
η1

ϕj
N −

r
+
N
η1

ϕj+1
N

)
+ gj+1

N ,

u(xi, 0) = φ(xi), xi ∈ Ω̄,

u(0, tj+1) = u(l, tj+1) = 0, tj+1 ∈ (0, T ].

(40)

Equation (40) is an (N + 1)× (N + 1) system of linear equations.

Determination of the initial vector α0
i

An initial vector can be calculated from the initial condition and first space
derivative of the initial conditions at the boundaries. At the knots xi, the
following relations are used:

U0(x0, 0) = ϕ0
0 = η1α

0
−1 + η2α

0
0 + η1α

0
1

U0(i, 0) = ϕi
0 = η1α

0
i−1 + η2α

0
i + η1α

0
i+1, i = 1, 2, . . . , N − 1,

U0(1, 0) = ϕ0
N = η1α

0
N−1 + η2α

0
N + η1α

0
N+1. (41)

From first derivative of (35), we also have
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η3α
0
1 − η3α

0
−1 =

(
ϕ0
0

)′ ⇒ α0
−1 = α0

1 −
1

η3

(
ϕ0
0

)′
,

η3α
0
N+1 − η3α

0
N−1 =

(
ϕ0
N

)′ ⇒ α0
N+1 = α0

N−1 +
1

η3

(
ϕ0
N

)′
. (42)

Substituting (42) into (41), we obtain an (N + 1)× (N + 1) system of linear
equations:

η2α
0
0 + 2η1α

0
1 = ϕ0

0 +
η1
η3

(
ϕ0
0

)′
η1α

0
i−1 + η2α

0
i + η1α

0
i+1 = U0(i, 0), i = 1, 2, . . . , N − 1,

2η1α
0
N−1 + η2α

0
N = ϕ0

N − η1
η3

(
ϕ0
N

)′
. (43)

5 Convergence analysis

Lemma 6. The trigonometric B-spline collocation {TB−1(x), TB0(x), . . .,
TBN (x), TBN+1(x)} defined in (33) satisfies the inequality

N+1∑
i=−1

|TBi(x)| ≤ 6, x ∈ [0, 1]. (44)

Proof. From the triangular inequality, we have∣∣∣∣∣
N+1∑
i=−1

TBi(x)

∣∣∣∣∣ ≤
N+1∑
i=−1

|TBi(x)| .

At any node xi, we have

N+1∑
i=−1

|TBi(x)| = |TBi−1(x)|+ |TBi(x)|+ |TBi+1(x)|

= |η1|+ |η2|+ |η1| ≤ 4.

At any point in each subinterval xi−1 ≤ x ≤ xi, we also have

N+1∑
i=−1

|TBi(xi)| ≤ 2 and

N+1∑
i=−1

|TBi−1(xi−1)| ≤ 2,

and similarly for x ∈ [xi−1, xi], we have
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N+1∑
i=−1

|TBi+1(xi)| ≤ 1 and

N+1∑
i=−1

|TBi−2(xi−1)| ≤ 1.

Therefore
N+1∑
i=−1

|TBi(x)| = |TBi−2(x)|+ |TBi−1(x)|+ |TBi(x)|+ |TBi+1(x)| ≤ 6. (45)

Lemma 7. Let u(x) be the exact solution of the boundary value problem (40)
and let U(x) =

∑N+1
i=−1 αi(t)TBi(x) be the trigonometric B-spline collocation

approximation of u(x). Then

∥u(x)− U(x)∥∞ ≤ C
(
h2
)

(46)

for sufficiently small h, and C is a positive constant.

Proof. Let Ū(x) =
∑N+1

i=−1 ᾱiTBi(x) be a unique spline interpolate to be
computed B-spline approximation to u(x), where ᾱi = (ᾱ0, ᾱ1, . . . , ᾱN )

T .
To estimate ∥u(x)− U(x)∥, we must estimate the errors

∥∥u(x)− Ū(x)
∥∥

and
∥∥Ū(x)− U(x)

∥∥, respectively. Now, (40) is written as

Aαj+1
i = H, (47)

where H = Bαj
i +D.

Following (47) for Ū(x), we get

Aᾱj+1
i = H̄, (48)

where ᾱj+1
i =

(
ᾱj+1
0 , ᾱj+1

1 , . . . , ᾱj+1
N

)T
.

Now, from (47) and (48), we obtain

A
(
αj+1
i − ᾱj+1

i

)
=
(
H − H̄

)
. (49)

To proceed this, we consider the following theorem.

Theorem 1. Suppose that H ∈ C2 [0, l] that u(x) ∈ C4 [0, l], and that
Ω̄x = {0 = x0 < x1 < · · · < xN = l} is a uniform partition of [0, l] with the
step size h. If U(x) is the unique trigonometric B-spline approximation for

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 638–661



Edosa Merga and File Duressa 654

u(x) at the knots x0, . . . , xN , then

|U(x)− u(x)| ≤ O(h3),∣∣U (k)(x)− u(k)(x)
∣∣ ≤ O(h2), k = 1, 2,∣∣U (k)(x)− u(k)(x)
∣∣ ≤ O(h), k = 3,

Proof. See [18].

Setting the right-hand side of (27) by Hi and using Theorem 1, we obtain
the bound

∥∥∥H − H̆
∥∥∥ as

∣∣Hi − H̄i

∣∣ = ∣∣∣cu′′

i + au
′

i + bui − cū
′′

i + aū
′

i + būi

∣∣∣
≤ |c|

∣∣∣u′′

i − ū
′′

i

∣∣∣+ |b|
∣∣∣u′

i − ū
′

i

∣∣∣+ |b| |ui − ūi| ,

where
c = −

(
ε

τ(j) +
α
2

)
, a = a (x, tj+1) , b =

ε
τ(j) + b (x, tj+1),

which is ∣∣Hi − H̄i

∣∣ ≤ |c|O(h2) + |b|O(h2) + |b|O(h3) ≤ K(h2), (50)

where K = |c|+ |b|+ |b|O(h). Now from (49) and (50), we have

∥A∥
∥∥∥αj+1

i − ᾱj+1
i

∥∥∥ =
∥∥H − H̄

∥∥ ≤ Kh2.

This yields ∥∥∥αj+1
i − ᾱj+1

i

∥∥∥ ≤ Kh2
∥∥A−1

∥∥ . (51)

Moreover, TBi(x) and its derivative up to the second order have nonvanishing
values at the mesh points [xi=2, xi+2] and at other mesh points it is zero.
Using these facts, the matrix ∥A∥ is a tridiagonal and diagonally dominant
matrix. Hence, the matrix is nonsingular, and A−1 is bounded. Then, we
get ∥∥∥αj+1

i − ᾱj+1
i

∥∥∥ ≤ K1h
2, (52)

where K1 = K
∥∥A−1

∥∥. Again from U(x)− Ū(x) and Lemma 7, we get

U(x)− Ū(x) =

N+1∑
i=−1

(αi − ᾱi)TBi(x) ≤ k̄h2, k̄ = 6k1. (53)

Therefore, from Theorem 1 and (53), we get
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∥u(x)− U(x)∥∞ =
∥∥u(x)− U(x) + Ū(x)− Ū(x)

∥∥
∞

≤
∥∥u(x)− Ū(x)

∥∥+ ∥∥Ū(x)− U(x)
∥∥

≤ O(h3) + K̄(h2)

≤ Ch2, C = K̄ +O(h).

Theorem 2. Let u(x, t) be the solution of (1) and let U(xi, tj+1) be the
solution of the total discretized equation. Under the hypothesis of Lemmas
5 and 7, then the ε−uniform estimate holds

sup
1≤i≤N−1

= max
1≤i≤N−1,0<j<M

|u(xi, tj+1)− U(xi, tj+1)| ≤ C
(
h2 + τ

)
, (54)

where C is the constant independent of ε, h, and τ .

Proof. The proof is obtained by applying the triangle inequality.

6 Numerical results

To demonstrate the validity of the proposed scheme for the problem, one
model example is presented. As the exact solution of this example is not
known, the maximum point-wise error for the given example were computed
by using the double mesh principle as

EN,M
ε = max

1≤i≤N−1

∣∣∣UN,M
i − U2N,2M

i

∣∣∣ ,
where UN,M

i is the numerical solution obtained on the mesh DN = ΩN
x ×ΩM

t

with N mesh intervals in the spatial direction and M mesh intervals in the
temporal direction. For any value of N and M , the ε−uniform errors are
calculated using

EN,M = max
ε

EN,M
ε .

The rate of convergence of the scheme is calculated by the formula

rN,M
ε =

log(EN,M
ε )− log(E2N,2M

ε )

log(2) ,

and the ε−uniform convergence is calculated by
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rN,M =
log
(
EN,M

)
− log

(
E2N,2M

)
log(2) .

Example 1. From [1]
ε∂u
∂t − ε ∂3u

∂t∂x2 − 2∂2u
∂x2 + 1

2u
∂u
∂x = exp(−t) sin(πx),

u(x, 0) = sin(πx), x ∈ Ωx,

u(0, t) = u(1, t) = 0, t ∈ (0, 1].

Table 2: EN,M
ε for N = M

ε 32 64 128 256 512

20 5.5142e-03 2.8124e-03 1.4209e-03 7.1420e-04 3.5806e-04
2−2 1.9178e-02 1.0254e-02 5.2831e-03 2.6643e-03 1.3257e-03
2−4 5.1476e-02 3.3936e-02 2.1160e-02 1.1892e-02 5.1156e-03
2−6 5.1485e-02 3.3947e-02 2.1168e-02 1.1900e-02 5.1221e-03
2−8 5.1487e-02 3.3950e-02 2.1170e-02 1.1902e-02 5.1239e-03
2−10 5.1488e-02 3.3951e-02 2.1170e-02 1.1903e-02 5.1243e-03
2−12 5.1488e-02 3.3951e-02 2.1170e-02 1.1903e-02 5.1244e-03
2−14 5.1488e-02 3.3951e-02 2.1170e-02 1.1903e-02 5.1245e-03
2−16 5.1488e-02 3.3951e-02 2.1170e-02 1.1903e-02 5.1245e-03

EN,M 5.1488e-02 3.3951e-02 2.1170e-02 1.1903e-02 5.1245e-03
rN,M 0.60078 0.68143 0.83070 1.2158

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 638–661



657 Nonpolynomial B-spline collocation method ...

Table 3: EN,M
ε for the proposed method with N = 60

ε N=40 N=80 N=160 N=320 N=640

20 5.3980e-03 2.8124e-03 1.5094e-03 9.1150e-04 7.7675e-04
2−2 1.9182e-02 1.0254e-02 5.3330e-03 2.7775e-03 1.5158e-03
2−4 5.1414e-02 3.3936e-02 2.1200e-02 1.1953e-02 5.2045e-03
2−6 5.1426e-02 3.3947e-02 2.1207e-02 1.1869e-02 5.2096e-03
2−8 5.1430e-02 3.3950e-02 2.1209e-02 1.1871e-02 5.2110e-03
2−10 5.1431e-02 3.3951e-02 2.1210e-02 1.1871e-02 5.2113e-03
2−12 5.1431e-02 3.3951e-02 2.1210e-02 1.1871e-02 5.2114e-03
2−14 5.1431e-02 3.3951e-02 2.1210e-02 1.1871e-02 5.2114e-03

EN,M 5.1431e-02 3.3951e-02 2.1210e-02 1.1871e-02 5.2114e-03
rN,M 0.59918 0.67871 8.373 1.1877

Figure 1: Numerical solution for N = M = 64 and ε = 2−8.
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Figure 2: Error solution for M = N = 64 and ε = 2−8.

Figure 3: Log-log scale plot for Example 1.

The computed maximum point-wise errors are also presented in Tables
2 and 3. From Table 2, one can observe that as ε → 0 and time step size
decreases with uniform spatial step size, then maximum point-wise also mono-
tonically decreases, and the rate convergence of the method is almost one.
Table 3 also yields as temporal step size decreases for fixed spatial step size;
then the results of maximum absolute point-wise error also decrease. From
Figures 1 and 2, one can also observe that the mesh is dense near the ini-
tial, and hence, it indicates that the solution of the model example has an
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initial layer at t = 0. The log-log plot of the scheme is also displayed in
Figure 3, which confirms an agreement of the theoretical and numerical re-
sults. Finally, the result from the model example confirms that the proposed
numerical method is convergent.

7 Conclusions

A nonpolynomial B-spline collocation method was implemented for singularly
perturbed quasilinear Sobolev problems with initial boundary value prob-
lems. Newton’s linearization method was applied to linearize the nonlinear
parts. An implicit Euler method in time variable and cubic trigonometric
B-spline collocation was used to approximate the space variable and obtain a
three-term recurrence relation. Convergence analysis of the scheme was con-
sidered, and the scheme was accurate of order O(h2 + τ). The results from
the model example indicated the method is accurate for different values of
ε,M , and N . In general, the effect of the perturbation parameter indicated
that the scheme has a layer at initial points t = 0.
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