
Iranian Journal of Numerical Analysis and Optimization
Vol. 14, No. 1, 2024, pp 291–314
https://doi.org/10.22067/ijnao.2023.82958.1282
https://ijnao.um.ac.ir/

Research Article

On generalized one-step derivative-free
iterative family for evaluating multiple

roots

H. Arora, A. Cordero* and J. R. Torregrosa

Abstract

In this study, we propose a family of iterative procedures with no deriva-
tives for calculating multiple roots of one-variable nonlinear equations. We
also present an iterative technique to approximate the multiplicity of the
roots. The new class is optimal since it fits the Kung–Traub hypothesis and
has second-order convergence. Derivative-free methods for calculating mul-
tiple roots are rarely found in literature, especially in the case of one-step
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methods, which are the simplest ones in terms of their structure. Moreover,
this new family contains almost all the existing single-step derivative-free
iterative schemes as its special cases, with an additional degree of freedom.
Several results are used to confirm its theoretical order of convergence.
Through the complex discrete dynamics analysis, the stability of the sug-
gested class is illustrated, and the most stable methods are found. Several
test problems are included to check the performance of the proposed meth-
ods, whether the multiplicity of the roots is estimated or known, comparing
the numerical results with those obtained by other methods.

AMS subject classifications (2020): Primary 65H05; Secondary 37D99.

Keywords: Nonlinear equations; Derivative–free iterative method; Multiple
roots; Order of convergence; Stability.

1 Introduction

One well-known derivative-free scheme for obtaining a multiple root x∗ of
a nonlinear complex-valued function f(x), x ∈ C is the modified Traub–
Steffensen’s approach [19]. The structure of this scheme is as follows:

xt+1 = xt −m
f(xt)

f [ηt, xt]
, t = 0, 1, 2, . . . , (1)

where m denotes the known multiplicity of x∗ and f [ηt, xt] = f(ηt)−f(xt)
ηt−xt

is
the first-order divided difference at point xt and ηt = xt + βf(xt), β ̸= 0,
β ∈ R. For m ≥ 2, the order of convergence of this scheme is quadratic.
Scheme (1) is the derivative-free version of the familiar modified Newton’s
method [15] as it is obtained from this method by estimating the derivative
f ′(xt) by f [ηt, xt]. Centered on these two schemes, many methods [6, 13,
16, 18, 22, 11, 17, 21, 7, 10] have been derived in earlier studies. Among
these, the second-order schemes presented by Kumar, Sharma, and Argyros
[9] and Kansal et al. [8], are the nicest ones as they possess the following
features: (i) the schemes are derivative-free, (ii) they are optimal in terms of
the Kung–Traub conjecture (see [10]), and (iii) the schemes are single-step,
which make them easy to implement. The general type of optimal derivative-
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free procedure for multiple roots defined by Kumar, Sharma, and Argyros [9]
is given by

xt+1 = xt −H(Φt), (2)

where Φt = f(xt)
f [ηt,xt]

and H(Φt) is a single variable weight function. Other
main aspect of this scheme is that it holds Traub–Steffensen’s method (1) as
a special case.

The scheme from Kansal et al. [8] has the following structure:

xt+1 = xt −m
(1− a)f(ηt) + af(xt)

f [ηt, xt]
, (3)

where a ∈ R is a free parameter. For a = 1, this scheme reduces to Traub–
Stefensen’s method (1).

Motivated by these multiple root-finding schemes, we aim to design a new
derivative-free iterative family that is more general than class (2). Therefore,
the new class is a single-step optimal scheme with second-order convergence,
and it has an additional degree of freedom. In addition, we include an itera-
tive process that allows us to estimate the multiplicity when it is not known.

In order to choose the most stable members of the proposed class, we now
introduce some dynamic terms used in this manuscript (see, for instance,
[2]). To achieve this aim, the key concept is the rational function. Usually, a
rational function T is found by applying the proposed class on a low-degree
polynomial p(z) with multiple roots. The properties of this rational function,
the existence of fixed points or periodic orbits, and their repulse or attracting
character, among others, allow us to detect the best elements of the class or
to compare known schemes (see, for example, [4, 5]).

Let us consider a rational function T : Ĉ −→ Ĉ, being Ĉ the Riemann
sphere. Then, we define the orbit of a point z as follows:

{z, T (z), T 2(z), . . . , Tn(z), . . .},

where T k denotes the kth composition of T with itself.
We analyze T by characterizing the starting points from the asymptotical

performance of their orbits. In these terms, a point z is a fixed point of T
if T (z) = z; it is a p-periodic point, p > 1, if T p(z) = z and T k(z) ̸= z for
k < p.
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The basin of an attractor ξ is defined as

A(ξ) = {z ∈ Ĉ : Tn(z) → ξ, n→ ∞}. (4)

The Fatou set of T , is the set of points whose orbits tend to an attractor
(fixed point, periodic point, or infinity). It’s complementary in Ĉ is the Julia
set. So, the basin of attraction of any fixed point belongs to the Fatou set
and the boundaries of these basins of attraction belong to the Julia set.

On the other hand, a point z is called a critical point of T if T ′(z) = 0.
The asymptotic behavior of the critical points is a key fact for analyzing
the stability of the method: A classical result from Fatou and Julia (see, for
instance, [1]). Each immediate basin of attraction holds at least one critical
point; that is, in the connected component of the basin of attraction holding
the attractor, there is also a critical point.

Moreover, a fixed point of T , z, is called attracting if |T ′(z)| < 1, or
super attracting if |T ′(z)| = 0; it is repulsive if |T ′(z)| > 1; and parabolic if
|T ′(z)| = 1.

Let us also remark that when fixed and critical points are not equivalent to
the roots of p(z), then they are called strange fixed and free critical points,
respectively. The asymptotical performance of free critical points is a key
element in this study, as when they do not belong to the basin of attraction
of the searched zeros. Then, they lay in the basin of an attracting element
(a periodic orbit or a strange fixed point) that should be avoided in practice.

Indeed, when T also depends on one or several parameters ri, i =

1, 2, . . . , k, and the stability of a fixed point z is analyzed, |T ′(z, r1, . . . , rk)|
is not a scalar but a function of ri for i = 1, 2, . . . , k. In this case,
|T ′(z, r1, . . . , rk)| is called a stability function of the fixed point, and it gives
us the character of the fixed point in terms of the value of ri, i = 1, 2, . . . , k.

Let us summarize the rest of the paper: Section 2 includes the construc-
tion and convergence analysis of the new family. Also, in Section 2, special
cases of the proposed class are found. To examine the stability of the new
methods, we present the analysis of the discrete dynamical system associated
with the different sub-classes defined in Section 3, selecting the most stable
ones. Section 4 is devoted to the application of proposed methods on a num-
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ber of numerical problems to back up the theoretical conclusions. In Section
5, we conclude with some final observations.

2 Establishment of second-order class

Let us define a new derivative-free Traub–Steffensen-type class of iterative
schemes for finding multiple roots as

xt+1 = xt − L(Θt), (5)

where L(Θt) is a single-variable weight function, Θt =
f(xt)

f [ηt,xt]+γf(xt)
, γ ∈ R,

and ηt = xt + βf(xt), β ̸= 0, β ∈ R.

We show in the following result that the proposed scheme (5) achieves
maximum second-order convergence for every β ̸= 0, without using any
derivative evaluation. Moreover, we show that the conditions to be imposed
on the weight function are directly related to the multiplicity of the root.

Theorem 1. Let f : D ⊂ C → C be an analytic function in the open set
D, that holds a multiple root x∗, with multiplicity m. Then, the class of
iterative schemes (5) has second-order of convergence, if

L(0) = 0, L′(0) = m, |L′′(0)| <∞, (6)

and therefore it satisfies the error equation

et+1 =
1

2m2
(2m(γ +B1)− L′′(0)) e2t +O(e3t ),

where et = xt − x∗ and B1 =
1

m+ 1

f (m+1)(x∗)

f (m)(x∗)
.

Proof. Along Taylor’s series expansion of f(xt) and f(ηt) around x∗ that
has multiplicity m, it is assumed that f(x∗) = f ′(x∗) = f ′′(x∗) = · · · =

f (m−1)(x∗) = 0 and f (m)(x∗) ̸= 0. Also, let us denote Bi by

Bi =
m!

(m+ i)!

f (m+i)(x∗)

f (m)(x∗)
,

for i = 1, 2, 3, . . .. Then,
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f(xt) =
f (m)(x∗)

m!
emt

(
1 +B1et +B2e

2
t +B3e

3
t +O(e4t )

)
, (7)

f(ηt) =
f (m)(x∗)

m!
emηt

(
1 +B1eηt +B2e

2
ηt +B3e

3
ηt +O(e4ηt)

)
, (8)

where

eηt = ηt − x∗ = et + β
f (m)(x∗)

m!
emt

(
1 +B1et +B2e

2
t +B3e

3
t +O(e4t )

)
.

By replacing (7)–(8) in the definition of Θt, we obtain

Θt =
et
m

− 1

m2
(γ +B1)e

2
t +O(e3t ). (9)

From (9), it can be inferred that Θt tends to zero when t tends to infinity.
Then, by using MacLaurin’s theorem on the weight function L(Θt), we obtain

L(Θt) = L(0) + L′(0)Θt +
1

2!
L′′(0)Θ2

t +O(Θ3
t ). (10)

By imposing (9) and (10) in (5), we get

et+1 = −L(0)+

(
1−L(1)(0)

m

)
et+

1

2m2

(
2(γ+B1)L

(1)(0)−L(2)(0)
)
e2t+O(e3t ).

(11)
From this error equation, we deduce that schemes belonging to class (5)
possess, at least, second-order of convergence, provided that L(0) = 0 and
1− L′(0)

m = 0, that is, L′(0) = m.
Finally, we find the error equation

et+1 =
1

2m2

(
2m(γ +B1)− L(2)(0)

)
e2t +O(e3t ), (12)

provided |L′′(0)| < ∞. Hence, the proposed class (5) converges to the m-
multiple root x∗ with second-order convergence.

Remark 1. It is known that E = ρ
1
ψ is the computational efficiency in

which ρ is the order of convergence of the method under consideration and ψ
is the number of functional evaluations per iteration; see [14]. The E-value
corresponding to the newly proposed scheme is E = 2

1
2 ≈ 1.414, which is the

same as that of modified Newton’s method and modified Traub–Steffensen’s
method.
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Remark 2. For γ = 0, the proposed class (5) reduces to scheme (2), and
in addition, if we also have L(Θt) = mΘt, then we get the modified Traub–
Steffensen’s method (1).

2.1 Special cases

In this section, we show that the number of special cases for the new presented
family is equal to the particular forms of the function L(Θt), fulfilling the
convergence conditions of Theorem 1. A few of them are listed in Table 1.

Table 1: Some special cases of class (5)

Method Weight function Subcases
TM-1 L(Θt) = mΘt(1 + aΘt) a = 1

10 , xt+1 = xt −mΘt(1 +
Θt
10 )

TM-2 L(Θt) =
mΘt

1+aΘt
a = −1

2 , xt+1 = xt − 2mΘt
2−Θt

TM-3 L(Θt) =
mΘt

1+amΘt
a = −1

2 , xt+1 = xt − 2mΘt
2−mΘt

TM-4 L(Θt) =
mΘt

(1+a
√
mΘt)2

a = −1
2 , xt+1 = xt − 4mΘt

(2−
√
mΘt)2

TM-5 L(Θt) =
m(Θ2

t+Θt)
1+amΘt

a = 1
5 , xt+1 = xt − 5m(Θ2

t+Θt)
5−mΘt

3 Dynamical analysis

In order to arrange this analysis, we apply our proposed sub-families TM-1
to TM-5 on the nonlinear function p(z) = (z − 1)m(z + 1), with z = 1 as a
multiple root of multiplicity m and a simple root at z = −1. In all cases,
γ = 1 and β =

1

10
; qualitatively, similar results are found for other values

of γ and β, but the values of β close to zero make the schemes more stable,
due to the estimation of the derivative provided by the first-order divided
difference is better. This is the most simple nonlinear function containing
two roots, one simple and one m-multiple. Although the results cannot be
directly extrapolated to any nonlinear function, several analyses on different
nonlinear problems confirm, in the numerical section, these results.
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In what follows, we analyze the rational functions related to the particular
cases of (5) presented: TM-1 to TM-5.

3.1 Fixed points and stability of rational TM cases

When the classes TM-1, TM-2, TM-3, TM-4, and TM-5 are applied on the
polynomial p(z) with multiplicity m = 2, rational functions Ti(z, a), i =

1, 2, . . . , 5 are, respectively, obtained. They all depend on the parameter of
the class a, considered a free complex value. These rational operators are

T1(z, a) =
N1(z, a)

(z5 − z4 + 28z3 + 92z2 + 271z + 9)
2 ,

being N1(z, a) = −20000a
(
z2 − 1

)2
+ z11 − 2z10 + 57z9 + 128z8 + 942z7 +

4828z6 + 18222z5 + 31768z4 + 26497z3 + 21478z2 + 54281z + 1800,

T2(z, a) =
4(25a+ 23)z3 + (9− 100a)z + z6 − z5 + 28z4 + 71z2 + 200

100a (z2 − 1) + z5 − z4 + 28z3 + 92z2 + 271z + 9
,

T3(z, a) =
N3(z, a)

(z5 − z4 + 28z3 + 92z2 + 271z + 9)
2 ,

where N3(z, a) = −40000a
(
z2 − 1

)2
+ z11 − 2z10 + 57z9 + 128z8 + 942z7 +

4828z6 + 18222z5 + 31768z4 + 26497z3 + 21478z2 + 54281z + 1800,

T4(z, a) =
N4(z, a)(

100
√
2a (x2 − 1) + x5 − x4 + 28x3 + 92x2 + 271x+ 9

)2 ,
being N4(z, a) = x11 − 2x10 +57x9 +8(25

√
2a+16)x8 +(942− 200

√
2a)x7 +

(5400
√
2a+4828)x6+2(10000a2+9300

√
2a+9111)x5+8(6075

√
2a+3971)x4+

(−40000a2 − 16600
√
2a + 26497)x3 + (21478 − 54200

√
2a)x2 + (20000a2 −

1800
√
2a+ 54281)x+ 1800, and

T5(z, a) =
N5(z, a)

D5(z, a)
,

where N5(z, a) = −18200+(54281−1800a)z+(61478−54200a)z2+(26497−
16600a)z3+8(1471+6075a)z4+6(3037+3100a)z5+(4828+5400a)z6+(942−
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200a)z7+8(16+25a)z8+57z9−2z10+z11 and D5(z, a) = (9+271z+92z2+

28z3 − z4 + z5)(9 + 271z + 92z2 + 28z3 − z4 + z5 + 200a(−1 + z2)).
By solving each equation Ti(z, a) = z, i = 1, 2, . . . , 5, the fixed points

of the ith rational function are obtained. Two of them are the roots of
polynomial p(z); the rest of them, if they exist, are strange fixed points.
The asymptotical behavior of all the fixed points (both multiple and simple,
strange or not) plays a key role in the stability of the iterative methods
involved, as the convergence to fixed points different from the roots means
an important drawback for an iterative method; so, we proceed below with
this analysis.

In order to study the stability of the fixed points zF of Ti(z, a), we cal-
culate its stability function,

∣∣T ′
i (z

F , a)
∣∣. This function gives us information

about the asymptotical behavior of the point in terms of the value of a. In
general, the stability of other fixed points than the multiple roots of p(z)
depends on the value of parameter a. From these rational functions, the
following result can be stated.

Theorem 2. Rational function Ti(z, a) has z = 1 and z = −1 as super-
attracting and parabolic fixed points, respectively. There can also exist
strange fixed points, denoted by rji (a), where the index i = 1, 2, . . . , 5 corre-
sponds to the rational operator Ti(z, a) and the index j = 1, 2, . . . , 5 corre-
sponds to the fixed point as the root of fifth-degree polynomial qi(t) described
below:

i = 1: Roots of polynomial q1(t) = 9−100a+271t+(92+100a)t2+28t3−t4+t5

are the strange fixed points of T1(z, a).

i = 2: There are no strange fixed points of T2(z, a).

i = 3: When T3(z, a) is analyzed, the strange fixed points are the roots of
q3(t) = 9− 200a+ 271t+ (92 + 200a)t2 + 28t3 − t4 + t5.

i = 4: T4(z, a) has as strange fixed points the roots of q4(t) = 9 + 271t +

92t2 + 28t3 − t4 + t5.

i = 5: Strange fixed points of T5(z, a) are the roots of q5(t) = −91 + 271t+

192t2 + 28t3 − t4 + t5.
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Proof. By solving the equation Ti(z, a) = z, i = 1, 2, 3, 5, it is found that, in
the case when i = 1,

T1(z, a) = z ⇔ N1(z, a) = z
(
z5 − z4 + 28z3 + 92z2 + 271z + 9

)2
,

or, equivalently,

(z2−1)(9+271z+92z2+28z3−z4+z5+100a1(z2−1)) = 0 ⇔ (z2−1)q1(z) = 0.

For i = 2, it can be checked that

T2(z, a) = z ⇔ z1 − 1 = 0.

In a similar way, the statements for i = 3, i = 4, and i = 5 are obtained.

So, it has been proven that the multiple root is always a superattracting
fixed point, whereas the simple root is parabolic. Hence, it always lays in
the Julia set and would never be reached exactly by the iterative method
(although it can be very close). For i = 1, 3, 4, 5, there exist strange fixed
points of their respective operators, Ti(z, a). Regarding the stability of these
fixed points, the following remark can be checked.

Remark 3. Operators Ti(z, a) for i = 1, 3, 4, 5, have attracting strange fixed
point at any complex value of a, except in a disk |a| < r with

• r ≈ 1.12 for T1(z, a);

• r ≈ 0.56 for T3(z, a);

• r ≈ 0.75 for T4(z, a);

• r ≈ 0.11 for T5(z, a).

These small regions, where all the strange fixed points are repulsive, can
be observed in Figure 1. In it, the code color is as follows: One point of the
mesh is represented in orange color if there exists at least one strange fixed
point that is attracting this value of the parameter. So, if one point of the
mesh is not colored, it means that for this value of a, all the strange fixed
points are repulsive.

Iran. J. Numer. Anal. Optim., Vol. 14, No. 1, 2024, pp 291–314
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(a) |T ′
1(r

j
1, a)| (b) |T ′

3(r
j
3, a)| (c) |T ′

4(r
j
4, a)| (d) |T ′

5(r
j
5, a)|

Figure 1: Union of stability functions for rational operators on strange fixed points rji (a),
i = 1, 3, 4, 5 and j = 1, 2, . . . , 5.

3.2 Dynamical planes

Each value of the parameter corresponds with a member of each subclass
of iterative methods. When a is fixed in a rational function Ti(z, a),
i = 1, 2, . . . , 5, the performance of the iterative process can be visualized
in a dynamical plane. It is obtained by iterating the chosen element of the
family under study and by using each point of the complex plane as an initial
estimation. In this section, we have used a mesh of 1000× 1000 points.

We represent in blue color those points whose orbit converges to infinity,
in orange the points converging to the multiple root z = 1 (with a tolerance
of 10−3), and in other colors (green, red, etc.) those points whose orbit
converges to one of the fixed points (all fixed points appear marked as a
white star in the figures if they are attractive or by a white circle if they are
repulsive or parabolic). Moreover, a point appears in black if it reaches the
maximum number of 500 iterations without converging to any of the fixed
points. The routines used appear in [3].

Firstly, we plot the dynamical planes related to rational functions Ti(z, a),
i = 1, 2, 3, 5 for a = 0.05. These planes can be visualized in Figure 2. From
Theorem 2 and Remark 3, only the multiple root of p(z) is an attracting fixed
point.

From the dynamical planes of Figure 2, it is again deduced that the only
basin of attraction is that of the multiple roots; moreover, if there exist
strange fixed points, they lay in the Julia set, as per their repulsive character.
Black areas correspond to divergent performance. The wideness of the basins
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(a) T1(z, 0.05) (b) T2(z, 0.05) (c) T3(z, 0.05)

(d) T4(z, 0.05) (e) T5(z, 0.05)

Figure 2: Dynamical planes corresponding to rational operators under study for a = 0.05.

of attraction composing the Fatou set is similar in all cases but slightly better
in the case of T5(z, 0.05).

In Figure 3, the dynamical planes corresponding to a = 5 are presented.
For this value of the parameter, only T2 operator does not attract strange
fixed points, from Theorem 2 and Remark 3.

We observe in Figure 3e that T5(z, 5) has three attracting strange fixed
points, with their corresponding basins of attraction in green, red, and dark
aubergine color, respectively. Also, T1(z, 5), T4(z, 5), and T3(z, 5) show green
basins of attraction of strange fixed points. The latter case is especially
inefficient, as the basin of attraction of the multiple roots is really small.
The basin of attraction of the multiple roots in the case of the operator
T2(z, 5) is the only one in the dynamical plane, although it is narrower than
in the case of a = 0.05.

Figure 4 corresponds to the dynamical planes of rational functions Ti(z,−1),
i = 1, 2, . . . , 5. Cases i = 3, i = 4, and i = 5 show basins of attraction of

Iran. J. Numer. Anal. Optim., Vol. 14, No. 1, 2024, pp 291–314
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(a) T1(z, 5) (b) T2(z, 5) (c) T3(z, 5)

(d) T4(z, 5) (e) T5(z, 5)

Figure 3: Dynamical planes corresponding to rational operators under study for a = 5.

strange fixed points. Meanwhile cases i = 1 and i = 2 only converge to the
multiple roots, being the last one the widest.

We conclude from the analysis made that the most subclass is T2(z, a),
although the rest of the operators perform adequately for small absolute
values of a.

4 Numerical results

In this section, we use numerical examples to confirm the performance of
the newly created iterative approaches as well as to validate the theoretical
results presented in the previous sections. Furthermore, we compare our
new proposed methods TM-1–TM-5 with the second-order methods given
by equations (1) and (3). We denote these methods by MNM and KM,
respectively. For the scheme (3), we choose the parameter a = 6/7. All the

Iran. J. Numer. Anal. Optim., Vol. 14, No. 1, 2024, pp 291–314
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(a) T1(z,−1) (b) T2(z,−1) (c) T3(z,−1)

(d) T4(z,−1) (e) T5(z,−1)

Figure 4: Dynamical planes corresponding to rational operators under study for a = −1.

computations for the above-mentioned methods are performed using software
Mathematica with 4096 significant digits as multiple precision arithmetic. In
numerical results, we have calculated the following terms:

• The number of iterations t required to obtain the desired root fulfilling
the condition that |xt+1 − xt|+ |f(xt+1)| < 10−50.

• Estimated error et+1 = |xt+1 − xt| in the last three iterations.

• Residual error for the considered function, that is, |f(xt+1)|.

• The computational order of convergence COC [20], which is given by

COC =
log|xt+2−x∗

xt+1−x∗ |

log|xt+1−x∗

xt−x∗ |
, t = 1, 2, . . . . (13)

The problems used for validating the theoretical results and comparison are
mentioned in Table 2. The numerical results obtained for these problems
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have been presented in Tables 3–6. From them, we see that the new proposed
methods are, at least, as stable as those existing methods used for comparison.
Also, the presented results have verified the theoretical results proven so far.
Moreover, from Tables 3–6, it is observed that methods TM-2, TM-4, and
TM-5 have performed rightly well in all the problems. Furthermore, the
performance of the methods TM-1 and TM-3 is either at par or better than
the results obtained for the existing methods.

Table 2: Test functions considered, their corresponding roots and multiplicity

Test Functions x0 Root m

f1(x) = x3 − 5.22x2 + 9.0825x− 5.2675 1.8 1.75000 . . . 2

f2(x) =
(
tan−1( 1x − 1) + ex

2 − 3
)2

1 1.05653 . . . 2

f3(x) = (sinx cosx− x3 + 1)9 1.4 1.11707 . . . 9

f4(x) = ((x− 1)3 − 1)50 2.1 2.00000 . . . 50

Table 3: Numerical results for f1(x)

Methods t |et−1| |et| |et+1| |f(xt+1)| COC

TM-1 (γ = 0) 8 5.45× 10−15 4.93× 10−28 4.04× 10−54 2.21× 10−213 2.00000

(γ = −1) 8 1.45× 10−15 3.38× 10−29 1.84× 10−56 8.94× 10−223 2.00000

TM-2 (γ = 0) 8 3.25× 10−15 1.73× 10−28 4.92× 10−55 4.76× 10−217 2.00000

(γ = −1) 8 8.25× 10−16 1.08× 10−29 1.87× 10−57 9.27× 10−227 2.00000

TM-3 (γ = 0) 8 1.66× 10−15 4.46× 10−29 3.22× 10−56 8.40× 10−222 2.00000

(γ = −1) 8 3.97× 10−16 2.47× 10−30 9.55× 10−59 6.11× 10−232 2.00000

TM-4 (γ = 0) 8 9.41× 10−16 1.41× 10−29 3.19× 10−57 7.90× 10−226 2.00000

(γ = −1) 8 2.13× 10−16 7.02× 10−31 7.63× 10−60 2.42× 10−236 2.00000

TM-5 (γ = 0) 8 9.76× 10−16 1.52× 10−29 3.69× 10−57 1.42× 10−225 2.00000

(γ = −1) 8 2.22× 10−16 7.62× 10−31 8.98× 10−60 4.67× 10−236 2.00000

MNM 8 6.18× 10−15 6.37× 10−28 6.76× 10−54 1.74× 10−212 2.00000

KM 8 6.18× 10−15 6.37× 10−28 6.76× 10−54 1.74× 10−212 2.00000
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Table 4: Numerical results for f2(x)

Methods t |et−1| |et| |et+1| |f(xt+1)| COC

TM-1 (γ = 0) 7 3.54× 10−16 2.36× 10−31 1.05× 10−61 1.35× 10−242 2.00000

(γ = −1) 7 2.80× 10−18 1.09× 10−35 1.63× 10−70 4.24× 10−278 2.00000

TM-2 (γ = 0) 7 6.03× 10−17 6.14× 10−33 6.36× 10−65 1.44× 10−255 2.00000

(γ = −1) 7 2.48× 10−19 7.30× 10−38 6.33× 10−75 6.98× 10−296 2.00000

TM-3 (γ = 0) 7 4.87× 10−18 3.41× 10−35 1.67× 10−69 4.95× 10−274 2.00000

(γ = −1) 7 6.40× 10−21 3.84× 10−41 1.38× 10−81 9.92× 10−323 2.00000

TM-4 (γ = 0) 7 4.08× 10−19 2.05× 10−37 5.15× 10−74 3.29× 10−292 2.00000

(γ = −1) 7 1.27× 10−22 1.17× 10−44 1.01× 10−88 1.68× 10−351 2.00000

TM-5 (γ = 0) 7 4.03× 10−19 2.01× 10−37 4.99× 10−74 2.93× 10−292 2.00000

(γ = −1) 7 1.25× 10−22 1.15× 10−44 9.74× 10−89 1.51× 10−351 2.00000

MNM 7 5.36× 10−16 5.56× 10−31 5.99× 10−61 1.49× 10−239 2.00000

KM 7 4.94× 10−16 4.69× 10−31 4.23× 10−61 3.66× 10−240 2.00000

Table 5: Numerical results for f3(x)

Methods t |et−1| |et| |et+1| |f(xt+1)| COC

TM-1 (γ = 0) 7 8.49× 10−14 6.77× 10−27 4.30× 10−53 8.02× 10−938 2.00000

(γ = −1) 7 2.05× 10−15 3.46× 10−30 9.93× 10−60 9.12× 10−1058 2.00000

TM-2 (γ = 0) 7 2.23× 10−14 4.45× 10−28 1.77× 10−55 6.06× 10−981 2.00000

(γ = −1) 7 2.85× 10−16 6.37× 10−32 3.17× 10−63 6.68× 10−1121 2.00000

TM-3 (γ = 0) 7 1.91× 10−18 1.64× 10−36 1.21× 10−72 1.30× 10−1292 2.00000

(γ = −1) 7 3.56× 10−17 4.28× 10−34 6.21× 10−68 6.26× 10−1209 2.00000

TM-4 (γ = 0) 7 2.23× 10−23 3.07× 10−46 5.81× 10−92 4.14× 10−1639 2.00000

(γ = −1) 7 3.83× 10−20 7.40× 10−40 2.77× 10−79 1.10× 10−1411 2.00000

TM-5 (γ = 0) 7 3.45× 10−21 7.58× 10−42 3.66× 10−83 1.42× 10−1480 2.00000

(γ = −1) 7 3.19× 10−21 5.36× 10−42 1.52× 10−83 3.18× 10−1488 2.00000

MNM 7 1.16× 10−13 1.27× 10−26 1.53× 10−52 7.46× 10−928 2.00000

KM 8 7.64× 10−25 5.54× 10−49 2.91× 10−97 7.99× 10−1733 2.00000

4.1 Unknown multiplicity

Now, it is clear that the proposed schemes are able to find efficiently the
multiple roots of nonlinear equations with a known multiplicity. Then, the
question about unknown multiplicity arises: Is it possible to modify these
methods in order to simultaneously estimate the roots and their multiplic-
ity? McNamee [12] presented different techniques due to several authors
that estimated with unequal results the searched multiplicity. We propose a
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Table 6: Numerical results for f4(x)

Methods t |et−1| |et| |et+1| |f(xt+1)| COC

TM-1 (γ = 0) 7 3.38× 10−17 1.14× 10−33 1.30× 10−66 1.36× 10−6565 2.00000

(γ = −1) 7 2.52× 10−17 6.22× 10−34 3.78× 10−67 1.25× 10−6619 2.00000

TM-2 (γ = 0) 7 3.01× 10−17 8.96× 10−34 7.95× 10−67 4.56× 10−6587 2.00000

(γ = −1) 7 2.24× 10−17 4.86× 10−34 2.29× 10−67 1.42× 10−6641 2.00000

TM-3 (γ = 0) 7 1.20× 10−21 7.16× 10−43 2.57× 10−85 5.21× 10−8451 2.00000

(γ = −1) 7 6.44× 10−22 1.99× 10−43 1.90× 10−86 6.21× 10−8565 2.00000

TM-4 (γ = 0) 7 3.80× 10−18 1.24× 10−35 1.31× 10−70 2.63× 10−6968 2.00000

(γ = −1) 7 2.69× 10−18 6.06× 10−36 3.08× 10−71 7.54× 10−7032 2.00000

TM-5 (γ = 0) 7 9.27× 10−19 6.70× 10−37 3.51× 10−73 8.88× 10−7228 2.00000

(γ = −1) 7 6.32× 10−19 3.04× 10−37 7.01× 10−74 3.04× 10−7298 2.00000

MNM 7 3.48× 10−17 1.21× 10−33 1.47× 10−66 2.98× 10−6560 2.00000

KM 7 3.48× 10−17 1.21× 10−33 1.47× 10−66 2.98× 10−6560 2.00000

modification of our schemes based on the idea of Traub (see [19]),

m = lim
t→+∞

ln |f(xt)|
ln
∣∣∣ f(xt)f ′(xt)

∣∣∣ ,
for estimating the multiplicity in the Schöder scheme

xt+1 = xt −m
f(xt)

f ′(xt)
.

Expanding this idea to our class of iterative methods, we estimate the mul-
tiplicity m in expression (5) as

mt ≈
ln |f(xt)|
ln
∣∣∣ L(Θ)
mt−1

∣∣∣ , t = 1, 2, . . . ,

starting with an initial m0 = ln |f(xt)|
ln |Θ| . This provides different expressions

of mt for each special case of the presented family. These estimators of the
multiplicity appear described in Table 7. For known methods, MNM and
KM, the estimation of the multiplicity has been made by the original idea of
Traub,

mt =
ln |f(xt)|
ln
∣∣∣ f(xt)
f [ηt,xt]

∣∣∣ , t = 1, 2, . . . ,

and
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mt =
ln |f(xt)|

ln
∣∣∣ (1−a)f(ηt)+af(xt)

f [ηt,xt]

∣∣∣ , t = 1, 2, . . . ,

respectively.

Table 7: Estimators of the multiplicity for the special cases of class (5)

Method mt

TM-1 Θt(1 + aΘt)

TM-2 Θt
1+aΘt

TM-3 Θt
1+amt−1Θt

TM-4 Θt
(1+a

√
mt−1Θt)2

TM-5 (Θ2
t+Θt)

1+amt−1Θt

We have made several tests on the same nonlinear equations described in
Table 2, with the same initial estimations or other more distant estimates,
using the same stopping criterium and number of digits. The obtained re-
sults are presented in Tables 8–11. In them, the estimated order of conver-
gence, COC, does not appear as convergence is linear in all cases for proposed
and existing methods. We consider that it is due to the natural instability
provided by divided differences when the estimation of the multiplicity in-
volves more uncertainty in data. We show the last error estimations, |et+1|,
|f(xt+1)|, the number of iterations, iter, and the last approximation of the
multiplicity provided by the iterative scheme, mt+1.

Tables 8–11 show how the number of iterations has increased for all meth-
ods, possibly due to the instability generated by the estimation of the root
multiplicity. All the schemes converge with a similar number of iterations,
and all of them achieve, in all cases, a reasonable estimate of the multiplicity.
Let us remark that the precision of the estimation of the multiplicity in the
cases f1(x) to f3(x) is excellent. In the case of f4(x), the relative error of
this estimation is around 4%.

Finally, we test our methods with a more challenging function f5(x) =

4x2+8 sin (x)−4πx+π2−8, whose multiplicity is not obvious. Moreover, there
exists a wide neighborhood around the multiple roots π

2 , where the function
is almost null. Due to the complexity of the problem, the stopping criterium
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Table 8: Numerical results for f1(x), with x0 = 1.8 and estimation of the multiplicity

Methods iter |et+1| |f(xt+1)| mt+1

TM-1 (γ = 0) 32 2.48× 10−51 1.49× 10−107 2.0200

(γ = −1) 32 4.89× 10−51 5.84× 10−107 2.0175

TM-2 (γ = 0) 32 3.25× 10−51 2.56× 10−107 2.0174

(γ = −1) 32 5.66× 10−51 7.83× 10−107 2.0175

TM-3 (γ = 0) 32 4.49× 10−51 4.91× 10−107 2.0175

(γ = −1) 32 6.71× 10−51 1.10× 10−106 2.0175

TM-4 (γ = 0) 32 5.24× 10−51 6.69× 10−106 2.0175

(γ = −1) 32 7.21× 10−51 1.28× 10−106 2.0175

TM-5 (γ = 0) 32 5.12× 10−51 6.41× 10−107 2.0175

(γ = −1) 32 7.13× 10−51 1.25× 10−106 2.0175

MNM 32 2.30× 10−51 1.28× 10−107 2.0174

KM 32 2.31× 10−51 1.29× 10−107 2.0174

Table 9: Numerical results for f2(x), with x0 = 1 and estimation of the multiplicity

Methods iter |et+1| |f(xt+1)| mt+1

TM-1 (γ = 0) 45 1.16× 10−51 1.79× 10−104 1.9605

(γ = −1) 45 1.76× 10−51 4.17× 10−104 1.9603

TM-2 (γ = 0) 45 1.42× 10−51 2.72× 10−104 1.9604

(γ = −1) 45 2.15× 10−51 6.27× 10−104 1.9603

TM-3 (γ = 0) 45 1.35× 10−51 2.47× 10−104 1.9604

(γ = −1) 45 2.05× 10−51 5.71× 10−104 1.9603

TM-4 (γ = 0) 45 1.63× 10−51 3.59× 10−104 1.9604

(γ = −1) 45 2.47× 10−51 8.27× 10−104 1.9602

TM-5 (γ = 0) 45 1.80× 10−51 4.38× 10−104 1.9603

(γ = −1) 45 2.72× 10−51 1.01× 10−103 1.9602

MNM 45 1.15× 10−51 1.78× 10−104 1.9605

KM 45 1.94× 10−51 5.11× 10−104 1.9603

have changed to |f(xt+1)|< 10−15. The numerical results are presented in
Tables 12 and 13.
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Table 10: Numerical results for f3(x), with x0 = 0.8 and estimation of the multiplicity

Methods iter |et+1| |f(xt+1)| mt+1

TM-1 (γ = 0) 66 1.01× 10−51 1.92× 10−467 8.7317

(γ = −1) 67 4.68× 10−52 1.83× 10−470 8.7333

TM-2 (γ = 0) 66 3.77× 10−51 3.07× 10−462 8.7287

(γ = −1) 67 1.77× 10−51 3.24× 10−465 8.7304

TM-3 (γ = 0) 66 1.92× 10−51 6.68× 10−465 8.7302

(γ = −1) 67 8.92× 10−52 6.40× 10−468 8.7319

TM-4 (γ = 0) 66 4.75× 10−51 2.51× 10−461 8.7282

(γ = −1) 67 2.22× 10−51 2.58× 10−464 8.7299

TM-5 (γ = 0) 67 6.41× 10−52 3.19× 10−469 8.7327

(γ = −1) 67 9.67× 10−51 1.60× 10−458 8.7266

MNM 66 9.79× 10−52 1.50× 10−467 8.7317

KM 67 7.90× 10−52 2.13× 10−468 8.7322

Table 11: Numerical results for f4(x), with x0 = 1.5 and estimation of the multiplicity

Methods iter |et+1| |f(xt+1)| mt+1

TM-1 (γ = 0) 72 3.09× 10−51 2.07× 10−2570 47.9690

(γ = −1) 72 4.97× 10−51 4.75× 10−2560 47.9610

TM-2 (γ = 0) 72 3.90× 10−51 2.48× 10−2565 47.9650

(γ = −1) 72 6.26× 10−51 5.57× 10−2555 47.9570

TM-3 (γ = 0) 72 7.98× 10−51 1.15× 10−2549 47.9530

(γ = −1) 73 5.40× 10−52 1.17× 10−2608 47.9980

TM-4 (γ = 0) 72 7.46× 10−51 3.98× 10−2551 47.9540

(γ = −1) 73 5.05× 10−52 4.06× 10−2610 47.9999

TM-5 (γ = 0) 72 7.16× 10−51 4.96× 10−2552 47.9555

(γ = −1) 73 4.84× 10−52 5.02× 10−2611 47.9999

MNM 72 3.08× 10−51 1.63× 10−2570 47.9699

KM 72 3.09× 10−51 1.96× 10−2570 47.9699

All the methods perform in a similar way, but schemes TM-1 to TM-5
get better results than MNM and KM methods with x0 = 1.8, being approx-
imately equal in the case where x0 = 1. In all cases, we conclude that the
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Table 12: Numerical results for f5(x), with x0 = 1.8 and estimation of the multiplicity

Methods iter |f(xt+1)| mt+1

TM-1 (γ = 0) 5 5.27× 10−16 3.4652

(γ = −1) 5 6.03× 10−16 3.4857

TM-2 (γ = 0) 5 5.78× 10−16 3.4755

(γ = −1) 5 6.13× 10−16 3.4939

TM-3 (γ = 0) 5 6.11× 10−16 3.4910

(γ = −1) 5 6.15× 10−16 3.4951

TM-4 (γ = 0) 5 6.14× 10−16 3.4952

(γ = −1) 5 6.08× 10−16 3.4839

TM-5 (γ = 0) 5 6.13× 10−16 3.4939

(γ = −1) 5 6.12× 10−16 3.4909

MNM 5 5.25× 10−16 3.4649

KM 5 5.26× 10−16 3.4650

Table 13: Numerical results for f5(x), with x0 = 1 and estimation of the multiplicity

Methods iter |f(xt+1)| mt+1

TM-1 (γ = 0) 7 6.05× 10−16 3.4804

(γ = −1) 7 5.65× 10−16 3.4722

TM-2 (γ = 0) 7 6.14× 10−16 3.4950

(γ = −1) 7 2.18× 10−16 3.4440

TM-3 (γ = 0) 7 5.64× 10−16 3.4719

(γ = −1) 8 5.93× 10−16 3.4635

TM-4 (γ = 0) 7 2.86× 10−16 3.4468

(γ = −1) 8 6.16× 10−16 3.4979

TM-5 (γ = 0) 7 1.35× 10−16 3.4411

(γ = −1) 8 6.16× 10−16 3.4970

MNM 7 6.04× 10−16 3.4788

KM 7 6.06× 10−16 3.4870

multiplicity of the root is 4. Regarding the precision of the estimation of
multiplicity, the relative error is, in this case, between 12% and 13%.
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5 Conclusions

In this paper, a novel second-order scheme free from derivatives for locating
the multiple roots of univariate nonlinear functions was developed. A weight
function L(Θt) was used during the development of the new scheme. The
greatest benefit of using weight functions is that we can produce as many
special cases as possible and various choices of the weight functions subject
to some conditions. The error equation in the main result corroborated the
second-order convergence of the proposed scheme. It has been shown that
the new family of methods is a generalized one as it contains almost all the
existing methods of the same type as its special cases. Not only the basins
of attraction, but also a deep stability analysis in the Riemann sphere have
also been performed for the new schemes, showing the good performance of
all the proposed subclasses for small values of the parameter, especially the
good performance of the TM-2 class. On the other hand, we have assigned to
each method, parallel to the iterative process to obtain the root, an iterative
scheme to approximate the multiplicity when it is not known.

The numerical results for different examples showed that our new method
is efficient, especially in those cases where the derivative of the nonlinear
function is not available.
Conflict of interests: The authors declare no conflict of interest.

Acknowledgements

Authors are grateful to there anonymous referees for their constructive com-
ments.

References

[1] Beardon, A.F. Iteration of rational functions: Complex analytic dynam-
ical systems, Springer Science & Business Media, 132, 2000.

[2] Blanchard, P. The dynamics of Newton’s method, Proc. Symposia Appl.
Math. 49 (1994), 139–154.

Iran. J. Numer. Anal. Optim., Vol. 14, No. 1, 2024, pp 291–314



313 Title Suppressed Due to Excessive Length

[3] Chicharro, F.I., Cordero, A. and Torregrosa, J.R. Drawing dynamical
and parameters planes of iterative families and methods, Sci. World J.
2013 (2013), Article ID 780153, 11 pages.

[4] Chicharro, F.I., Cordero, A., Gutiérrez, J.M. and Torregrosa, J.R. Com-
plex dynamics of derivative-free methods for nonlinear equations, Appl.
Math. Comput. 219(12) (2013), 7023–7035.

[5] Cordero, A., Neta, B. and Torregrosa, J.R. Reasons for stability in the
construction of derivative-free multistep iterative methods, Math. Meth.
Appl. Sci. (2023), 1–16.

[6] Hansen, E. and Patrick, M. A family of root finding methods, Numer.
Math. 27 (1977), 257–269.

[7] Kansal, M., Kanwar, V. and Bhatia, S. On some optimal multiple root-
finding methods and their dynamics, Appl. Math. 10 (2015), 349–367.

[8] Kansal, M., Alshomrani, A.S., Bhalla, S., Behl, R. and Salimi, M. One
parameter optimal derivative-free family to find the multiple roots of
algebraic nonlinear equations, Mathematics, 7 (2019), 655.

[9] Kumar, D., Sharma, J.R. and Argyros, I.K. Optimal one-point iterative
function free from derivatives for multiple roots, Mathematics, 8 (2020),
709.

[10] Kung, H.T. and Traub, J.F. Optimal order of one-point and multipoint
iteration, Assoc. Comput. Mach. 21 (1974), 643–651.

[11] Li, S.G., Cheng, L.Z. and Neta, B. Some fourth-order nonlinear solvers
with closed formulae for multiple roots, Comput. Math. Appl. 59 (2010),
126–135.

[12] McNamee, J.M. A Comparison of methods for accelerating conver-
gence of Newton’s method for multiple polynomial roots, ACM SIGNUM
Newsletter, (1998), 17–22.

[13] Neta, B. New third order nonlinear solvers for multiple roots, Appl.
Math. Comput. 202 (2008), 162–170.

Iran. J. Numer. Anal. Optim., Vol. 14, No. 1, 2024, pp 291–314



Arora, Cordero and Torregrosa 314

[14] Ostrowski, A.M. Solutions of equations and systems of equations, Aca-
demic Press, 1966.

[15] Schröder, E. Über unendlich viele Algorithmen zur Auflösung der Gle-
ichungen, Math. Ann. 2 (1870), 317–365.

[16] Sharifi, M., Babajee, D.K.R. and Soleymani, F. Finding the solution of
nonlinear equations by a class of optimal methods, Comput. Math. Appl.
63 (2012), 764–774.

[17] Sharma, J.R. and Sharma, R.A. Modified Jarratt method for computing
multiple roots, Appl. Math. Comput. 217 (2010), 878–881.

[18] Soleymani, F., Babajee, D.K.R. and Lotfi, T. On a numerical technique
for finding multiple zeros and its dynamics, J. Egypt. Math. Soc. 21
(2013), 346–353.

[19] Traub, J.F. Iterative methods for the solution of equations, Prentice-Hall
Series in Automatic Computation, Englewood Cliffs, NJ, USA, 1964.

[20] Weerakoon, S. and Fernando, T.G.I. A variant of Newton’s method with
accelerated third-order convergence, Appl. Math. Lett. 13 (2000), 87–93.

[21] Yun, B.I. A non-iterative method for solving non-linear equations, Appl.
Math. Comput. 198 (2008), 691–699.

[22] Zhou, X., Chen, X. and Song, Y. Constructing higher-order methods for
obtaining the multiple roots of nonlinear equations, J. Comput. Appl.
Math. 235 (2011), 4199–4206.

Iran. J. Numer. Anal. Optim., Vol. 14, No. 1, 2024, pp 291–314


	On generalized one-step derivative-free iterative family for evaluating multiple roots
	H. Arora, A. Cordero and J. R. Torregrosa

