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A robust uniformly convergent scheme for
two parameters singularly perturbed
parabolic problems with time delay

N.T. Negero

Abstract
A singularly perturbed time delay parabolic problem with two small pa-

rameters is considered. The paper develops a finite difference scheme that
is exponentially fitted on a uniform mesh in the spatial direction and uses
the implicit-Euler method to discretize the time derivative in the temporal
direction in order to obtain a better numerical approximation to the solu-
tions of this class of problems. We establish the parameter-uniform error
estimate and discuss the stability of the suggested approach. In order to
demonstrate the improvement in terms of accuracy, numerical results are
also shown to validate the theoretical conclusions and are contrasted with
the current hybrid scheme.
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1 Introduction

We deal with the following class of singularly perturbed parabolic initial-
boundary-value problems (IBVPs) on the domainD = Ωx × (0, T ], Ωx = (0, 1):

$ε,µu(x, t) ≡ ut − εuxx − µa(x, t)ux + b(x, t)u = w(x, t),

u(x, t) = ϕb(x, t), (x, t) ∈ Γb = [0, 1]× [−τ, 0],
u(0, t) = ϕl(t), Γl = {(0, t) : 0 ≤ t ≤ T},
u(1, t) = ϕr(t), Γr = {(1, t) : 0 ≤ t ≤ T},

(1)
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where w(x, t) = −c(x, t)u(x, t−τ)+f(x, t), (x, t) ∈ D. Here in this paper, Γ =
Γb ∪Γl ∪Γr with the parameters ε and µ such that 0 < ε ≤ 1, 0 ≤ µ ≤ 1, and
τ > 0 represents the delay parameter and the functions a(x, t), b(x, t), c(x, t), f(x, t),
ϕb(x, t), ϕl(t), and ϕr(t) are sufficiently smooth, bounded functions indepen-
dent of ε and µ with

a(x, t) ≥ α > 0, b(x, t) ≥ β > 0, c(x, t) ≥ ϑ > 0,

(x, t) ∈ D = [0, T ]× [0, 1] .

The type of singularly perturbed two-parameter problems changes depending
on the values of the perturbation parameters ε and µ; for µ = 0, the problem
is a reaction-diffusion problem, whereas, for µ = 1, it is a convection-diffusion
problem. It is well known that due to the presence of layers, classical numeri-
cal methods using a uniform mesh cannot properly approximate the exact so-
lution when the parameter decreases unless a large number of mesh-intervals
are utilized. However, even for lesser values of the perturbation parameters,
one can overcome this difficulty by employing the fitted operator technique,
which works without the prior location of the boundary layer. Time delay
parabolic differential equations have recently attracted increasing amounts
of attention due to their widespread use in many diverse application fields,
including material science, biosciences, medicine, control theory, economics,
and so on; see [20, 1, 10, 21, 23]. Many researchers have discussed the numer-
ical results of the solutions of one-parameter singularly perturbed parabolic
differential equations with time delay. For instance, one can refer to the
articles by Das and Natesan [3], Gowrisankar and Natesan [6], Kumar [7],
Woldaregay et al. [22], and Negero and Duressa [13, 14, 15, 16, 17].

In recent years, the development of a fitted numerical scheme for solving
singularly perturbed time-delay parabolic problems having two parameters
has received significant attention from a few authors. One such efficient fitted
numerical scheme is an upwind difference scheme, which is proposed for solv-
ing singularly perturbed time-delay parabolic problems having two parame-
ters in [5] by Govindarao, Mohapatra, and Sahu. They constructed a method
on the Shishkin type meshes (standard Shishkin mesh, Bakhvalov-Shishkin
mesh) and proved that the method is first-order accurate. Negero [12] con-
sidered the same problem in [5] and produced a second-order convergent
scheme using an exponentially fitted cubic spline scheme. Prior to Negero’s
[12] strategy, there were no developed numerical techniques for addressing
two-parameter singularly perturbed time-delayed parabolic problems based
on fitted operators. Kumar et al. [8] devised and analyzed a hybrid monotone
finite difference scheme for singularly perturbed IBVPs of the form (1). In
[8], a first-order uniformly convergent method is given for problem (1) using
a hybrid monotone finite difference scheme on a rectangular mesh, which is
a combination of a uniform mesh in time and a layer-adapted Shishkin mesh
in space. There were no established numerical methods for dealing with
two-parameter singularly perturbed time-delay parabolic problems based on
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629 A robust uniformly convergent scheme for two parameters...

fitted operators prior to Negero’s [12] strategy. Thus, the main aim of the
present study is to provide robust parameter uniform convergent numerical
methods based on exponentially fitted for the solution of problem (1).
Organization of the paper: In Section 2, the properties of the continuous
solution are given. In Section 3, we describe the construction of an exponen-
tially fitted finite difference discretization of problem (1). The stability and
uniform convergence analysis of the suggested technique are given in Section
4. Some numerical results that validate our theory are reported in Section 5.
Lastly, in Section 6, we present the conclusion of the paper.
Notations: The norm ∥·∥ is used to denote the maximum norm over the
domain D̄, defined as ∥g∥ = maxD̄ |g(x, t)| for a function g defined on some
domain D̄. In addition, C and its subscripts stand for positive constants
independent of the perturbation parameters ε, µ, and mesh sizes.

2 Properties of the continuous solution

The required compatibility conditions at the corner points are{
ϕb(0, 0) = ϕl(0),
ϕb(1, 0) = ϕr(0),

(2)



∂ϕl(0)

∂t
− ε

∂2ϕb(0, 0)

∂x2
− µa(0, 0)

∂ϕb(0, 0)

∂x
+ b(0, 0)ϕb(0, 0)

= −c(0, 0)ϕb(0,−τ) + f(0, 0),

∂ϕr(0)

∂t
− ε

∂2ϕb(1, 0)

∂x2
− µa(1, 0)

∂ϕb(1, 0)

∂x
+ b(1, 0)ϕb(1, 0)

= −c(1, 0)ϕb(0,−τ) + f(1, 0),

(3)

so that the data matches at the two corners (0, 0) and (1, 0). Let a, b, c, and
f be continuous on a domain D. Then (1) has a unique solution u ∈ C2 (D)
[9].

Lemma 1 (Continuous maximum principle). Let Φ(x, t) ∈ C2 (D)∩C0
(
D̄
)

and Φ(x, t) ≥ 0 for all (x, t) ∈ Γ = Γl ∪ Γb ∪ Γr. Then $ε,µπ (x, t) ≥ 0 in D
gives Φ(x, t) ≥ 0, for all (x, t) ∈ D̄.

Proof. Assume (θ∗, ζ∗) ∈ D such that Φ(θ∗, ζ∗) = min(x,t)∈D̄ Φ(x, t) and
Φ(θ∗, ζ∗) < 0. Then, it is easy to verify that $ε,µΦ(θ∗, ζ∗) < 0, which is a
contradiction. Thus, we have Φ(x, t) ≥ 0 for all (x, t) ∈ D̄.

Lemma 2. The solution u (x, t) of the continuous problem (1) is bounded
as

|u (x, t)− ϕb (x, 0) | ≤ Ct.

Proof. Refer to [8].
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Lemma 3. The bound on the solution u(x, t) of the continuous problem (1)
is given by

|u(x, t)| ≤ C, (x, t) ∈ D̄.

Proof. Refer to [8].

Lemma 4 (Uniform stability estimate). Let u(x, t) be the solution of the
continuous problem in (1). Then we have the bound

∥u(x, t)∥ ≤ β−1 ∥w∥+ max {|ϕb|+ max (|ϕl| , |ϕr|)} .

Proof. An application of Lemma 1 to the comparison function

χ± (x, t) =β−1 ∥g∥+ max (|ϕb| , (|ϕl|+ |ϕr|))± u (x, t) , (x, t) ∈ D̄,

yields the required estimate.

Lemma 5. Let u(x, t) be the solution of problem (1), satisfying 0 ≤ i+2j ≤
4. Then u(x, t) satisfies the following bound:

∥∥∥∥ ∂i+ju

∂xi∂tj

∥∥∥∥ ≤ C


1

(
√
ε)

i when αµ2 ≤ εη,(
µ
ε

)i (µ2

ε

)j
when αµ2 ≥ εη,

where η ≈ min(x,t)∈D̄
b(x,t)
a(x,t) .

Proof. Refer to [8].

3 Numerical scheme formulation

3.1 Temporal discretization

The time interval [0, T ] is partitioned into a uniform step size as follows:

ΩM
t = {tm = m∆t,m = 0, 1, . . . ,M,∆t = T/M} , T = ks, s = ms∆t,

where k is a positive constant, ms is a positive integer, ∆t is the time step
size, and M is the number of mesh intervals.

Hence, the problem (1) is discretized by using the implicit Euler method
as follows:
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Um+1 (x)− Um (x)

∆t
− ε (Uxx)

m+1
(x)− µam+1 (x)

(Ux)
m+1

(x) + bm+1 (x)Um+1 (x) = wm+1 (x) ,

Um (0) = ϕl (tm) , 0 ≤ m ≤M,x ∈ Ωx,

Um (1) = ϕr (tm) , 0 ≤ m ≤M,x ∈ Ωx,

Um+1 (x) = ϕb (x, tm+1) , −(s+ 1) ≤ m ≤ −1, x ∈ Ωx,

(4)

where wm+1 (x) = −cm+1(x)Um+1−s (x)+fm+1 (x), 0 ≤ m ≤M,x ∈ Ωx and
Um+1(x) is the semidiscrete approximation to the exact solution u(x, tm+1)
of (1) at the (m + 1)th time level. Then, let us rewrite (4) in the following
operator form:

$Mε,µUm+1(x) = H (x, tm+1) ,

Um+1 (0) = ϕl (tm+1) , 0 ≤ m ≤M,

Um+1 (1) = ϕr (tm+1) , 0 ≤ m ≤M, x ∈ Ωx,

Um+1 (x) = ϕb (x, tm+1) , −(s+ 1) ≤ m ≤ −1, x ∈ Ωx,

(5)

where

$Mε,µUm+1(x) = −ε (Uxx)
m+1

(x)−µam+1 (x) (Ux)
m+1

(x)+qm+1 (x)Um+1 (x)

and

H (x, tm+1) =
1

∆t
Um (x)− cm+1(x)Um−s+1 (x) + fm+1(x),

1 ≤ m ≤M, x ∈ Ωx,

for qm+1 (x) =
1

∆t
+ bm+1 (x) .

Lemma 6 (Semidiscrete maximum principle). Let φm+1 (x) ∈ C2 (D) ∩
C0
(
D̄
)
. If φm+1 (0) ≥ 0, φm+1 (1) ≥ 0, and $Mε,µφm+1 (x) ≥ 0 for all x ∈ D,

then φm+1(x) ≥ 0 for all x ∈ D̄.

Proof. One can prove this lemma by the same procedure as the proof of
Lemma 1.

Lemma 7 (Local error estimate). Suppose ∂
iu (x, t)

∂ti
≤ C, (x, t) ∈ D̄×(0, T ],

0 ≤ i ≤ 2. The local truncation error defined as em+1 = u (x, tm) − Um(x),
associated to scheme (5) satisfies

∥em+1∥ ≤ C (∆t)
2
, m = 1, 2, . . . ,M.

Proof. See [2].

Lemma 8 (Global error estimate.). The global error Em+1 is estimated as
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∥Em+1∥ ≤ C (∆t) .

Proof. See [3].

At the (n + 1)th time level, the characteristics equation of the homoge-
neous part of the differential equation (5) can be

ελ2 (x) + µam+1 (x)λ (x)−
(
bm+1 (x) +

1

∆t

)
= 0. (6)

Then, the roots of (5) are

λ1 (x) =
−µam+1(x)

2ε
+

√(
−µam+1(x)

2ε

)2

+
ϱ∗

ε
> 0,

λ2 (x) =
−µam+1(x)

2ε
−

√(
−µam+1(x)

2ε

)2

+
ϱ∗

ε
< 0,

where ϱ∗ = bm+1 (x)+
1

∆t
. From these roots, it is possible to see the boundary

layer behavior of the solution in the neighborhood of x = 0 and x = 1. Let
ϱ0 = −maxx∈[0,1] λ1 (x) and ϱ1 = minx∈[0,1] λ2 (x). Then we have two cases
i) When µ2

ε → 0, as ε→ 0, ϱ0 ≈ ϱ1 =
√

ϱ∗
1

ε , where 0 < ϱ∗1 < ϱ∗.
ii) When ε

µ2 → 0, as µ → 0, = µ
ε ϱ

∗
2 and ϱ1 = 0, where 0 < ϱ∗2 < µam+1(x).

Next, we give the semidiscrete bound of the solution Um+1(x) of the problems
in (6).

Lemma 9. [8]For a fixed number 0 < p < 1 and for a certain order k, the
solution Um(x) of (5) satisfies the following derivative bound∣∣∣∣diUm(x)

dxi

∣∣∣∣ ≤ C
(
1 + ϱ−i

0 e−pϱ0x + ϱ−i
1 e−pϱ1(1−x)

)
, for 0 ≤ i ≤ k.

3.2 Fully discrete problem

In this section, we fully discretize the problem under consideration via an
exponentially fitted finite difference scheme for space derivative discretiza-
tion. On the space domain [0, 1], we introduce the equidistant meshes with
uniform mesh length h such that

ΩN
x = {xn = nh, n = 1, 2, . . . , N, x0 = 0, xN = 1, h = 1/N} ,

where h is the step size, and N is the number of mesh points in the space
direction. Using the theory applied in the asymptotic method developed
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in [18], we develop an exponentially fitted numerical scheme to solve the
singularly perturbed BVPs in (6). In the considered case, the boundary layer
is on the left side of the domain, so for the singularly perturbed problem of
(6), the zero-order approximation asymptotic solution is given as

Um+1(x) =Um+1
0 (x) +

(
ϕl (tm+1)− Um+1

0 (0)
)

exp
{
−
∫ x

0

(
µam+1 (x)

ε

)
dx

}
+O (ε) ,

(7)

where Um+1
0 (x) is the solution of the reduced problem in (6) obtained by

setting ε = 0 written asµam+1 (x)
d

dx
Um+1
0 (x)− qm+1 (x)Um+1

0 (x) = Gm+1 (x) ,

Um+1
0 (0) = ϕl (tm+1) .

(8)

Taking Taylor’s series expansion for a(x, tm) about x = 0 and taking their
first terms, (7) gives

Um+1(x) =Um+1
0 (x) +

(
ϕl (tm+1)− Um+1

0 (0)
)

exp
{
−
(
µam+1 (0)

ε

)
x

}
+O (ε) .

(9)

At the mesh xn = nh, (9) becomes

Um+1(nh) =Um+1
0 (nh) +

(
ϕl (tm+1)− Um+1

0 (0)
)

exp
{
−
(
µam+1 (x)

ε

)
(nh)

}
+O (ε) .

Therefore,

lim
h→0

Um+1(nh) = Um+1
0 (0) +

(
ϕl (tm+1)− Um+1

0 (0)
)

exp
{
−µam+1 (0)nρ

}
,

(10)
where ρ = µh

ε .
Now, we consider the derivative approximation of the problem in (1) and

(2) as

D−Un =
Un − Un−1

h
, D+Un =

Un+1 − Un

h
, D0Un =

Un+1 − Un−1

2h
, and

D+D−Un =
Un+1 − 2Un + Un−1

h2
,

and
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Negero 634

εσ (ρ, ε, µ)D+D−Um+1 (xn) + µam+1 (xn)D
0Um+1 (xn)

− qm+1 (xn)U
m+1 (xn) = G (xn, tm+1) ,

(11)

where σ (ρ, ε, µ) is a fitting factor.
Multiplying (11) by h and evaluating the limit as h→ 0 give

lim
h→0

[
σ (ρ, ε, µ)

ρ

(
Um+1
n+1 − 2Um+1

n + Um+1
n−1

)]

+
1

2
am+1 (nh)

(
Um+1
n+1 − Um+1

n−1

)
= 0.

(12)

Substituting (10) into (12) and taking a(x, t) = a constant with some manip-
ulation give the fitting factor as

σ (ρ, ε, µ) = am+1 (0) ρ
2 coth (ρa

m+1(0)
2 ).

For the variable fitting factor, we define as

σn (ρ, ε, µ) = am+1 (xn)
ρ

2
coth (

ρam+1 (xn)

2
). (13)

Hence, using (12) ,the resulting finite difference scheme can be given as

$N,M
ε,µ Un+1

m ≡
(
εσn (ρ, ε, µ)

h2
− 1

2
µam+1

n

)
Um+1
n−1

+

(
−2εσn (ρ, ε, µ)

h2
− qm+1

n

)
Um+1
n

+

(
εσn (ρ, ε, µ)

h2
+

1

2
µam+1

n

)
Um+1
n+1

=Hm+1
n

(14)

subject to the following conditions:
Um+1
0 = ϕl (tm+1) , 0 ≤ m ≤M,

Um+1
N = ϕr (tm+1) , 0 ≤ m ≤M,

U (xn, tm+1) = ϕb (xn, tm+1) , xn ∈ Ω̄N , − (℘+ 1) ≤ m ≤ −1,

(15)

where

Hm+1
n = H (xn, tm+1)

= − 1

∆t
Um (xn) + cm+1(xn)U

m−℘+1 (xn)− fm+1(xn).

The schemes in (14) and (15) can be rewritten as

$N,M
ε,µ Um+1

n ≡ Em+1
n Um+1

n−1 − Fm+1
n Um+1

n +Gm+1
n Um+1

n−1 = Hm+1
n , (16)
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where

Em+1
n =

εσn (ρ, ε, µ)

h2
− 1

2
µam+1

n ,

Fm+1
n =

2εσn (ρ, ε, µ)

h2
+ qm+1

n ,

Gm+1
n =

εσn (ρ, ε, µ)

h2
+

1

2
µam+1

n ,

Hm+1
n = − 1

∆t
Um (xn) + cm+1(xn)U

m−℘+1 (xn)− fm+1(xn).

From the entries Em+1
n , Fm+1

n , Gm+1
n of tridiagonal system of (16), it is evi-

dent that Em+1
n < 0, Gm+1

n < 0 and Em+1
n + Fm+1

n + Gm+1
n > 0. Thus the

system is an M-matrix, and therefore its inverse exists, and it is positive.
Hence, the tridiagonal system in (16) can be easily solved by any existing
methods.

4 Stability and uniform convergence analysis

Lemma 10 (Discrete maximum principle). Assume that ψm+1
n is any mesh

function that satisfies ψm+1
0 ≥ 0, ψm+1

N ≥ 0, and that $N,M
ε,µ is the discrete

operator of (16). Then $N,M
ε,µ ψm+1

n ≥ 0, for 1 ≤ n ≤ N − 1, implies that
ψm+1
n ≥ 0, for 0 ≤ n ≤ N .

Proof. Refer to [12].

Lemma 11 (Uniform stability estimate for discrete problem). Let Um+1
n be

any mesh function such that Um+1
0 = 0, Um+1

N = 0 on 0 ≤ n ≤ N . Then

∣∣Um+1
n

∣∣ ≤ max
∣∣$N,M

ε,µ Um+1
n

∣∣
q∗

+ C max {|ϕl(tm+1)| , |ϕr(tm+1)|} ,

where qm+1
n =

1

∆t
+ b (xn, tm+1) ≥ q∗ > 0.

Proof. Refer to [12].

Theorem 1. Let U (xn, tm+1) be the continuous solution of (1) and (2) and
let Um+1

n be the approximate solution of (16). Then, for sufficiently large N ,
the following error bound holds:∣∣$N,M

ε,µ

(
U (xn, tm+1)− Um+1

n

)∣∣ ≤ CN−2.

Proof. Consider the error bound in the spatial direction as
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ε,µ

(
U (xn, tm+1)− Um+1

n

)∣∣
=
∣∣$N,M

ε,µ U (xn, tm+1)− $N,M
ε,µ Um+1

n

∣∣
=

∣∣∣∣∣ε (Uxx)
m+1

(xn) + µam+1 (xn) (Ux)
m+1

(xn)

−
{
εσ (ρ, ε, µ)D+D−Um+1

n + µam+1
n D0Um+1

n

}∣∣∣∣∣
≤

∣∣∣∣∣εσ (ρ, ε, µ)
(
d2

dx2
−D+D−

)
Um+1
n + µam+1

n

(
d

dx
−D0

)
Um+1
n

∣∣∣∣∣
≤
∣∣∣∣ε [am+1 (xn)

ρµ

2
coth (

ρµam+1 (xn)

2
)− 1

]
D+D−Um+1

n

∣∣∣∣
+

∣∣∣∣ε( d2

dx2
−D+D−

)
Um+1
n

∣∣∣∣+ ∣∣∣∣µam+1
n

(
d

dx
−D0

)
Um+1
n

∣∣∣∣ .

(17)

Now, (17) becomes∣∣$N,M
ε,µ

(
U (xn, tm+1)− Um+1

n

)∣∣
≤ Cµh2

d2Um+1
n

dx2
+ Cεh2

d4Um+1
n

dx4
+ Cµh2

d3Um+1
n

dx3
.

Using Lemma 9, we have∣∣∣∣∣$N,M
ε,µ

(
U (xn, tm+1)− Um+1

n

)∣∣∣∣∣
≤Cµh2

(
1 + ω−2

1 e−νω1x + ω−2
2 e−νω2(1−x)

)
+ Ch2

[
ε
(
1 + ω−4

1 e−νω1x + ω−4
2 e−νω2(1−x)

)
+ µ

(
1 + ω−3

1 e−νω1x + ω−3
2 e−νω2(1−x)

)]
.

As ε→ 0 both ω−i
1 e−νω1xm and ω−i

2 e−νω2(1−xm) approach zero for 0 ≤ i ≤ 4.
Thus, we obtain the following error bound:∣∣$N,M

ε

(
U (xn, tm+1)− Um+1

n

)∣∣ ≤ CN−2,

since h = N−1.

Under the hypothesis of Lemmas 11 and 10, the following error estimate
holds:

max
0≤n<N

∣∣U (xn, tm+1)− Um+1
n

∣∣ ≤ Ch = CN−2. (18)
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Theorem 2. Let u (x, t) be the exact solution of (1) and (2) and let Um+1
n

be the numerical solution of (16). For the discrete scheme, there exist a
constant C independent of ε, h and ∆t such that

max
0≤n≤N,0≤m≤M

∣∣u (xn, tm+1)− Um+1
n

∣∣ ≤ C
(
N−2 + (∆t)

)
.

for sufficiently large N .

Proof. The result follows from the error estimate given in Lemma 8 and
Theorem 1.

5 Numerical results

In this section, we illustrate the proposed scheme using two numerical ex-
amples of the form given in (1). We investigate the theoretical results in
this paper by performing experiments using the proposed scheme. The exact
solution of these two examples is not known. Thus, we use the double mesh
principle to evaluate maximum absolute errors EN,M

ε,µ and the corresponding
order of convergence pN,M

ε,µ as

EN,M
ε,µ = max

0≤n≤N,0≤m≤M

∣∣Um+1
n − U2m+1

2n

∣∣ , pN,M
ε,µ = log2

(
EN,M

ε,µ

E2N,2M
ε,µ

)
.

From these values, we obtain the ε-uniform error EN,M and the corresponding
ε-uniform order of convergence pN,M as

EN,M = max0≤n≤N,0≤m≤M EN,M
ε and pN,M = log2

(
EN,M

E2N,2M

)
,

where Un+1
m is the numerical solutions obtained by using N ×M mesh inter-

vals in space and time direction with mesh size h and ∆t, respectively.

Example 1. Consider the problem

∂u

∂t
− ε

∂2u

∂x2
− µ(1 + x)

∂u

∂x
+ u(x, t) = −u(x, t− τ)+16x2 (1− x)

2
,

(x, t) ∈ (0, 1)× (0, 2],

with {
u(0, t) = 0, u(1, t) = 0, t ∈ (0, 2] ,

u(x, t) = 0, (x, t) ∈ [0, 1]× [−τ, 0] .

Example 2. Consider the problem
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∂u

∂t
−ε∂

2u

∂x2
− µ

(
1 + x (1− x) + t2

) ∂u
∂x

+ (1 + 5xt)u(x, t)

= −u(x, t− τ) + x(1− x)
(
et − 1

)
, (x, t) ∈ (0, 1)× (0, 2],

with {
u(0, t) = 0, u(1, t) = 0, t ∈ (0, 2] ,

u(x, t) = 0, (x, t) ∈ [0, 1]× [−τ, 0] .

Table 1: Maximum pointwise errors (EN,M
ε,µ ) and rate of convergence (pN,M

ε,µ ) for Example
1.

µ = 10−4 N=32 N=64 N=128 N=256 N=512
ε ↓ M=16 M=32 M=64 M=128 M=256
10−0 5.7516e-03 3.6382e-03 2.1286e-03 1.1627e-03 6.0947e-04

0.66074 0.77332 0.87243 0.93185 -
10−2 1.0422e-02 5.4491e-03 2.7875e-03 1.4101e-03 7.0919e-04

0.93554 0.96705 0.98317 0.99155 -
10−4 1.0658e-02 5.5312e-03 2.8189e-03 1.4231e-03 7.1502e-04

0.94627 0.97246 0.98610 0.99298 -
10−6 1.0663e-02 5.5328e-03 2.8193e-03 1.4232e-03 7.1504e-04

0.94653 0.97267 0.98620 0.99304 -
10−8 1.0664e-02 5.5339e-03 2.8202e-03 1.4237e-03 7.1533e-04

0.94638 0.97250 0.98615 0.99296 -
10−10 1.0664e-02 5.5339e-03 2.8202e-03 1.4237e-03 7.1533e-04

0.94638 0.97250 0.98615 0.99296 -
10−12 1.0664e-02 5.5339e-03 2.8202e-03 1.4237e-03 7.1533e-04

0.94638 0.97250 0.98615 0.99296 -
EN,M 1.0664e-02 5.5339e-03 2.8202e-03 1.4237e-03 7.1533e-04
pN,M 0.94638 0.97250 0.98615 0.99296 -

(a) (b)

Figure 1: Surface plot of the numerical solution for Example 2 with N = 256,M = 128,
a ε = 10−1,µ = 10−12 b ε = 10−12,µ = 10−1
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Table 2: Maximum pointwise errors (EN,M
ε,µ ) and rate of convergence (pN,M

ε,µ ) for Example
1.

µ = 10−12 Number of mesh intervals N=M
ε ↓ 32 64 128 256 512
10−0 3.6218e-03 2.1253e-03 1.1619e-03 6.0925e-04 3.1225e-04

0.57919 0.87118 0.93138 0.96433 -
10−2 5.4110e-03 2.7780e-03 1.4077e-03 7.0860e-04 3.5549e-04

0.96185 0.98071 0.99030 0.99516 -
10−4 5.5307e-03 2.8187e-03 1.4231e-03 7.1501e-04 3.5838e-04

0.97243 0.98599 0.99300 0.99647 -
10−6 5.5315e-03 2.8189e-03 1.4231e-03 7.1502e-04 3.5839e-04

0.97254 0.98610 0.99298 0.99645 -
10−8 5.5315e-03 2.8189e-03 1.4231e-03 7.1502e-04 3.5838e-04

0.97254 0.98610 0.99298 0.99645 -
10−10 5.5315e-03 2.8189e-03 1.4231e-03 7.1502e-04 3.5838e-04

0.97254 0.98610 0.99298 0.99645 -
10−12 5.5315e-03 2.8189e-03 1.4231e-03 7.1502e-04 3.5838e-04

0.97254 0.98610 0.99298 0.99645 -
EN,M 5.5315e-03 2.8189e-03 1.4231e-03 7.1502e-04 3.5839e-04
pN,M 0.97254 0.98610 0.99298 0.99645 -

Table 3: Maximum pointwise errors (EN,M
ε,µ ) and rate of convergence (pN,M

ε,µ ) for Example
2.

µ = 10−4 N=32 N=64 N=128 N=256 N=512
ε ↓ M=16 M=32 M=64 M=128 M=256
10−0 2.1475e-04 1.0912e-04 5.4962e-05 2.7578e-05 1.3813e-05

0.97674 0.98941 0.99492 0.99749 -
10−2 2.1465e-03 1.1561e-03 6.0053e-04 3.0592e-04 1.5440e-04

0.89272 0.94496 0.97308 0.98648 -
10−4 2.6764e-03 1.4488e-03 7.5345e-04 3.8424e-04 1.9401e-04

0.88544 0.94327 0.97150 0.98588 -
10−6 2.6771e-03 1.4491e-03 7.5407e-04 3.8484e-04 1.9445e-04

0.88551 0.94239 0.97044 0.98486 -
10−8 2.6771e-03 1.4490e-03 7.5351e-04 3.8423e-04 1.9401e-04

0.88561 0.94336 0.97166 0. 98584 -
10−10 2.6771e-03 1.4490e-03 7.5351e-04 3.8423e-04 1.9401e-04

0.88561 0.94336 0.97166 0. 98584 -
10−12 2.6771e-03 1.4490e-03 7.5351e-04 3.8423e-04 1.9401e-04

0.88561 0.94336 0.97166 0. 98584 -
EN,M 2.6771e-03 1.4491e-03 7.5407e-04 3.8424e-04 1.9445e-04
pN,M 0.88551 0.94239 0.97269 0.98261 -
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Table 4: Maximum pointwise errors (EN,M
ε,µ ) and rate of convergence (pN,M

ε,µ ) for Example
2.

µ = 10−12 Number of mesh intervals N=M
ε ↓ 32 64 128 256 512
10−0 1.3372e-04 6.1251e-05 2.9166e-05 1.4212e-05 7.0123e-06

1.1264 1.0704 1.0372 1.0191 -
10−2 1.1701e-03 6.0326e-04 3.0645e-04 1.5447e-04 7.7560e-05

0.95578 0.97713 0.98833 0.99394 -
10−4 1.4466e-03 7.5262e-04 3.8382e-04 1.9386e-04 9.7408e-05

0.94267 0.97149 0.98541 0.99290 -
10−6 1.4522e-03 7.5525e-04 3.8509e-04 1.9444e-04 9.7702e-05

0.94321 0.97176 0.98587 0.99287 -
10−8 1.4522e-03 7.5527e-04 3.8510e-04 1.9445e-04 9.7705e-05

0.94318 0.97176 0.98583 0.99289 -
10−10 1.4523e-03 7.5527e-04 3.8510e-04 1.9445e-04 9.7705e-05

0.94328 0.97176 0.98583 0.99289 -
10−12 1.4523e-03 7.5527e-04 3.8510e-04 1.9445e-04 9.7705e-05

0.94328 0.97176 0.98583 0.99289 -
EN,M 1.4523e-03 7.5527e-04 3.8510e-04 1.9445e-04 9.7705e-05
pN,M 0.94328 0.97176 0.98583 0.99289 -

Table 5: Comparison of uniform error (EN,M ) for Example 1.

µ = 10−3 N=32 N=64 N=128 N=256 N=512
ε ↓ M=8 M=16 M=32 M=64 M=128
Proposed method
10−4 1.9859e-02 1.0660e-02 5.5318e-03 2.8190e-03 1.4232e-03
10−6 1.9905e-02 1.0684e-02 5.5439e-03 2.8245e-03 1.4251e-03
10−8 1.9905e-02 1.0684e-02 5.5440e-03 2.8252e-03 1.4262e-03
10−10 1.9905e-02 1.0684e-02 5.5440e-03 2.8252e-03 1.4262e-03
10−12 1.9905e-02 1.0684e-02 5.5440e-03 2.8252e-03 1.4262e-03
Method in [8]
10−4 4.3705e-2 1.6704e-2 7.3802e-3 3.7406e-3 1.8967e-3
10−6 4.3471e-2 1.6596e-2 7.3290e-3 3.7218e-3 1.8873e-3
10−8 4.3429e-2 1.6573e-2 7.3303e-3 3.7211e-3 1.8870e-3
10−10 4.4343e-2 1.6572e-2 7.3303e-3 3.7211e-3 1.8870e-3
10−12 4.4343e2 1.6572e-2 7.3303e-3 3.7211e-3 1.8870e-3
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Table 6: Comparison of uniform error (EN,M ) for Example 2.

µ = 10−3 N=32 N=64 N=128 N=256 N=512
ε ↓ M=8 M=16 M=32 M=64 M=128
Proposed method
10−4 4.5627e-03 2.6876e-03 1.4564e-03 7.5785e-04 3.8653e-04
10−6 4.5254e-03 2.6603e-03 1.4402e-03 7.4904e-04 3.8203e-04
10−8 4.5254e-03 2.6603e-03 1.4402e-03 7.4904e-04 3.8195e-04
10−10 4.5254e-03 2.6603e-03 1.4402e-03 7.4904e-04 3.8195e-04
10−12 4.5254e-03 2.6603e-03 1.4402e-03 7.4904e-04 3.8195e-04
Method in [8]
10−4 1.1161e-2 5.1087e-3 2.4749e-3 1.2214e-3 6.0706e-4
10−6 1.1008e-2 5.0450e-3 2.4437e-3 1.2073e-3 6.0036e-4
10−8 1.0941e-2 5.0426e-3 2.4442e-3 1.2071e-3 6.0016e-4
10−10 1.0940e-2 5.0428e-3 2.4442e-3 1.2071e-3 6.0016e-4
10−12 1.0940e-2 5.0428e-3 2.4442e-3 1.2071e-3 6.0016e-4

Table 7: Comparison of uniform error (EN,M ) for Example 1.

µ = 10−9 N=32 N=64 N=128 N=256 N=512
ε ↓ M=8 M=16 M=32 M=64 M=128
Proposed method
10−4 1.9853e-02 1.0658e-02 5.5313e-03 2.8189e-03 1.4231e-03
10−6 1.9856e-02 1.0659e-02 5.5315e-03 2.8189e-03 1.4231e-03
10−8 1.9856e-02 1.0659e-02 5.5315e-03 2.8189e-03 1.4231e-03
10−10 1.9856e-02 1.0659e-02 5.5315e-03 2.8189e-03 1.4231e-03
10−12 1.9856e-02 1.0659e-02 5.5315e-03 2.8189e-03 1.4231e-03
Method in [8]
10−4 4.3708e-2 1.6705e-2 7.3807e-3 3.7407e-3 1.8967e-3
10−6 4.3816e-2 1.6749e-2 7.4017e-3 3.7489e-3 1.9008e-3
10−8 4.3817e-2 1.6750e-2 7.4019e-3 3.7490e-3 1.9008e-3
10−10 4.3817e-2 1.6750e-2 7.4019e-3 3.7490e-3 1.9008e-3
10−12 4.3817e-2 1.6750e-2 7.4019e-3 3.7490e-3 1.9008e-3

Table 8: Comparison of uniform error (EN,M ) for Example 2.

µ = 10−9 N=32 N=64 N=128 N=256 N=512
ε ↓ M=8 M=16 M=32 M=64 M=128
Proposed method
10−4 4.5499e-03 2.6744e-03 1.4477e-03 7.5307e-04 3.8398e-04
10−6 4.5651e-03 2.6830e-03 1.4523e-03 7.5527e-04 3.8513e-04
10−8 4.5652e-03 2.6831e-03 1.4523e-03 7.5529e-04 3.8514e-04
10−10 4.5652e-03 2.6831e-03 1.4523e-03 7.5529e-04 3.8514e-04
10−12 4.5652e-03 2.6831e-03 1.4523e-03 7.5529e-04 3.8514e-04
Method in [8]
10−4 1.1053e-2 5.0755e-3 2.4578e-3 1.2132e-3 6.0309e-4
10−6 1.1046e-2 5.0765e-3 2.4625e-3 1.2161e-3 6.0456e-4
10−8 1.1100e-2 5.0838e-3 2.4627e-3 1.2161e-3 6.0457e-4
10−10 1.1093e-2 5.0782e-3 2.4639e-3 1.2162e-3 6.0457e-4
10−12 1.1092e-2 5.0775e-3 2.4640e-3 1.2162e-3 6.0457e-4
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Figure 2: Log-Log plot of the maximum error on left (a) for Example 1 with µ = 10−4

and on right (b) for Example 2 with µ = 10−4.

We have demonstrated maximum pointwise errors (EN,M
ε,µ ) and the rate

of convergence (pN,M
ε,µ ) for Example 1 using scheme (16) by fixing µ = 10−4 in

Table 1 and µ = 10−12 in Table 2 with various values of ε. Similarly, Tables 3
and 4 have presented the result obtained for Example 2. The results given in
Tables 1–4 clearly indicate that the proposed numerical method is accurate
of order O

(
N−2 +∆t

)
, which approves the hypothetical result predicted in

the theory. Numerical solutions obtained by the presented numerical scheme
(16) for Example 2 have been shown in Figure 1 (a), (b), and it shows the
effects of the two parameters ε and µ on the steepness of the layer of the
solutions. From Figure 1 (a), we confirm the nonoccurrence of both left and
right boundary layers near x = 0 and x = 1 for µ → 0 as ε becomes large.
Similarly, from Figure 1 (b), we confirm the occurrence of left boundary
layers near x = 0 for µ = 1 as ε becomes small. The graphs between N and
maximum pointwise errors of Examples 1 and 2 are plotted as the log-log
scale, respectively, in Figure 2 (a) and (b). From these two graphs, one can
observe that the numerical scheme converges ε-uniformly as the perturbation
parameter goes very small. The comparison of our numerical results with
that of [8] is presented in Tables 5–8. From these tables, we can confirm the
improved accuracy of our proposed numerical method.

6 Conclusion

A singularly perturbed parabolic differential equation exhibiting boundary
layers was considered. The considered problem contains two small pertur-
bation parameters multiplied by the highest order derivative a term of the
equation and a large delay parameter on the time variable. An exponentially
fitted operator numerical scheme was proposed for solving the problem. First,
the equation was approximated by equivalent singularly perturbed parabolic
partial differential equations using the implicit Euler method in the time
direction. Inducing an exponential fitting factor for a term with the per-
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turbation parameter ε and determining its value, a fully discrete numerical
scheme was developed using implicit Euler in temporal discretization and
the central finite difference method for spatial discretization. The uniform
stability and uniform convergence of the scheme were established. It was
shown that the scheme is accurate and converges uniformly with the order
of convergence O

(
N−2 + (∆t)

)
.
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