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1 Introduction

The mathematical modeling of many phenomena in various branches of sci-
ence leads to nonlinear integral-differential equations. Fractional calculus is
applied extensively by many scientists in the mathematical modeling and
control of numerous dynamic systems [30, 31]. This class of equations arises
in the field of signal processing [21], waves and brain modeling [18, 26], ra-
diative equilibrium [17], and so on. Commonly, it is impractical to obtain an
analytical solution to integral-differential equations. As a result, the improve-
ment of some numerical methods and the introduction of new high-accuracy
numerical algorithms is very important to obtain approximate solutions. So
various numerical methods have been developed to solve these types of equa-
tions by many researchers. Some of the prominent methods are modified
differential transform [15, 20], Adomian decomposition, Homotopy analysis
[9, 12], Galerkin [10, 28], collocation [16, 25], product integration [1], Euler
wavelets [7], haar wavelets [4], Legendre wavelets [29], Chebyshev wavelets
[13], Hermite cubic splines [27], Hat functions [11], Taylor series [8], and so
forth. The nonlinear fractional integral-differential equation with a weakly
singular kernel appears in the following form:

C
0 D

α
t u(t) = g(t) + p(t)u(t) + λ

∫ t

0

(t− s)
−β
um(s)ds, α > 0, 0 < β < 1,

u(i)(0) = u
(i)
0 , i = 0, 1, . . . , ⌈α⌉ − 1, m ∈ N, t ∈ I(t),

(1)

where u(t) is an unknown function to be determined, λ is an appropriate
parameter, g(t) and p(t) are known continuous functions on I(T ) := [0, T ],
and C

0 D
α
t is the Caputo fractional differential operator of order α. Some nu-

merical methods convert such an integral-differential equation into a system
of algebraic equations that can be easily solved.
Wang and Zhu [32] applied the second kind of Chebyshev wavelets method
to give approximate solutions for the fractional integral-differential equations
with a weakly singular kernel. Nemati and Lima [22] applied a numerical
method based on modified hat functions (MHFs) for solving the problem (1).
Xie et al. [33] used the Haar wavelets to solve a coupled system of fractional-
order integral-differential equations. Riahi Beni [29] proposed a novel tech-
nique for nonlinear fractional Volterra–Fredholm integro-differential equa-
tions. Also, a numerical solution for a fractional integro-differential equation
via a method based on the Gegenbauer wavelets was suggested by Özaltun,
Konuralp, and Gümgüm [23]. In this paper, we introduce a high-precision
numerical algorithm for the problem (1) in terms of Cubic hat-functions
(CHFs).

The present work discusses some of the properties of Riemann–Liouville
integral operators to solve the nonlinear fractional integral-differential equa-
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tions. Applying the operational matrix method, the principal problem will
be reduced to solving several nonlinear trivariate polynomial equations. In
Section 2, some basic definitions and characteristics of fractional calculus
are presented. Section 3 is devoted to introducing the operational matrix of
CHFs basis. The fourth section studies the absolute error of approximation
of a function by a truncated series of CHFs. The fifth section presents a nu-
merical method for Problem (1). The convergence analysis of the proposed
scheme is discussed in Section 6. To show the validity and accuracy of the
utilized approach, three numerical examples are provided in Section 7, and
the paper ends in Section 8, with a conclusion and discussion.

2 Basic concepts and definitions

In this section, some definitions and properties, which have been used in this
manuscript, are explained. In this research, the Riemann–Liouville integral
operator of the αth order (Iαt ) and the Caputo fractional differential operator
of order α (c0Dα

t ) will be used. They are well addressed in [24].

Definition 1. Suppose that α ∈ R , n − 1 < α ≤ n, n ∈ N, and let u(t) be
a continuous function defined on [0, 1]. The Caputo fractional derivative of
order α > 0 is defined as follows:

C
0 D

α
t u(t) =

{
1

Γ(n−α)

∫ t

0
(t− τ)

(n−α−1) dn

dτ u(τ)dτ, n− 1 < α < n,

u(n)(t), α = n,
(2)

wherein
Γ(x) =

∫ ∞

0

tx−1e−tdt.

Definition 2. Assume that α > 0 and that u(t) is a continuous function
defined on the closed interval [0, 1]. The Riemann–Liouville integral operator
of order α is defined as follows:

Iαt u(t) =
1

Γ(α)

∫ t

0

(t− τ)
α−1

u(τ)dτ. (3)

The Riemann–Liouville integral operator and the Caputo fractional deriva-
tive operator satisfy the following properties [24]:

Iαt (I
β
t u(t)) = Iβt (I

α
t u(t)) = Iα+β

t u(t), α, β > 0,

Iαt (
C
0 D

α
t u(t)) = u(t)−

n−1∑
i=0

u(i)(0)
ti

i!
, n− 1 < α ≤ n, t > 0. (4)
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2.1 Definition of CHFs

First, let us state a history of Hat functions and then some definitions and
properties of CHFs. In 2011, Babolian and Mordad [6] described gener-
alized Hat functions to solve systems of Fredholm and Volterra integral
equations. In 2016, Mirzaee and Hadadiyan [19] introduced MHFs to solve
Volterra–Fredholm integral equations. In this paper, we improve the hat
functions method and use the method for solving linear and nonlinear frac-
tional integral-differential equations with weakly singular kernels. CHFs are
defined on the closed interval [0, T ] and have a hat-like shape. The inter-
val is divided into n subintervals, with equal lengths h, where h = T

n , and
n = 3K, K ∈ N.
CHFs are defined as follows:

ϕ0(t) =

{
− 1

6h3 (t− h)(t− 2h)(t− 3h), 0 ≤ t ≤ 3h,

0, otherwise.
(5)

For i = 3ν − 2, ν = 1, 2, . . . , n/3,

ϕi(t) =

{
1

2h3 (t− (i− 1)h)(t− (i+ 1)h)(t− (i+ 2)h), (i− 1)h ≤ t ≤ (i+ 2)h,

0, otherwise.
(6)

For i = 3ν − 1, ν = 1, 2, . . . , n/3,

ϕi(t) =

{
− 1

2h3 (t− (i− 2)h)(t− (i− 1)h)(t− (i+ 1)h), (i− 2)h ≤ t ≤ (i+ 1)h,

0, otherwise.
(7)

When i = 3ν, ν = 1, 2, . . . , (n− 3)/3,

ϕi(t) =


1

6h3 (t− (i− 3)h)(t− (i− 2)h)(t− (i− 1)h), (i− 3)h ≤ t ≤ ih,

− 1
6h3 (t− (i+ 1)h)(t− (i+ 2)h)(t− (i+ 3)h), ih ≤ t ≤ (i+ 3)h,

0, otherwise,
(8)

and

ϕn(t) =

{
1

6h3 (t− (n− 3)h)(t− (n− 2)h)(t− (n− 1)h), (n− 3)h ≤ t ≤ nh,

0, otherwise.
(9)

A function u(t) can be expressed in terms of CHFs as follows:

u(t) ≈ un(t) =

n∑
i=0

aiϕi(t) = ATΦ(t) = Φ(t)TA, (10)

so that
Φ(t) = [ϕ0(t), ϕ1(t), . . . , ϕn(t)]

T
, (11)

and
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A = [a0, a1, . . . , an]
T
, (12)

wherein ai = u(ih), i = 0, . . . , n, are unknown coefficients of the CHFs. Fig-
ure 1 shows the CHFs plotted on the interval [0, 1] for n = 6 using MATLAB
package.
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2.1.1 Properties of CHFs

Using the CHFs definition, the following properties can be obtained:
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Figure 1: Plots of the CHFs, up to n = 6, T = 1

n∑
i=0

ϕi(t) = 1, ϕi(jh) =

{
1, i = j,

0, i ̸= j.
(13)

Multiplying both sides of this summation to ϕj(t) attains(
n∑

i=0

ϕj(t)ϕi(t)

)
= ϕj(t). (14)

Thus, for t = jh, we have
n∑

i=0

ϕj(jh)ϕi(jh) = ϕj(jh),

[(ϕj(jh)ϕ0(jh)) + · · ·+ (ϕj(jh)ϕj(jh)) + · · ·+ (ϕj(jh)ϕn(jh))] = ψj(jh),
[(ϕj(jh)× 0) + · · ·+ (ϕj(jh)× ϕj(jh)) + · · ·+ (ϕj(jh)× 0)] = ϕj(jh).

(15)
As a result,

ϕj(jh)ϕj(jh) = ϕj(jh). (16)

Taking these properties, one has

ϕi(jh)ϕj(jh) ≈

{
ϕi(jh), j = i,

0, j ̸= i.
(17)

Then, from the relations (17 ) and (11), it can be concluded that

Φ(t)ΦT (t) ≃ diag [ϕ0(t), ϕ1(t), . . . , ϕn−1(t), ϕn(t)]
T
= diag (Φ(t)) . (18)

2.1.2 Nonlinear approximation of CHFs

Using (18) and (10), um(t) , m = 1, 2, . . ., can be calculated as follows:

u2(t) ≃ ATΦ(t)ΦT (t)A = AT diag(Φ(t))A = AT diag(A)Φ(t)
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= AT
2 Φ(t), A2 = [a20, a

2
1, . . . , a

2
n]

T ,

u3(t) ≃ u2(t)u(t) = A
T
2 Φ(t)Φ

T (t)A = AT
2 diag(Φ(t))A = AT

2 diag(A)Φ(t)
= AT

3 Φ(t), A3 = [a30, a
3
1, . . . , a

3
n]

T ,

...

um(t) ≃
n∑

i=0

ai
mϕi(t) = AT

mΦ(t), Am = [am0 , a
m
1 , . . . , a

m
n ]T . (19)

3 Operational matrices of CHFs

In this part of the study, we achieve the fractional-order integral operational
matrix using CHFs.

3.1 Fractional order operational matrix of integration

Let us state the following theorem.

Theorem 1. Let Φ(t) be given by (11) and let α > 0. Then

Iαt Φ(t) ≃ QαΦ(t), (20)

where Qα is called the (n + 1) × (n + 1) operational matrix of fractional
integration of order α and is defined as follows:

Q(α) =
hα

6Γ(α+ 4)



0 ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 · · · ρn−2 ρn−1 ρn
0 σ1 σ2 σ3 σ4 σ5 σ6 · · · σn−2 σn−1 σn
0 κ1 κ2 κ3 κ4 κ5 κ6 · · · κn−2 κn−1 κn
0 µ1 µ2 µ3 µ4 µ5 µ6 · · · µn−2 µn−1 µn

0 0 0 0 σ1 σ2 σ3 · · · σn−5 σn−4 σn−3

0 0 0 0 κ1 κ2 κ3 · · · κn−5 κn−4 κn−3

0 0 0 0 µ1 µ2 µ3 · · · µn−5 µn−4 µn−3

0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 · · · σ1 σ2 σ3
0 0 0 0 0 0 0 · · · κ1 κ2 κ3
0 0 0 0 0 0 0 · · · µ1 µ2 µ3



, (21)

wherein

ρk = 6kα(α+ 3)(α+ 2)(α+ 1)− 11kα+1(α+ 3)(α+ 2)

+ 12kα+2(α+ 3)− 6kα+3, k = 1, 2, 3,
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ρk = 6kα(α+ 3)(α+ 2)(α+ 1)−
(
11kα+1 − 2(k − 3)

α+1
)
(α+ 3)(α+ 2)

+ 6
(
2kα+2 + (k − 3)

α+2
)
(α+ 3)

− 6
(
kα+3 − (k − 3)

α+3
)
, k = 4, . . . , n,

σk = 3
(
6(k)

α+1
(α+ 3)(α+ 2)− 10(k)

α+2
(α+ 3) + 6(k)

α+3
)
, k = 1, 2, 3,

σk = 9
(
2(k)

α+1 − (k − 3)
α+1

)
(α+ 3)(α+ 2)

− 6
(
5(k)

α+2
+ 4(k − 3)

α+2
)
(α+ 3)

+ 18
(
(k)

α+3 − (k − 3)
α+3

)
, k = 4, . . . , n,

κk = −3
(
3(k)

α+1
(α+ 3)(α+ 2)− 8(k)

α+2
(α+ 3) + 6(k)

α+3
)
, k = 1, 2, 3,

κk = −9
(
(k)

α+1 − 2(k − 3)
α+1

)
(α+ 3)(α+ 2)

+ 6
(
4(k)

α+2
+ 5(k − 3)

α+2
)
(α+ 3)

− 18
(
(k)

α+3 − (k − 3)
α+3

)
, k = 4, . . . , n,

µk = 2(k)α+1(α+ 3)(α+ 2)− 6(k)α+2(α+ 3) + 6(k)α+3, k = 1, 2, 3,

µk = 2
(
(k)

α+1 − 11(k − 3)
α+1

)
(α+ 3)(α+ 2)− 6(k)α+2(α+ 3)

+ 6
(
(k)

α+3 − 2(k − 3)
α+3

)
, k = 4, 5, 6,

µk = 2
(
(k)

α+1 − 11(k − 3)
α+1

+ (k − 6)
α+1

)
(α+ 3)(α+ 2)

− 6
(
(k)

α+2 − (k − 6)
α+2

)
(α+ 3)

+ 6
(
(k)

α+3 − 2(k − 3)
α+3

+ (k − 6)
α+3

)
, k = 7, . . . , n. (22)

Proof. First, for ϕi(t), i = 0, . . . , n, we have the definition of the Riemann–
Liouville integral operator as follows:

Iαt ϕi(t) =
1

Γ(α)

∫ t

0

(t− τ)
α−1

ϕi(τ)dτ. (23)

We expand Iαt ϕi(t), in terms of the cubic hat basis functions as follows:

Iαt ϕi(t) ≃
n∑

j=0

γijϕj(t), i = 0, . . . , n, (24)

where the values of Iαt ϕi(t) at jth node point, (jh), represent the coefficients
γij . Thus, we have

Iran. j. numer. anal. optim., Vol. 13, No. 3, 2023,pp 500–531
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γij =
1

Γ(α)

∫ jh

0

(jh− τ)
α−1

ϕi(τ)dτ, i, j = 0, 1, . . . , n. (25)

Using equations (5)–(9), we calculate the integral (25). For i = 0, by substi-
tuting (5) in (25), we introduce the coefficient as follows:

γ0j = − hα

6Γ(α+ 4)



 6jα+3 − 12jα+2(α+ 3)

+11jα+1(α+ 3)(α+ 2)

−6jα(α+ 3)(α+ 2)(α+ 1),

 , j ≤ 2,


6
(
jα+3 − (j − 3)

α+3
)

−6
(
2jα+2 + (j − 3)

α+2
)
(α+ 3)

+
(
11jα+1 − 2(j − 3)

α+1
)
(α+ 3)(α+ 2)

−6jα(α+ 3)(α+ 2)(α+ 1),

 , j ≥ 3.

(26)
For i = 3ν − 2, ν = 1, 2, . . . , n/3, we obtain

γij =
hα

2Γ(α+ 4)



0, j ≤ i− 1, 6(j − i+ 1)α+3

−10(j − i+ 1)α+2(α+ 3)

+6(j − i+ 1)α+1(α+ 3)(α+ 2)

 , i ≤ j ≤ i+ 2,



6
(
(j − i+ 1)

α+3 − (j − i− 2)
α+3

)
−2
(
5(j − i+ 1)

α+2

+4(j − i− 2)
α+2

)
(α+ 3)

+3
(
2(j − i+ 1)

α+1

−(j − i− 1)
α+1

)
(α+ 3)(α+ 2)


, j ≥ i+ 3.

(27)
For i = 3ν − 1, ν = 1, 2, . . . , n/3, replacing (7) into Eq. (25) yields

Iran. j. numer. anal. optim., Vol. 13, No. 3, 2023,pp 500–531
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γij = − hα

2Γ(α+ 4)



0, j ≤ i− 2, 6(j − i+ 2)α+3

−8(j − i+ 2)α+2(α+ 3)

+3(j − i+ 2)α+1(α+ 3)(α+ 2)

 , i− 1 ≤ j ≤ i+ 1,



6
(
(j − i+ 2)

α+3 − (j − i− 1)
α+3

)
−2
(
4(j − i+ 2)

α+2

+5(j − i− 1)
α+2

)
(α+ 3)

+3
(
(j − i+ 1)

α+1

−2(j − i− 1)
α+1

)
(α+ 3)(α+ 2)


, j ≥ i+ 2.

(28)
Now, we attain (25) for i = 3ν, ν = 1, 2, . . . , n/3,

γij =
hα

6Γ(α+ 4)



0, j ≤ i− 3, 6(j − i+ 3)α+3

−6(j − i+ 3)α+2(α+ 3)

+2(j − i+ 3)α+1(α+ 3)(α+ 2)

 , i− 2 ≤ j ≤ i,


6
(
(j − i+ 3)

α+3 − 2(j − i)
α+3

)
−6(j − i+ 3)

α+2
(α+ 3)

+2
(
(j − i+ 3)

α+1

−11(j − i)
α+1

)
(α+ 3)(α+ 2)

 , i+ 1 ≤ j ≤ i+ 3,



6
(
(j − i+ 3)

α+3

−2(j − i)
α+3

+ (j − i− 3)
α+3

)
−6
(
(j − i+ 3)

α+2

−(j − i− 3)
α+2

)
(α+ 3)

+2

 (j − i+ 3)α+1

−11(j − i)α+1

+(j − i− 3)α+1

 (α+ 3)(α+ 2)


, j ≥ i+ 3,

(29)
Consider 3ν − 2 = i in (27), 3ν − 1 = i in (28), and 3ν = i in (29). Then
apply 3ν + k = j to all (26)–(29), ν = 1, . . . , n/3 and k = 1, . . . , n. Some
simple manipulations completes the proof.

As a result of using (10) and (20), we can approximate the integral of a
nonlinear function as follows:
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Iαt u
m(t) ≃ Iαt

(
n∑

i=0

am
i
ϕi(t)

)
≃ Iαt

(
AT

mΦ(t)
)
≃ AT

mQ
αΦ(t), ,m = 1, 2, . . . .

(30)
For instance, when α = 1 and n = 3, using the operational matrix (21), we
get

Examples Composite trapezoidal rule CHFs
solutions with n = 6 solutions

Example 1 :
∫ 1

0
sin s cos3s ds 0.2251 0.2327

Example 2 :
∫ 2

3

0
2xx3ds 0.0742 0.0730

Example 3 :
∫ 1

0
x

1
2 ln(x+ 1) ds 0.3055 0.3053

(31)

4 Error analysis

In this section, our analysis shows that when using CHFs to approximate a
function, the order of accuracy is O(h4). Let us approximate a function u(t),
as (10), where

un(t) =

n∑
i=0

u(ih)ϕi(t), n = 3K, K ∈ N. (32)

In the first step, for t ∈ (jh, (j + 1)h), j = 0, 3, 6, . . . , n − 3, using (5)–(9)
and doing some computation, we obtain

un(t) =

n∑
i=0

u(jh)ϕi(t)

= ϕj(t)u (jh) + ϕj+1(t)u ((j + 1)h)

+ ϕj+2(t)u ((j + 2)h) + ϕj+3(t)u ((j + 3)h)

= u(jh)

(
(t− (j + 1)h) (t− (j + 2)h) (t− (j + 3)h)

−6h3

)
+ u(jh+ h)

(
(t− jh) (t− (j + 2)h) (t− (j + 3)h)

2h3

)
+ u(jh+ 2h)

(
(t− jh) (t− (j + 1)h) (t− (j + 3)h)

−2h3

)
+ u(jh+ 3h)

(
(t− jh) (t− (j + 1)h) (t− (j + 2)h)

6h3

)
.

Then by simplifying the current relationship, we have

Iran. j. numer. anal. optim., Vol. 13, No. 3, 2023,pp 500–531
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un(t) = u(jh)

(
(t− jh)

3 − 6h(t− jh)
2
+ 11h2 (t− jh)− 6h3

−6h3

)

+ u(jh+ h)

(
(t− jh)

3 − 5h(t− jh)
2
+ 6h2 (t− jh)

2h3

)

+ u(jh+ 2h)

(
(t− jh)

3 − 4h(t− jh)
2
+ 3h2 (t− jh)

−2h3

)

+ u(jh+ 3h)

(
(t− jh)

3 − 3h(t− jh)
2
+ 2h2 (t− jh)

6h3

)
.

Therefore

un(t) = u(jh)

+ (t− jh)

(
−11u(jh) + 18u(jh+ h)− 9u(jh+ 2h) + 2u(jh+ 3h)

6h

)
+

(t− jh)
2

2

(
2u(jh)− 5u(jh+ h) + 4u(jh+ 2h)− u(jh+ 3h)

h2

)
+

(t− jh)
3

6

(
−u(jh) + 3u(jh+ h)− 3u(jh+ 2h) + u(jh+ 3h)

h3

)
.

It is known that the kth, k = 1, 2, 3, order derivative of u(t) about the point
(jh) is as follows:

u′(jh) =
−11u(jh) + 18u(jh+ h)− 9u(jh+ 2h) + 2u(jh+ 3h)

6h
+O(h4),

u′′(jh) =
2u(jh)− 5u(jh+ h) + 4u(jh+ 2h)− u(jh+ 3h)

h2
+O(h4),

u′′′(jh) =
−u(jh) + 3u(jh+ h)− 3u(jh+ 2h) + u(jh+ 3h)

h3
+O(h4).

So, assuming h→ 0 results in

un(t) = u(jh)+(t− jh)u′(jh)+ (t− jh)
2

2
u′′(jh)+

(t− jh)
3

6
u′′′(jh)+O(h4).

(33)
Expanding u(t) in the Taylor’s series, about the point t = jh, we have

u(t) =

3∑
k=0

(t− jh)
k

k!
u(k)(jh) +O(t− jh)4. (34)

According to (33) and (34), we can obtain the error between the exact and
approximate values of u(t) as follows:
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u(t)− un(t) = O(t− jh)4. (35)

Thus, for t → jh, j = 0, 3, 6, . . . , n − 3 and h → 0, since (t− jh) < h, from
(35), we attain

|u(t)− un(t)| = O(h4). (36)

In the second step, for j = 1, 4, 7, . . . , n− 2 and jh < t < (j + 1)h, we get

un(t) =

n∑
i=0

u(jh)ϕi(t)

= ϕj−1(t)u ((j − 1)h) + ϕj(t)u (jh)

+ ϕj+1(t)u ((j + 1)h) + ϕj+2(t)u ((j + 2)h)

= u(jh− h)

(
(t− jh) (t− (j + 1)h) (t− (j + 2)h)

−6h3

)
+ u(jh)

(
(t− (j − 1)h) (t− (j + 1)h) (t− (j + 2)h)

2h3

)
+ u(jh+ h)

(
(t− (j − 1)h) (t− jh) (t− (j + 2)h)

−2h3

)
+ u(jh+ 2h)

(
(t− (j − 1)h) (t− jh) (t− (j + 1)h)

6h3

)
.

Hence

un(t) = u(jh)

+ (t− jh)

(
−2u(jh− h)− 3u(jh) + 6u(jh+ h)− u(jh+ 2h)

6h

)
+

(t− jh)
2

2

(
u(jh− h)− 2u(jh) + u(jh+ h)

h2

)
+

(t− jh)
3

6

(
−u(jh− h) + 3u(jh)− 3u(jh+ h) + u(jh+ 2h)

h3

)
.

(37)

As a reminder, the derivatives of u(t) about the point jh are as follows:

u′(jh) =
−2u(jh− h)− 3u(jh) + 6u(jh+ h)− u(jh+ 2h)

6h
+O(h4),

u′′(jh) =
u(jh− h)− 2u(jh) + u(jh+ h)

h2
+O(h4),

u′′′(jh) =
−u(jh− h) + 3u(jh)− 3u(jh+ h) + u(jh+ 2h)

h3
+O(h4). (38)

As h→ 0, from (37)–(38), we get
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un(t) = u(jh)+(t− jh)u′(jh)+ (t− jh)
2

2
u′′(jh)+

(t− jh)
3

6
u′′′(jh)+O(h4).

(39)
Considering (39), (34), and h→ 0 for j = 1, 4, 7, . . . , n− 2, one has

|u(t)− un(t)| = O(h4). (40)

In the final step, for j = 2, 5, 8, . . . , n− 1 and t ∈ (jh, (j + 1)h), we attain

un(t) =

n∑
i=0

u(jh)ϕi(t)

= ϕj−2(t)u ((j − 2)h) + ϕj−1(t)u ((j − 1)h)

+ ϕj(t)u (jh) + ϕj+1(t)u ((j + 1)h)

= u(jh− 2h)

(
(t− (j − 1)h) (t− jh) (t− (j + 1)h)

−6h3

)
+ u(jh− h)

(
(t− (j − 2)h) (t− jh) (t− (j + 1)h)

2h3

)
+ u(jh)

(
(t− (j − 2)h) (t− (j − 1)h) (t− (j + 1)h)

−2h3

)
+ u(jh+ h)

(
(t− (j − 2)h) (t− (j − 1)h) (t− jh)

6h3

)
.

As a result,

un(t) = u(jh) + (t− jh)

(
u(jh− 2h)− 6u(jh− h) + 3u(jh) + 2u(jh+ h)

6h

)
+

(t− jh)
2

2

(
u(jh− h)− 2u(jh) + u(jh+ h)

h2

)
+

(t− jh)
3

6

(
−u(jh− 2h) + 3u(jh− h)− 3u(jh) + u(jh+ h)

h3

)
.

(41)

On the other hand, according to the derivatives of u(t) about the point jh,
(41) can be written as follows:

un(t) = u(jh)+(t− jh)u′(jh)+ (t− jh)
2

2
u′′(jh)+

(t− jh)
3

6
u′′′(jh)+O(h4).

(42)
Thus, assuming (42), (34), and h→ 0, for j = 2, 5, 8, . . . , n− 1, one has

|u(t)− un(t)| = O(h4). (43)
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Finally, for t ∈ (jh, (j + 1)h), j = 0, 1, 2, . . . , n, and h → 0, using (36), (40),
and (43), we get

|u(t)− un(t)| = O(h4). (44)

5 Numerical algorithm

In this section, a numerical algorithm is offered to solve problem (1). Consider
the following nonlinear fractional integral-differential equation with weakly
singular kernel :

C
0 D

α
t u(t) = g(t) + p(t)u(t) + λ

∫ t

0

(t− s)
−β
um(s)ds, (45)

α > 0, 0 < β < 1, m ∈ N, t ∈ I(t).

First, putting −β = ω − 1, 0 < ω < 1 in the third term on the right of this
equation, we get∫ t

0

(t− s)
−β
um(s)ds = Γ(ω)

(
1

Γ(ω)

∫ t

0

(t− s)
ω−1

um(s)ds

)
, 0 < ω < 1.

(46)
By the definition of Riemann–Liouville fractional integral operator, [24], the
current relationship can be rewritten as follows:∫ t

0

(t− s)
−β
um(s)ds = Γ(ω)Iωt (um(t)) . (47)

Now, by applying (47), the Riemann–Liouville integral operator of order α
on the both sides of (45), one gets

Iαt
(
C
0 D

α
t u(t)

)
= Iαt (g(t)) + Iαt (p(t)u(t)) + λΓ(ω)Iαt I

ω
t (um(t)) ,

u(t) = z(t) + Iαt (g(t)) + Iαt (p(t)u(t)) + λΓ(ω)Iα+ω
t (um(t)) , (48)

where

z(t) =

⌈α⌉−1∑
i=0

u(i)(0)
ti

i!
, α > 0.

Now, by approximating the functions in (48) by CHFs (10) and (19), we
attain

u(t) ≃
n∑

i=0

aiϕi(t) = ATΦ(t), Am = [a0, a1, . . . , an]
T . (49)

um(t) ≃
n∑

i=0

ai
mϕi(t) = AT

mΦ(t), Am = [am0 , a
m
1 , . . . , a

m
n ]T . (50)
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z(t) ≃
n∑

i=0

z(ih)ϕi(t) = zTΨ(t), Z = [z(0), z(h), . . . , z(nh)]T , (51)

g(t) ≃
n∑

i=0

g(ih)ϕi(t) = GTΨ(t), G = [g(0), g(h), . . . , g(nh)]T , (52)

and

p(t) ≃
n∑

i=0

p(ih)ϕi(t) = pTΨ(t), P = [p(0), p(h), . . . , p(nh)]T , (53)

wherein n is an integer multiple of 3. Utilizing (20)–(22), and (18) and the
substitution of (49)–(53) in (48) become

ATΦ(t) = ZTΦ(t) + Iαt (GTΦ(t)) + Iαt (PTΦ(t)Φ(t)TA) + λΓ(ω)Iα+ω
t (AT

mΦ(t)),

ATΦ(t)− ZTΦ(t)− Iαt (GTΦ(t))− Iαt (PT diag (Φ(t))A)− λΓ(ω)Iα+ω
t (AT

mΦ(t)) = 0,

ATΦ(t)− ZTΦ(t)− Iαt (GTΦ(t))− Iαt (PT diag (A)Φ(t))− λΓ(ω)Iα+ω
t (AT

mΦ(t)) = 0,

ATΦ(t)− ZTΦ(t)−GTQ(α)Φ(t) − PT diag (A)Q(α)Φ(t)− λΓ(ω)AT
mQ(α+ω)Φ(t) = 0.

Thus

AT − ZT −GTQ(α) − PT diag (A)Q(α) − λΓ(ω)AT
mQ

(α+ω) = 0,

α > 0, 0 < ω < 1, ω = 1− β. (54)

This system has the dimension (n+ 1)× (n+ 1).
Suppose that

Q(α) = [γij ] , Qω = [θij ] , i, j = 0, 1, 2, . . . , n. (55)

Then, from the operational matrix (23), one gets

γi0 = θi0 = 0, i = 0, 1, 2, . . . , n,

γij = θij = 0, j = 1, 3, . . . , n− 1, i = j + 3, j + 4, . . . , n,

γij = θij = 0, j = 2, 4, . . . , n, i = j + 2, j + 3, . . . , n.

Using (54), the unknown coefficients can be determined. We start to find the
first unknown coefficient as follows:

a0 = z(0). (56)

In the next step, we get
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system 1:



eq1 : [a1 ]− [z(1h)]−
[

3∑
i=0

g(ih)γi1

]
−
[

3∑
i=0

p(ih)γi1ai

]
−
[
λΓ(ω)

3∑
i=0

θi1ai
m

]
= 0,

eq2 : [a2 ]− [z(2h)]−
[

3∑
i=0

g(ih)γi2

]
−
[

3∑
i=0

p(ih)γi2ai

]
−
[
λΓ(ω)

3∑
i=0

θi2ai
m

]
= 0,

eq3 : [a3 ]− [z(3h)]−
[

3∑
i=0

g(ih)γi3

]
−
[

3∑
i=0

p(ih)γi3ai

]
−
[
λΓ(ω)

3∑
i=0

θi3ai
m

]
= 0.

Solving the first system allows us to calculate a1, a2, and a3, then we solve
the following system:

system 2:



eq4 : [a4 ]− [z(4h)]−
[

6∑
i=0

g(ih)γi4

]
−
[

6∑
i=0

p(ih)γi4ai

]
−
[
λΓ(ω)

6∑
i=0

θi4ai
m

]
= 0,

eq5 : [a5 ]− [z(5h)]−
[

6∑
i=0

g(ih)γi5

]
−
[

6∑
i=0

p(ih)γi5ai

]
−
[
λΓ(ω)

6∑
i=0

θi5ai
m

]
= 0,

eq6 : [a6 ]− [z(6h)]−
[

6∑
i=0

g(ih)γi6

]
−
[

6∑
i=0

p(ih)γi6ai

]
−
[
λΓ(ω)

6∑
i=0

θi6ai
m

]
= 0.

By solving system 2, the values of the unknown parameters a4, a5, and a6
are calculated. Then we can get the values of a7, a8, and a9 using system
3:

system 3:



eq7 : [a7 ]− [z(7h)]−
[

9∑
i=0

g(ih)γi7

]
[

9∑
i=0

p(ih)γi7ai

]
−
[
λΓ(ω)

9∑
i=0

θi7ai
m

]
= 0,

eq8 : [a8 ]− [z(8h)]−
[

9∑
i=0

g(ih)γi8

]
−
[

9∑
i=0

p(ih)γi8ai

]
−
[
λΓ(ω)

9∑
i=0

θi8ai
m

]
= 0,

eq9 : [a9 ]− [z(9h)]−
[

9∑
i=0

g(ih)γi9

]
−
[

9∑
i=0

p(ih)γi9ai

]
−
[
λΓ(ω)

9∑
i=0

θi9ai
m

]
= 0.
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The process can be continued up to the following form:

system n/3:



eqn−2 : [an−2 ]− [z((n− 2)h)]−
[

n∑
i=0

g(ih)γi(n−2)

]
−
[

n∑
i=0

p(ih)γi(n−2)ai

]
−
[
λΓ(ω)

n∑
i=0

θi(n−2)ai
m

]
= 0,

eqn−1 : [an−1 ]− [z((n− 1)h)]−
[

n∑
i=0

g(ih)γi(n−1)

]
−
[

n∑
i=0

p(ih)γi(n−1)ai

]
−
[
λΓ(ω)

n∑
i=0

θi(n−1)ai
m

]
= 0,

eqn : [an ]− [z(nh)]−
[

n∑
i=0

g(ih)γin

]
−
[

n∑
i=0

p(ih)γinai

]
−
[
λΓ(ω)

n∑
i=0

θinai
m

]
= 0.

As a result, the values of an−2, an−1, and an are derived using system n/3.
Therefore, we can obtain an approximate solution via (10). To solve the
nonlinear equations, see [34]. The computations were handled by MATLAB
package. The following theorem outlines the proposed method.

Theorem 2. Consider the principal problem (1). To obtain a numerical
solution to (1) using CHFs, the following iterative algorithm is offered:

Proof. See the scheme proposed in this section, (56)–(57).

6 Convergence analysis

In this section, we will verify the convergence of the numerical proposed
scheme.

Theorem 3. Let un(t) be the numerical solution of (1) obtained by the
proposed method in Section (5). Moreover, u(t) is an exact solution and
En(t) is the residual error for numerical solution. Also, suppose that M and
K are positive constants. Then, En(t) tends to zero, as n→ ∞, where

M = sup
t,τ∈[0,T ]

∣∣∣Γ−1(α)(t− τ)
α−1

p(τ)
∣∣∣ ,

K = sup
t,τ∈[0,T ]

∣∣∣λmLΓ−1(α+ ω)(t− τ)
α+ω−1

∣∣∣ .
Proof. Applying the Riemann–Liouville integral operator of order α and (48),
it is appropriate to rewrite (1) in the integral form

u(t) = z(t) + Iαt (g(t)) + Iαt (p(t)u(t)) + λΓ(ω)Iα+ω
t (um(t)) , (57)

where
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Algorithm 1 An algorithm for approximation using CHsF
Step 1: Inputs, n (integer multiple of 3), α, β, λ, T, g(t), p(t),

u(i)(0), i = 0, 1, . . . , ⌈α⌉ − 1.
Step 2: Set ω = 1− β, h = T/n, and ti = ih, i = 0, . . . , n.

Step 3: z(t) =
n−1∑
i=0

u(i)(0) t
i

i! .

Step 4: Compute the elements of Q(α) = [γij ] and Q(α+ω) = [θij ],
i, j = 0, . . . , n.

Step 5: Set and solve recursive trivariable system v, v = 1 : n/3.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 = z(0),
for v = 1 : n/3
Solution of the vth system determines
the unknown parameter.

system v :



[
a(3v−2)

]
− [z((3v − 2)h)]−

[
3v∑
k=0

g(ih)γi(3v−2)

]
−
[

3v∑
k=0

p(ih)γi(3v−2)ai

]
−
[
Γ(ω)

3v∑
i=0

θi(3v−2)ai
m

]
= 0,[

a(3v−1)

]
− [z((3v − 1)h)]−

[
3v∑
k=0

g(ih)γi(3v−1)

]
−
[

3v∑
i=0

p(ih)γi(3v−1)ai

]
−
[
Γ(ω)

3v∑
i=0

θi(3v−1)ai
m

]
= 0,[

a(3v)
]
− [z((3v)h)]−

[
3v∑
i=0

g(ih)γi(3v)

]
−
[

3v∑
i=0

p(ih)γi(3v)ai

]
−
[
Γ(ω)

3v∑
i=0

θi(3v)ai
m

]
= 0,

end.
Step 6: Calculate fully ai, i = 0, 1, . . . , n.
Step 7: Define CHFs: (ϕi(t), i = 0, 1, . . . , n).

Step 8: Determine the approximate solutions: un(t) =
n∑

i=0

aiϕi(t).

z(t) =

⌈α⌉−1∑
i=0

u(i)(0)
ti

i!
, α > 0, ω = 1− β, 0 < β < 1, t ∈ I(t).

Thus, un(t) satisfies the following equation:
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un(t) = z(t) + Iαt (g(t)) + Iαt (p(t)un(t)) + λΓ(ω)Iα+ω
t (umn (t)) . (58)

If the residual function En(t) is not zero, then we can obtain it by using the
following relation:

En(t) = en[u](t)− Jα
n [u](t)− V α+ω

n [um](t), (59)

where

en[u](t) = u(t)− un(t), (60)

Jα
n [u](t) =

1

Γ(α)

∫ t

0

(t− τ)
α−1

p(τ)(u(τ)− un(τ))dτ, (61)

and

V α+ω
n [um](t) =

λ

Γ(α+ ω)

∫ t

0

(t− τ)
α+ω−1

(um(τ)− umn (τ))dτ. (62)

Then, we get

|En(t)| ≤ |en[u](t)|+ |Jα
n [u](t)|+

∣∣V α+ω
n [um](t)

∣∣ . (63)

For t ∈ (ih, (i + 3)h), i = 0, 3, 6, . . . , n − 3, according to (44), the approxi-
mation of the absolute error using CHFs yields

|u(t)− un(t)| = O(h4). (64)

By using (60), we have
|en[u](t)| = O(h4), (65)

when h→ 0, |en[u](t)| → 0. Then, by using (61) and (64), we attain

|Jα
n [u](t)| =

1

Γ(α)

∣∣∣∣∫ t

0

(t− τ)
α−1

p(τ)(u(τ)− un(τ))dτ

∣∣∣∣
≤ |p(τ)|

Γ(α)

∫ t

0

(t− τ)
α−1 |u(τ)− un(τ)| dτ

≤ |p(τ)|
Γ(α)

∫ t

0

(t− τ)
α−1 |u(τ)− un(τ)| dτ

≤MO(h4), (66)

wherein

M = sup
t,τ∈[0,T ]

∣∣∣Γ−1(α)(t− τ)
α−1

p(τ)
∣∣∣ and whenh→ 0,

∣∣Jβ−α
n [u](t)

∣∣→ 0.

In addition, the following inequality holds [11]:
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|um(t)− umn (t)| ≤ mL |u(t)− un(t)| , (67)

where L =
∣∣∣(max(u(t), un(t)))m−1

∣∣∣. As well, from (62), (64), and (67), we
have ∣∣V α+ω

n [um](t)
∣∣ = 1

Γ(α+ ω)

∣∣∣∣λ ∫ t

0

(t− τ)
α+ω−1

(um(τ)− umn (τ))dτ

∣∣∣∣
≤ |λ|

Γ(α+ ω)

∫ t

0

(t− τ)
α+ω−1 |(um(τ)− umn (τ))| dτ

≤ mL |λ|
Γ(α+ ω)

∫ t

0

(t− τ)
α+ω−1 |(u(τ)− un(τ))| dτ

≤ KO(h4), (68)

wherein

K = sup
t,τ∈[0,T ]

∣∣∣λmLΓ−1(α+ ω)(t− τ)
α+ω−1

∣∣∣ and as h→ 0,
∣∣V α+ω

n [um](t)
∣∣→ 0.

Then, from relations (65), (66), (68), and (63), it is obvious that |En(t)| tends
to zero, as h→ 0, or n→ ∞.

7 Numerical examples

In this section, the theoretical results of the previous sections are used for
solving linear and nonlinear fractional integral-differential equations with the
weakly singular kernel, that is, the initial condition equation (1). For assess-
ing the accuracy of the scheme, let us define the maximum absolute error
(L∞-norm error) as

∥ξn∥∞ = sup
[ti=ih]ni=0

{|u(ti)− un(ti)|} . (69)

Using this definition, the order of convergence, with respect to this norm, is
introduced as follows:

Rate = log2
(

∥ξn∥∞
∥ξ2n∥∞

)
, (70)

For some problems, there are no exact solutions, so the L2-norm error is
calculated by the following formula:

∥̃ξn∥2 =

(
n∑

i=0

(un(ti)− u2n(ti))
2

) 1
2

, ti = ih, i = 0, . . . , n, (71)
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where un(t), n = T/h is the approximate solution defined as (49). In addi-
tion, the results of different values of α are compared with each other and
with MHFs method, [22].

Example 1. Consider a nonlinear integral-differential equation with weakly
singular kernel [22]:

C
◦ D

α
t u(t) = g(t) + p(t)u(t) +

∫ t

0

(t− s)
−β
u2(s)ds, t ∈ [0, 1],

g(t) = 3t2 −

(√
πΓ (7)

Γ
(
15
6

) ) t 13
2 , p(t) = 0, u(0) = 0.

For α = 1 and β = 1
2 , the exact solution is u(t) = t3. Approximate

numerical results using different values of n are shown in Tables 1–3 and Fig-
ures 2–4. Table 1 shows the approximate and exact solutions to the problem
at some points. Also, the L∞-norm errors and convergence orders obtained
by the current method are compared with the MHFs method [22] and the
methods presented in [14, 5] in Table 2. Table 3 shows the comparison of
the result of the l2-norm error ∥̃ξn∥2 obtained by the proposed method. It is
clear from Table 2 that the results of the present method for less or similar n
are better than the results obtained in [22]. Figure 2 indicates the behavior
of absolute errors for Example 1. Also, Figure 3 shows the logarithm of the
L∞-norm errors. As can be seen from the plot, as n increases, the error
decreases. Also, the comparison of the results obtained for different values
of alpha with the exact solutions of the equation is plotted in Figure 4.

Table 1: Numerical results of Example 1

Points Exact Approximate Approximate Approximate
solutions solutions solutions solutions

s u(s) n = 12 n = 24 n = 48

0 0.00000000000 0.00000000000 0.00000000000 0.00000000000
1/12 0.00057870370 0.00057871890 0.00057870463 0.00057870368
1/6 0.00462962963 0.00462979683 0.00462962554 0.00462962982
1/4 0.01562500000 0.01562510533 0.01562500074 0.01562499998
1/3 0.03703703704 0.03703629382 0.03703707090 0.03703703603
5/12 0.07233796296 0.07233970584 0.07233791123 0.07233796502
1/2 0.12500000000 0.12500014128 0.12499999725 0.12499999984
7/12 0.19849537037 0.19849178055 0.19849551759 0.19849536600
2/3 0.29629629630 0.29630236028 0.29629611403 0.29629630318
3/4 0.42187500000 0.42187499884 0.42187498758 0.42187499953
5/6 0.57870370370 0.57869407976 0.57870407228 0.57870369262

11/12 0.77025462963 0.77026833822 0.77025420450 0.77025464509

1 1.00000000000 0.99999965644 0.99999997045 0.99999999902
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Table 2: Comparison of the L∞-norm error and convergence order for Example 1

MHFs method [22] CHFs method
n ∥ξn∥∞ Rate of convergence n ∥ξn∥∞ Rate of convergence
4 4.81704E − 03 3.93 3 5.64350E − 03 4.22
8 3.15569E − 04 3.49 6 3.03330E − 04 4.47
16 2.81379E − 05 3.88 12 1.37086E − 05 4.71
32 1.90987E − 06 3.93 24 5.24867E − 07 4.85
64 1.25460E − 07 3.95 48 1.82605E − 08 4.92
128 8.09506E − 09 3.97 96 6.04389E − 10 4.96
256 5.16785E − 10 − 192 1.950051E − 11 −

Method presented in [14] Method presented in [5]
n ∥ξn∥∞ ∥ξn∥∞
4 3.52E − 09 3.5E − 04
8 1.40E − 14 1.11022E − 16
16 1.51E − 14 1.11022E − 16

Table 3: Numerical results of the L2-norm error functions ∥̃ξn∥2 for Example 1

n 3 6 12 24 48 96 192
∥̃ξn∥2 7.9E − 03 3.5E − 04 1.9E − 05 9.3E − 07 4.4E − 08 2.0E − 09 9.6E − 11
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Figure 2: Absolute errors of Example 1, for n = 12, 24, 48

Example 2. Consider the following nonlinear fractional integral-differential
equation with weakly singular kernel [22] :

C
◦ D

α
t u(t) = g(t) + p(t)u(t) +

∫ t

0

(t− s)
−β
u2(s)ds, t ∈ [0, 1],

g(t) =
3Γ
(
1
2

)
4Γ
(
11
6

) t 5
6 − t

5
2 − 32

35
t
7
2 ,

p(t) = t, u(0) = 0.
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Figure 3: Logarithm of the L∞-norm error in Example 1
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Figure 4: Exact and approximate solutions of Example 1, for n = 12

For α = 2
3 and β = 1

2 , the analytic solution is u(t) = t
3
2 . Approximate

numerical results using different values of n are shown in Tables 4–6, and Fig-
ures 5–7. Table 4 shows the approximate and exact solutions to the problem
at some points. Table 5 indicates the L∞-norm errors and convergence orders
for various values of n. Table 6 shows the L2-norm errors at some values of n.
As can be compared in Table 5, this new method provides a higher order of
convergence compared to the other method. Figure 5 indicates the absolute
errors of Example 2, at n = 12, 24, 48. Figure 6 shows that the logarithm
of the L∞-norm error decreases as n increases. A comparison between the
changes in the fractional orders of the equation is shown in Figure 7.

Example 3. Consider the following linear fractional integral-differential
equation with weakly singular kernel [22]:

C
◦ D

α
t u(t) = g(t) + p(t)u(t) +

∫ t

0

(t− s)
−β
u(s)ds, t ∈ [0, 1],

g(t) =
6t

8
3

Γ
(
11
3

) +(32

35
−

Γ
(
1
2

)
Γ
(
7
3

)
Γ
(
17
6

) )
t
11
6 + Γ

(
7

3

)
t,
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Table 4: Numerical results of Example 2

Points Exact Approximate Approximate Approximate
solutions solutions solutions solutions

s u(s) n = 12 n = 24 n = 48

0 0.00000000 0.00000000 0.00000000 0.00000000
1/12 0.02405626 0.02340582 0.02394753 0.02400902
1/6 0.06804138 0.06771773 0.06790284 0.06800459
1/4 0.12500000 0.12449685 0.12487612 0.12496621
1/3 0.19245009 0.19199415 0.19232923 0.19241677
5/12 0.26895718 0.26849729 0.26883160 0.26892254
1/2 0.35355339 0.35305089 0.35341692 0.35351566
7/12 0.44552819 0.44495789 0.44537319 0.44548528
2/3 0.54433105 0.54365866 0.54414702 0.54428012
3/4 0.64951905 0.64868490 0.64929131 0.64945599
5/6 0.76072577 0.75964752 0.76043179 0.76064433

11/12 0.87764152 0.87619255 0.87724539 0.87753181

1 1.00000000 0.99796079 0.99944320 0.99984577

Table 5: Comparison of the L∞-norm error and convergence order for Example 2

MHFs method [22] CHFs method
n ∥ξn∥∞ Rate of convergence n ∥ξn∥∞ Rate of convergence
4 1.39991E − 02 2.08 3 4.05382E − 02 2.38
8 3.30803E − 03 1.90 6 7.80949E − 03 1.94
16 8.84780E − 04 1.84 12 2.03921E − 03 1.87
32 2.46509E − 04 1.83 24 5.56795E − 04 1.85
64 6.92324E − 05 1.51 48 1.54232E − 04 1.84
128 2.42498E − 05 1.50 96 4.30102E − 05 1.84
256 8.57216E − 06 − 192 1.20325E − 05 −

Table 6: Numerical results of the L2-norm error functions ∥̃ξn∥2 for Example 2

n 3 6 12 24 48 96 192
∥̃ξn∥2 3.5E − 02 7.2E − 03 2.4E − 03 8.5E − 04 3.3E − 04 1.3E − 04 5.0E − 05

p(t) = −32

35
t
1
2 , u(0) = 0.

For α = 1
3 and β = 1

2 , the analytic solution is u(t) = t3 + t
4
3 . Tables 7–9

and Figures 8–10 show approximate numerical results using different values
of n. Table 7 indicates the approximate and exact solutions to the problem
at some grid points. Table 7 shows the advantage of the proposed method
compared to the MHF method by presenting the order of convergence and
the maximum norm error. Figure 8 shows the behavior of absolute errors
for Example 3. Figure 9 shows the logarithm of the L∞-norm errors. In
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Figure 5: Absolute errors of Example 2, for n = 12, 24, 48
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Figure 6: Logarithm of the L∞-norm error in Example 2
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Figure 7: Exact and approximate solutions of Example 2,for n = 12
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addition, a comparison of the results for different values of α with the exact
solution of the equation is shown in Figure 10.

Table 7: Numerical results of Example 3

Points Exact Approximate Approximate Approximate
solutions solutions solutions solutions

s u(s) n = 12 n = 24 n = 48

0 0.00000000 0.00000000 0.00000000 0.00000000
1/12 0.03697789 0.03708156 0.03699820 0.03698362
1/6 0.09634983 0.09644877 0.09637681 0.09635574
1/4 0.17311513 0.17323059 0.17314347 0.17312128
1/3 0.26815746 0.26828582 0.26818799 0.26816396
5/12 0.38354663 0.38368969 0.38357860 0.38355352
1/2 0.52185026 0.52199562 0.52188416 0.52185755
7/12 0.68589934 0.68605454 0.68593554 0.68590705
2/3 0.87868327 0.87885234 0.87872136 0.87869145
3/4 1.10329522 1.10346969 1.10333552 1.10330386
5/6 1.36290039 1.36308529 1.36294318 1.36290952

11/12 1.66071634 1.66091514 1.66076132 1.66072598
1 2.00000000 2.00020619 2.00004743 2.00001015

Table 8: Comparison of the L∞-norm error and convergence order for Example 3

MHFs method [22] CHFs method
n ∥ξn∥∞ Rate of convergence n ∥ξn∥∞ Rate of convergence
4 1.14967E − 03 1.86 3 1.68472E − 03 1.20
8 3.15569E − 04 1.83 6 7.35848E − 04 1.84
16 8.90424E − 05 2.20 12 2.06192E − 04 2.12
32 1.93665E − 05 2.30 24 4.74299E − 05 2.22
64 3.94225E − 06 2.09 48 1.01541E − 05 2.27
128 9.26153E − 07 2.13 96 2.10201E − 06 2.30
256 2.12088E − 07 − 192 4.27476E − 07 −

Table 9: Numerical results of the L2-norm error ∥̃ξn∥2 for Example 3

n 3 6 12 24 48 96 192
∥̃ξn∥2 1.2E − 03 1.0E − 03 4.2E − 04 1.4E − 04 4.2E − 05 1.2E − 05 3.6E − 06

8 Conclusion

In this paper, we proposed a numerical scheme for solving a class of non-
linear fractional integral-differential equations with weakly singular kernels
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Figure 8: Absolute errors of Example 3, for n = 12, 24, 48
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Figure 9: Logarithm of the L∞-norm error in Example 3
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Figure 10: Exact and approximate solutions of Example 3, for n = 12

based on CHFs. CHF and the corresponding operational matrix were in-
troduced. The proposed method transforms the original problem into an
iterative algorithm, including polynomial equations with three unknown co-
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efficients, using the fractional-order operational matrix of integration. An
analysis of the method’s absolute errors and convergence was conducted. In
order to validate the accuracy and effectiveness of this new method, three
numerical examples were presented. In Example 1, the absolute error is lower
at the nodal points near the beginning of the interval, as shown in Figure
2. Table 2 shows that the new method offers more accurate solutions at the
same lengths h than the MHFs approaches. In Examples 2 and 3, the error
clearly increases as the time variable approaches one; see Figures 5 and 8,
respectively. A study of the results shows that, generally, as n increases,
the accuracy of the approximate solution increases, and the absolute error
decreases. One of the advantages of this proposed algorithm is that instead
of solving a system of (n+ 1)× (n+ 1) equations, it only needs to solve n/3
systems of three-variable nonlinear equations. In addition, the order of con-
vergence for the cubic hat functions is O(h4), while the order of convergence
for the generalized hat functions method [6] and the MHFs method [22] are
O(h2) and O(h3), respectively. Finally, the proposed method (CHFs) can be
used for a large number of similar problems, and we will continue to work on
developing this method.
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