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Abstract

In this research, we aim to analyze a mathematical model of Maize streak
virus disease as a problem of fractional optimal control. For dynamical
analysis, the boundedness and uniqueness of solutions have been investi-
gated and proven. Also, the basic reproduction number is obtained, and
local stability conditions are given for the equilibrium points of the model.
Then, an optimal control strategy is proposed for the purpose of examining
the best strategy to fight the maize streak disease. We solve the fractional
optimal control problem by a forward-backward sweep iterative algorithm.
In this algorithm, the state variable is obtained in a forward and co-state
variable by a backward method where an explicit Runge-Kutta method is
used to solve differential equations arising from fractional optimal control
problems. Some comparative results are presented in order to verify the
model and show the efficacy of the fractional optimal control treatments.
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1 Introduction

Maize is an important annual cereal crop of the world belonging to the fam-
ily Poaceae. It is considered a staple food in many parts of the world. It
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is the third leading crop in the world after rice and wheat [20]. Due to its
highest yield potential among cereals, it is known globally as the queen of
cereals. Maize streak disease (MSD) is the most serious viral crop disease in
Sub-Saharan Africa. This disease is caused by the Maize streak virus (MSV),
which was first described by the South African entomologist Claude Fuller in
1901 [12]. MSV is mainly transmitted by as many as six leafhopper species
in the Genus Cicadulina, but some other leafhopper species are also able to
transmit the virus. In addition to maize, this virus can infect over 80 other
species in the Family Poaceae. Severe MSD manifests as pronounced, contin-
uous parallel chlorotic streaks on leaves, with severe stunting of the affected
plant and, usually, a failure to produce complete cobs or seeds. Erratic epi-
demics have been occurring every 3-10 years, and the main damage caused
is to plants younger than six weeks old [24].

In recent years, mathematical modeling has become a valuable tool to
study the mechanisms of plant disease spread, predict the future course of an
outbreak, and appraise strategies to control. In most cases, differential equa-
tions of the integer order have been used to construct such models; see, for
example, [25, 8, 9, 14] and the references therein. The integer-order deriva-
tives and integrals have local properties; that is, the next state is not influ-
enced by the current and previous state. So, the integer-order mathematical
models can not describe natural phenomena precisely.

Fractional calculus is an extension of classical calculus that introduces
derivatives and integrals of fractional order. Fractional derivatives have non-
local properties, that is the next state depends on the current state and all
previous states. This is the main excellence of fractional derivatives over
classical derivatives. Due to this advantage, many applications of fractional
calculus can be found in various fields of research, such as biology, economy,
physics, control theory, and so on [15, 13, 21, 22, 26, 2]. In [23], a fractional
model of tuberculosis disease has presented, and the values of parameters have
been evaluated according to the actual clinical cases. In 2020, the dynamics
of the fractional HIV infection model were studied by Evirgen Evirgen, Uçar,
and Özdemir [11]. Bozkurt et al., in their work [6], have analyzed a fractional
model of COVID-19 by considering the fear effects of the media and social
networks. In [5], the authors presented a fractional model for the simulation
of the Cholera outbreak in Yemen. The authors in [4] proposed a fractional
model to study the dynamics of the MSV in the maize plant population by
considering the interaction of MSV pathogen with the past invasion.

In light of this significant advantage, we were motivated to develop the
model investigated in [3] into a new fractional model involving the Caputo
derivatives. The Caputo derivative is of use for modeling phenomena that
take account of interactions within the past and also problems with nonlocal
properties. In this sense, one can think of the equation as having “memory.”
After that, we discuss some properties of the fractional version of the model
under consideration. Next, fractional optimal control (FOC) is applied as a
generalization of the classical optimal control system [3]. The FOC model is
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developed with three time-dependent control strategies proposed by Alem-
neh, Kassa, and Godana [3].

The paper is organized as follows. In section 2, we give a brief review
of the Caputo operator and discuss its basic characteristics. In Section 3,
the fractional-order model formulation is presented, and the main properties
of the fractional model are then given in section 4. Section 5 focuses on
the dynamic analysis of the model. The FOC of the model and numerical
simulations of the fractional model are presented in section 6. Section 7 also
contains concluding remarks.

2 Basic definitions and facts

In this section, we give a brief review of the Caputo operator and discuss its
basic characteristics [16].

Definition 1. For a function f : [0, tf ] → R, ν ∈ (n − 1, n), and n ∈ N, the
left- and the right-sided Caputo fractional derivatives of order ν of a function
f are defined in the following forms:

C
0 D

ν
t f(t) =

1

Γ(n− ν)

∫ t

0

(t− u)(n−ν−1)f (n)(u)du, t > 0, (1)

and
C
tf
Dν

t f(t) =
(−1)n

Γ(n− ν)

∫ tf

t

(t− u)(n−ν−1)f (n)(u)du, t < tf . (2)

Here, Γ(·) denotes the Gamma function.

Definition 2. The integral operators related to (1) and (2), are specified by

C
0 I

ν
t f(t) =

1

Γ(ν)

∫ t

0

(t− η)ν−1f(η)dη, (3)

C
t I

ν
tf
f(t) =

1

Γ(ν)

∫ tf

t

(η − t)ν−1f(η)dη. (4)

Additionally, if f ∈ Cn[a, b], then

C
0 I

ν
t [

C
0 D

ν
t f(t)] = f(t)−

n−1∑
k=0

f (k)(0)

k!
tk, (5)

C
t I

ν
tf
[Ct D

ν
tf
f(t)] = f(t)−

n−1∑
k=0

(−1)k
f (k)(tf )

k!
(tf − t)k. (6)

For any α1, α2 ∈ R and f1, f2 ∈ H1(0, tf ), we have

C
0 D

ν
t (α1f1(t) + α2f2(t)) = α1

C
0 D

ν
t f1(t) + α2

C
0 D

ν
t f2(t), (7)
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C
t D

ν
tf
(α1f1(t) + α2f2(t)) = α1

C
t D

ν
tf
f1(t) + α2

C
t D

ν
tf
f2(t), (8)

C
0 I

ν
t (α1f1(t) + α2f2(t)) = α1

C
0 I

ν
t f1(t) + α2

C
0 I

ν
t f2(t), (9)

C
t I

ν
tf
(α1f1(t) + α2f2(t)) = α1

C
t I

ν
tf
f1(t) + α2

C
t I

ν
tf
f2(t). (10)

Let f(t) be a constant function. Then

C
0 D

ν
t f(t) =

C
t D

ν
tf
f(t) = 0. (11)

The Caputo derivatives satisfy the Lipschitz condition.

3 New fractional model of MSV disease in maize plant

In this section, we develop a deterministic eco-epidemiological fractional
model for the dynamics of MSV disease in maize plants. The original version
of this model is a system of ordinary differential equations that have been be-
fore presented in [3]. The effect of previous states in the current states of the
disease spread has not been considered in this model. One way to overcome
this drawback is to replace the integer-order derivatives in the model with
noninteger-order derivatives [19]. Hence, we replace the ordinary derivative
with the following Caputo fractional derivative operator

d

dt
−→ 1

ϱ1−ν
C
0 D

ν
t , (12)

where the auxiliary parameter ϱ > 0 represents the fractional time compo-
nents in the system. Thus, the new model is described by the system

ϱν−1C
0 D

ν
t S(t) = rS(1− S + I

K
)− β1SY

A+ S
,

ϱν−1C
0 D

ν
t I(t) =

β1SY

A+ S
− µ1I,

ϱν−1C
0 D

ν
tH(t) = q − β2IH

C+I − µ2H,

ϱν−1C
0 D

ν
t Y (t) =

bβ2IH

C + I
− µ3Y,

(13)

S(0) = S0, I(0) = I0, H(0) = H0, Y (0) = Y0, (14)

where 0 < α ≤ 1, N1(t) = S(t)+I(t), N2(t) = H(t)+Y (t), and (S, I,H, Y ) ∈
R4

+. In this model, S(t) denotes the density of the susceptible maize, and
I(t) denotes the density of the infected maize. The susceptible and infected
leafhopper vector densities are denoted by H(t) and Y (t), respectively. All
parameters in the model are nonnegative. Description of the parameters are
found in Table 1.
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Table 1: Explanation of MSV model parameters

Parameter Explanation
β1 Predation and infection rate of infected leafhopper on susceptible maize plant
β2 Predation and infection rate of susceptible leafhopper on infected maize plant
A The half-saturation rate of susceptible maize with infected plant
C The half-saturation rate of susceptible leafhopper with infected maize plant
K Carrying capacity
q Recruitment rate of susceptible leafhopper
b Infected leafhopper conversion rate
r Maize population intrinsic growth rate
µ1 Death rate of infected maize
µ2 Death rate of susceptible leafhopper
µ3 Infected leafhopper death rate

As can be observed, model (13) involves a system of nonlinear fractional
differential equations. The exact solution of this model may not be available
in general. However, a mathematical analysis of the existence and uniqueness
of the solution ensures that a unique solution exists under some conditions.

4 Properties of the model

In the following, the model’s main properties are provided. Our model can
be formulated as

C
0 D

ν
t V (t) = Φ(t, V (t)),

V (0) = V0, (15)

where V (t) = (S(t), I(t),H(t), Y (t)).

Lemma 1. [17] Let w(t) be a continuous function on [t0,∞) and satisfying{
C
0 D

ν
tw(t) ≤ −λw(t) + µ,

w(t0) = w0,
(16)

where 0 < ν < 1, (λ, µ) ∈ R2, λ ̸= 0, and t0 ≥ 0 is the initial time. Then

w(t) ≤ (w0 −
µ

λ
)Eν [−λ(t− t0)

ν ] +
µ

λ
,

where Eν represents Mittag–Leffler function.

Lemma 2. [7] Let 0 < ν < 1 and λ < 0. Then Eν,ν(λt
ν) tends monotonically

to zero as t → ∞.

Lemma 3. [10] Let Φ : [t0,∞) × Rn → Rn be a continuous function and
Lipschitz-continuous respecting to the second variable. In addition to, let
ν ∈ (0, 1] and V0 ∈ Rn. Then, the problem
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C
0 D

ν
t V (t) = Φ(t, V (t)), t > t0,

V (t0) = V0, (17)

has a unique solution in C([0,∞);Rn).

Theorem 1. All solutions of system (13) that initiate in R4
+ are bounded

within the region Ω defined by
Ω = {(S, I,H, Y ) ∈ R4

+|S(t) + I(t) +H(t) + 1
bY (t) ≤ L

ρ
+ ε, for all ε > 0}.

Proof. Define a time-dependent function w(t) = S(t) + I(t) +H(t) + 1
bY (t).

So, for any positive number ρ, we have

C
0 D

ν
tw(t) + ρw(t)

= rS(1− S + I

K
)− µ1I − µ2H − µ3

b
Y + ρS + ρI + ρH +

ρ

b
Y + q

≤ rS(1− S

K
) + (ρ− µ1)I + (ρ− µ2)H + (ρ− µ3)

1

b
Y + q

= (r + ρ)S − r

K
S2 + (ρ− µ1)I + (ρ− µ2)H + (ρ− µ3)

1

b
Y + q

≤ K

4r
(r + ρ)2 + (ρ− µ1)I + (ρ− µ2)H + (ρ− µ3)

1

b
Y + q.

Taking ρ < min(µ1, µ2, µ3), so

C
0 D

ν
tw(t) + ρw(t) ≤ L,

where L = K
4r (r + ρ)2 + q. Now, we apply Lemma 1 and obtain

w(t) ≤ (w(0)− L

ρ
)Eν [−ρtν ] +

L

ρ
.

Thus, w(t) → L

ρ
as t → ∞ and 0 < w(t) ≤ L

ρ
. Hence all solutions of system

(13) that starts from R4
+ are confined in the region Ω = {(S, I,H, Y ) ∈

R4
+|w(t) ≤

L

ρ
+ ε, for all ε > 0}.

Now, we study the existence and uniqueness of system (13) in the region
Λ× [0, T ], where

Λ = {(S, I,H, Y )ϵR4 : max(|S|, |I|, |H|, |Y |) ≤ M},

T < ∞ and M is sufficiently large.

Theorem 2. For any nonnegative initial conditions, system (13) has a unique
solution.
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Proof. Let X = (S, I,H, Y ). Consider a mapping

Q(X) = (Q1(X), Q2(X), Q3(X), Q4(X)),

where

Q1(X) = rS(1− S + I

K
)− β1SY

A+ S
,

Q2(X) =
β1SY

A+ S
− µ1I,

Q3(X) = q − β2IH

C + I
− µ2H,

Q4(X) =
bβ2IH

C + I
− µ3Y.

For any X,X ∈ Λ, we have

∥Q(X)−Q(X)∥

= |Q1(X)−Q1(X)|+ |Q2(X)−Q2(X)|+ |Q3(X)−Q3(X)|+ |Q4(X)−Q4(X)|

= |rS(1−
S + I

K
)−

β1SY

A+ S
− rS(1−

S + I

K
) +

β1S.Y

A+ S
|

+ |
β1SY

A+ S
− µ1I −

β1S.Y

A+ S
+ µ1I|+ |q −

β2IH

C + I
− µ2H − q +

β2I.H

C + I
+ µ2H|

+ |
bβ2IH

C + I
− µ3Y −

bβ2I.H

C + I
+ µ3Y |

= |r(S − S)−
r

K
(S2 − S

2
)−

r

K
(SI − S.I)− β1(

SY

A+ S
−

S.Y

A+ S
)|

+ |β1(
SY

A+ S
−

S.Y

A+ S
)− µ1(I − I)|+ | − β2(

IH

C + I
−

I.H

C + I
)− µ2(H −H)|

+ |bβ2(
IH

C + I
−

I.H

C + I
)− µ3(Y − Y )|

≤ (r +
3rM

K
)|S − S|+ 2β1|

SY

A+ S
−

S.Y

A+ S
|+ β2(1 + b)|

IH

C + I
−

I.H

C + I
|

+ µ1|I − I|+ µ2|H −H|+ µ3|Y − Y |

≤ (r +
3rM

K
+

2β1M

A
)|S − S|+ (

2β1(A+M)M

A2
+ µ3)|Y − Y |

+ (
β2M

C
(1 + b) + µ1)|I − I|+ (

β2M(C +M)

C2
(1 + b) + µ2)|H −H|

≤ H∥X −X∥,

where

H = max{r + 3rM

K
+

2β1M

A
,
2β1(A+M)M

A2
+ µ3,

β2M(1 + b)

C
+ µ1,

β2M(C +M)(1 + b)

C2
+ µ2}.
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Thus, Q(X) satisfies the Lipschitz condition with respect to X. Hence
there exists a unique solution of the system (13) with conditions (14) on
Λ× [0, T ].

5 Dynamical behaviors

One of the key concepts in epidemiology is the basic reproduction number
(BRN). The aim of this section is to obtain the BRN for model (13) and study
the local stability behavior of the model at its disease-free equilibriums.

5.1 Basic reproduction number

Consider the following fractional differential system:
ϱν−1C

0 D
ν
tX(t) = F (X,Y ),

ϱν−1C
0 D

ν
t Y (t) = G(X,Y ),

G(X, 0) = 0,

(18)

with nonnegative initial conditions X(0) = X0 ∈ R2 and Y (0) = Y0 ∈ R2,
where the components of vector X = (S,H) represent the number of suscep-
tible maize and leafhopper, and the components of vector Y = (I, Y ) indicate
the number of infected maize and leafhopper. Furthermore, we presume that
the function G is of class C1, F is continuous, and the system (18) with the
initial conditions X(0) = X0 and Y (0) = Y0 admits a unique solution. Also,
suppose that E = (X∗, 0) ∈ R4 denotes the disease-free equilibrium point of
the system (18). Let A = ∂G

∂Y (X∗, 0) = M −D, where M,D are two square
matrices that D > 0 is a diagonal matrix and M ≥ 0. Then the BRN R0 is
obtained as the spectral radius of MD−1.
For system (13), we have

A =

[
−µ1

β1S
A+S

bβ2HC
(C+I)2 −µ3

]
=

[
0 β1S

A+S
bβ2HC
(C+I)2 0

]
−
[
µ1 0
0 µ3

]
(19)

So,

R0 := ρ

([
0 β1S

µ3(A+S)
bβ2HC

µ1(C+I)2 0

])
=

√
bβ1β2HCS

µ1µ3(A+ S)(C + I)2
. (20)
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5.2 Local stability analysis

Theorem 3. The disease free-equilibrium point E0 = (0, 0, q
µ2
, 0) of sys-

tem (13) is always unstable while the disease-free equilibrium point E1 =
(K, 0, q

µ2
, 0), is locally asymptotically stable if R0 < 1.

Proof. Conforming to Mittag-Leffler function [18], the disease free equilib-
rium E of system (13) is locally asymptotically stable if all eigenvalues
λi, i = 1, 2, 3, 4 of JE satisfy |arg(λi)| > νπ

2 , i = 1, 2, 3, 4. The Jacobian
matrix associated to E0 is given by

JE0
=


r 0 0 0
0 −µ1 0 0

0 −β2q
Cµ2

−µ2 0

0 bβ2q
Cµ2

0 −µ3

 .

The eigenvalues of the matrix JE0
are λ1 = r > 0, λ2 = −µ1 < 0 λ3 =

−µ2 < 0 λ4 = −µ3 < 0. We observed that |arg(λ1)| = 0 < νπ
2 . So, the

equilibrium point E0 is unstable.
The Jacobian matrix associated to E1 is the following one:

JE1
=


−r −r 0 −βK

A+K

0 −µ1 0 βK
A+K

0 −β2q
Cµ2

−µ2 0

0 bβ2q
Cµ2

0 −µ3

 .

The following characteristic equation is obtained from JE1
:

ϕ(λ) = (r + λ)(µ2 + λ)

(
λ2 + (µ1 + µ3)λ+ (µ1µ3 −

Kbqβ1β2

(A+K)µ2C
)

)
.

We observe that two roots of the characteristic equation ϕ(λ) are

λ1 = −r < 0, λ2 = −µ2 < 0.

It is obvious that |arg(λ1)| > νπ
2 and |arg(λ2)| > νπ

2 . The remaining eigen-
values are given by

λ2 + (µ1 + µ3)λ+ (µ1µ3 −
Kbqβ1β2

(A+K)µ2C
) = 0. (21)

By the Routh–Hurwitz criteria, all the roots of the polynomial (21) are neg-
ative or have negative real part if and only if

µ1µ3 −
Kbqβ1β2

(A+K)µ2C
> 0,
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or

R0 =

√
Kbqβ1β2

(A+K)µ1µ2µ3C
< 1. (22)

Hence, E1 is locally asymptotically stable if R0 < 1.

6 Optimal control problem

In this section, to attain the minimized number of infected maize and infected
leafhoppers, we reconsider the model (13) and formulate an optimal control
problem with three control variables u1(t), u2(t), and u3(t). Let

U = {(u1, u2, u3)|u1, u2, and u3 are Lebesgue measurable on [0, tf ],

0 ≤ u1, u2, u3 ≤ 1, for all t ∈ [0, tf ]},

be the admissible control set. With the existence of control u1, it is expected
to diminish the number of infected maize as compared to those without con-
trol cases. The control variable u2 is used to control the number of infected
leafhoppers. Furthermore, u3 is chemical control that is used as an inter-
vention strategy to optimize the objective functional F . After incorporating
the control variables u1(t), u2(t), and u3(t) in the model (13), the optimal
control model is as follows:

ϱν−1C
0 D

ν
t S(t) = rS(1− S + I

K
)− (1− u1)

β1SY

A+ S
,

ϱν−1C
0 D

ν
t I(t) = (1− u1)

β1SY

A+ S
− (µ1 + u2)I,

ϱν−1C
0 D

ν
tH(t) = q − (1− u2)

β2IH
C+I − (u3 + µ2)H,

ϱν−1C
0 D

ν
t Y (t) = (1− u2)

bβ2IH

C + I
− (u3 + µ3)Y,

S(0), I(0),H(0), Y (0) ≥ 0.

(23)

Consider the following objective functional:

F =

∫ tf

0

(
d1I + d2Y +

1

2
(w1u

2
1 + w2u

2
2 + w3u

2
3)

)
dt, (24)

where d1, d2 are the weights on the state variables and w1, w2, and w3 are
relative weights of the treatment related to the control functions u1, u2, and
u3.

Our aim is to minimize the cost value F by the state and control variables
I∗, Y ∗, u∗

1, u
∗
2, and u∗

3 satisfying the constraints (23). For this purpose, we
use a kind of Pontryagin maximum principle in the fractional order state [1].
We define the Hamiltonian function as below:
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491 Analysis and optimal control of a fractional MSD model

H(S, I,H, Y ) = d1I + d2Y +
1

2

(
w1u

2
1 + w2u

2
2 + w3u

2
3)

+ϖ1(rS(1−
S + I

K
)− (1− u1)

β1SY

A+ S
)

+ϖ2((1− u1)
β1SY

A+ S
− (µ1 + u2)I)

+ϖ3(q − (1− u2)
β2IH

C + I
− (u3 + µ2)H)

+ϖ4((1− u2)
bβ2IH

C + I
− (u3 + µ3)Y ),

where ϖi, i = 1, 2, 3, 4 are the co-state variables or adjoint variables. The
optimality conditions are obtained from

∂H

∂u1
=

∂H

∂u2
=

∂H

∂u3
= 0.

Hence, we have

u1 =
β2(ϖ2 −ϖ1)IH

w1(A+ S)
,

u2 =
ϖ2I

w2
+

β2(bϖ4 −ϖ3)IH

w2(C + I)
,

u3 =
ϖ4Y −ϖ3H

w3
, (25)

where the adjoint variables satisfy

C
t Dν

tf
ϖ1(t) =

∂H

∂S
={r(

K − 2S − I

K
)− (1− u1)

β1Y A

(A+ S)2
}ϖ1

+ {
β1(1− u1)SY

(A+ S)2
}ϖ2,

C
t Dν

tf
ϖ2(t) =

∂H

∂I
=d1 −

rS

K
ϖ1 − (µ1 + u2)ϖ2 − (1− u2)

β2CH

(C + I)2
ϖ3

+ (1− u2)
β2bCH

(C + I)2
ϖ4,

C
t Dν

tf
ϖ3(t) =

∂H

∂H
={(u2 − 1)

β2I

C + I
− µ2 − u3}ϖ3 +

b(1− u2)β2I

C + I
ϖ4,

C
t Dν

tf
ϖ4(t) =

∂H

∂Y
=d2 +

β1(u1 − 1)S

A+ S
(ϖ1 −ϖ2)− (u3 + µ3)ϖ4,

ϖ1(tf ) = ϖ2(tf ) =ϖ3(tf ) = ϖ4(tf ) = 0. (26)

Then, we have the following boundary value problem for optimal treatment:
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ϱν−1C
0 D

ν
t S(t) = rS(1− S + I

K
)− (1− u1)

β1SY

A+ S
,

ϱν−1C
0 D

ν
t I(t) = (1− u1)

β1SY

A+ S
− (µ1 + u2)I,

ϱν−1C
0 D

ν
tH(t) = q − (1− u2)

β2IH
C+I − (u3 + µ2)H,

ϱν−1C
0 D

ν
t Y (t) = (1− u2)

bβ2IH

C + I
− (u3 + µ3)Y,

C
t D

ν
tf
ϖ1(t) = {r(K − 2S − I

K
)− (1− u1)

β1Y A

(A+ S)2
}ϖ1

+{β1(1− u1)SY

(A+ S)2
}ϖ2,

C
t D

ν
tf
ϖ2(t) = d1 − rS

K ϖ1 − (µ1 + u2)ϖ2 − (1− u2)
β2CH
(C+I)2ϖ3

+(1− u2)
β2bCH
(C+I)2ϖ4,

C
t D

ν
tf
ϖ3(t) = {(u2 − 1)

β2I

C + I
− µ2 − u3}ϖ3 +

b(1− u2)β2I

C + I
ϖ4,

C
t D

ν
tf
ϖ4(t) = d2 +

β1(u1 − 1)S

A+ S
(ϖ1 −ϖ2)− (u3 + µ3)ϖ4,

ϖ1(tf ) = ϖ2(tf ) = ϖ3(tf ) = ϖ4(tf ) = 0,

S(0) = S0, I(0) = I0,H(0) = H0, Y (0) = Y0,

(27)

where u1(t), u2(t), and u3(t) are given by (25). In turn, the optimality condi-
tions of Pontryagin’s Minimum Principle establish that the optimal controls
u∗
1(t), u

∗
2(t), and u∗

3(t) are defined by

u∗
1 = min{max{0, β2(ϖ2 −ϖ1)IH

w1(A+ S)
}, 1},

u∗
2 = min{max{0, ϖ2I

w2
+

β2(bϖ4 −ϖ3)IH

w2(C + I)
}, 1},

u∗
3 = min{max{0, ϖ4Y −ϖ3H

w3
}, 1}.

Simulation and discussion

In this part, the effects of fractional operators on the behavior of controlled
system for the dynamics of MSV disease are investigated. We develop the
fractional version of fourth-order Runge-Kutta (RK4) algorithm for the cou-
pled system (27) and apply the iterative process as follows:

We use S(0) = 1000, I(0) = 20,H(0) = 100, and Y (0) = 0 as initial
values. In addition, the parameter values can be seen in [3].

The dynamical behaviors of all variables in the new fractional model with-
out applying any control for different values of the fractional orders and the
classic integer-order are plotted in Figure 1. As seen in this figure, infectious

Iran. j. numer. anal. optim., Vol. 13, No. 3, 2023,pp 481–499



493 Analysis and optimal control of a fractional MSD model

Algorithm 1
Step 1 Set the initial values for the control functions u1(t), u2(t), and u3(t).
Step 2 Use the current values of control functions and apply the forward

fractional RK4 method for the control system and obtain the original
variables.

Step 3 Apply the backward fractional RK4 method to compute the adjoint
variables using the current values of the original variables and control
functions.

Step 4 Update the value of control functions.
Step 5 If the updated values of the original variables, adjoint variables, and

control functions are not close enough to their previous values, then go
to Step 2.

maize and leafhopper densities increase with the fractional orders decrease
and tend uniformly to the integer-order trajectory. Furthermore, when the
fractional orders decrease, the densities of susceptible maize and leafhopper
are reduced and go to the ν = 1 state.

To indicate the efficiency of the new optimal control model, the same
impact rate has been considered for all three controls, and the numerical
results of the new model are compared with the classical integer model, in
Figure 2. As can be seen in this figure, the participation of controls leads to
a further reduction of infected maize in the new model than in the classical
model. Therefore, the effect of controls on the fractional system is more
successful than applying controls on the integer system, and the difference
between them is significant. Of course, it should be noted that if no control
is applied, the fractional model still leads to a significantly lower infection
density than the integer model (Figure 2).

In the following, we numerically examine the effect of several optimal
control scenarios, where each scenario includes more than one interventionist:

Scenario 1 Applying quarantine (u2) and chemical control (u3) along with
elimination of prevention (u1).

Scenario 2 Applying prevention (u1) and quarantine (u2) along with elim-
ination of chemical control (u3).

Scenario 3 Applying prevention (u1) and chemical control (u3) along with
elimination of quarantine (u2).

Scenario 4 Applying all three controls u1, u2, and u3.

In the first scenario, the prevention (u1(t)) effect is removed, and two con-
trol functions u2(t) and u3(t) are used. Figure 3 shows that in this control
scenario, the number of infected maize decreases, while if no control is ap-
plied, the number of them increases over time. In addition, for fractional
derivatives with lower orders, the rate of reduction of infectious cases is more
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Figure 1: Numerical solutions for classical and fractional order models without controls

significant. Hence, this scenario is effective in the decline of infection in the
maize community, especially in the fractional model.

The results of scenario 2 are presented in Figure 4. In this case, the
quarantine control (u2(t)) is maintained as in the previous scenario, but the
chemical control (u3(t)) is replaced by the prevention (u1(t)). This scenario
prevents the spread of infected maize and reduces their number. Therefore,
this strategy is also successful in eliminating the disease in the maize com-
munity.

Figure 5 indicates the results of using scenario 3. In this scenario, the
quarantine control is removed, unlike the previous two scenarios, and the
rest of the controls are applied. Based on this figure, the number of infected
is reduced compared to the case where there is no control, and this scenario
also limits the growth of infectious cases.

Finally, all control interventions are considered together. As you can see
in Figure 6, the use of these controls is a successful plan and causes the
infected maize to be destroyed as passing the time.
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Based on Figures 3–6, the quarantine control is more effective than other
controls. Without quarantine control, despite preventive and chemical con-
trols, the number of infected maize will spread, but this increasing process is
much slower than the case where there is no control, and also, the difference
between their increasing manner is very significant.
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Figure 2: Numerical solutions of I(t), with uncontrolled and controlled conditions for
classical and fractional order models
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Figure 3: Numerical solutions of I(t) in classic and fractional model, with quarantine
and chemical controls (u2 ̸= 0, u3 ̸= 0, u1 = 0)
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Figure 4: Numerical solutions of I(t) in classic and fractional model, with prevention
and quarantine controls (u1 ̸= 0, u2 ̸= 0, u3 = 0)
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Figure 5: Numerical solutions of I(t) in classic and fractional model, with prevention
and chemical controls(u1 ̸= 0, u3 ̸= 0, u2 = 0)
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Figure 6: Numerical solutions of I(t) in classic and fractional model, with prevention,
quarantine and chemical controls(u1 ̸= 0, u2 ̸= 0, u3 ̸= 0)

7 Conclusion

In the present study, we developed a new mathematical model involving
the Caputo fractional derivative for MSV disease in maize plants. First, we
proved that the solution of this model system exists uniquely and that all so-
lutions remain positive and bounded whenever they start with positive initial
values, thus justifying the well-posedness of a biological model. We also de-
termined the BRN for the model. Then, we studied the local stability of the
disease-free equilibrium points of the model. The study demonstrated that
one of the equilibrium points is always unstable, and the other equilibrium
point is locally asymptotically stable if the model’s BRN is less than unity.
Next, an optimization problem is formulated. Our main focus in this work
is to investigate the influence of fractional-order derivatives on the optimal
control problem. The optimality system was solved numerically by use of a
forward and backward RK4 scheme. The effectiveness of preventive, quar-
antine, and chemical controls on the fractional model is investigated in the
figures. Different scenarios for the participation of these controls were eval-
uated for various fractional-order values. We observed that in all scenarios,
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the efficiency of the controls increases by moving away from the integer-order
and reducing the fractional orders. Moreover, it was observed that the quar-
antine control is more effective than other controls. Without quarantine
control, despite preventive and chemical controls, the infectious density of
maize progresses with an increasing trend. Of course, it should be noted that
the increasing trend is much slower than the case where there is no control,
and also, the difference between their increasing manner is very significant.

Acknowledgements

Authors are grateful to there anonymous referees and editor for their con-
structive comments.

References

[1] Agrawal, O.P., Defterli, O. and Baleanu, D. Fractional optimal control
problems with several state and control variables, J. Vib. Control 16
(2010), 1967–1976.

[2] Akhavan Ghassabzadeh, F., Tohidi, E., Singh, H. and Shateyi, S. RBF
collocation approach to calculate numerically the solution of the nonlinear
system of qFDEs, J. King Saud. Univ. Sci. 33(2) (2021), 101288.

[3] Alemneh, H.T., Kassa, A.S. and Godana, A.A. An optimal control
model with cost effectiveness analysis of Maize streak virus disease in
maize plant, Infect. Dis. Model. 6 (2020), 169–182.

[4] Ameen, I.G., Baleanu, D. and Mohamed Ali, H. Different strategies to
confront maize streak disease based on fractional optimal control formu-
lation, Chaos, Solitons & Fractals, 164 (2022), 112699.

[5] Baleanu, D., Akhavan Ghassabzade, F., Nieto, J.J. and Jajarmi, A.
On a new and generalized fractional model for a real cholera outbreak,
Alexandria Eng. J. 61(11) (2022), 9175–9186.

[6] Bozkurt, F., Yousef, A., Abdeljawad, T., Kalinli, A. and Al Mdallal, Q.
A fractional-order model of COVID-19 considering the fear effect of the
media and social networks on the community, Chaos Solitons Fract. 152
(2021), 111403.

[7] Choi, S.K., Kang, B. and Koo, N. Stability for Caputo fractional differ-
ential systems, Abstr. Appl. Anal. (2014), Art. ID 631419, 6 pp.

[8] Collins, O.C. and Duffy, K.J. Optimal control of maize foliar diseases
using the plants population dynamics, Acta Agriculturae Scandinavica,
Section B– Soil and Plant Science 66(1) (2016), 20–26.

Iran. j. numer. anal. optim., Vol. 13, No. 3, 2023,pp 481–499



Bagherpoorfard and Akhavan Ghassabzade 498

[9] Cunniffe, N.J. and Gilligan, C.A. A theoretical framework for biological
control of soil-borne plant pathogens: identifying effective strategies, J.
Theor. Biol. 278 (2011), 32–43.

[10] Diethelm, K., Siegmund, S. and Tuan, H.T. Asymptotic behavior of
solutions of linear multi-order fractional differential systems, Fract. Calc.
Appl. Anal. 20(5) (2017), 1165–1195.

[11] Evirgen, F., Uçar, S. and Özdemir, N. System analysis of HIV infection
model with CD4+T under non-singular kernel derivative, Appl. Math.
Nonlinear Sci. 5(1) (2020), 13–146.

[12] Fuller, C. Mealie variegation In: 1st Report of the Government Ento-
mologist, Natal, 1899-1900, Pietermaritzburg, Natal, South Africa: P.
Davis & Sons, Government Printers, 1901.

[13] Hristov, J. Transient heat diffusion with a non-singular fading mem-
ory: from the Cattaneo constitutive equation with Jeffrey’s kernel to the
Caputo-Fabrizio time-fractional derivative, Thermal Sci. 20(2) (2016),
757–762.

[14] Hugo, A., Lusekelo, E.M. and Kitengeso, R. Optimal control and cost
effectiveness analysis of tomato yellow leaf curl virus disease epidemic
model, Applied Mathematics, 9(3) (2019), 82–88.

[15] Ionescu, C., Lopes, A., Copot, D., Machado, J.A.T. and Bates, J.H.T.
The role of fractional calculus in modeling biological phenomena: A
review, Commun. Nonlinear Sci. Numer. Simul. 51 (2017), 141–159.

[16] Kilbas, A.A., Srivastava, H.H. and Trujillo, J.J. Theory and applications
of fractional differential equations, North-Holland Mathematics Studies,
204. Elsevier Science B.V., Amsterdam, 2006.

[17] Li, H.L., Zhang, L., Hu, C., Jiang, Y.-L. and Teng, Z. Dynamical analy-
sis of a fractional-order predator-prey model incorporating a prey refuge,
J. Appl. Math. Comput. 54 (2017), 435–449.

[18] Matignon, D. Stability results on fractional differential equations to
control processing, In Proceedings of the Computational Engineering in
Systems and Application Multiconference; IMACS, IEEE-SMC: Lille,
France, 2 (1996), 963–968.

[19] Saeedian, M., Khalighi, M., Azimi-Tafreshi, N., Jafari, G.R. and Aus-
loos, M. Memory effects on epidemic evolution: the susceptible-infected-
recovered epidemic model, Phys. Rev. 95(2) (2017), 0224091–0224099.

[20] Sandhu, K.S., Singh, N. and Malhi, N.S. Some properties of corn grains
and their flours I: Physicochemical, functional and chapati-making prop-
erties of flours, Food Chem. 101(3) (2007), 938–946.

Iran. j. numer. anal. optim., Vol. 13, No. 3, 2023,pp 481–499



499 Analysis and optimal control of a fractional MSD model

[21] Sene, N. Integral balance methods for Stokes’ first, equation described by
the left generalized fractional derivative, Physics, 1(1) (2019), 154–166.

[22] Sene, N. Second-grade fluid model with Caputo-Liouville generalized
fractional derivative , Chaos, Solit. Fractals, 133 (2020), 109631.

[23] Shatanawi, W., Abdo, M.S., Abdulwasaa, M.A., Shah, K., Panchal,
S.K., Kawale, S.V. and Ghadle K.P. A fractional dynamics of tuberculo-
sis (TB) model in the frame of generalized Atangana- Baleanu derivative,
Res. Phys. 29 (2021), 104739.

[24] Shepherd, D.N., Martin, D.P., Van Der Walt, E., Dent, K., Varsani, A.
and Rybicki, E.P. Maize streak virus: an old and complex ’emerging’
pathogen, Mol. Plant Pathol. 11(1) (2010), 1–12.

[25] Shi, R., Zhao, H. and Tang, S. Global dynamic analysis of a vector-borne
plant disease model, Adv. Difference Equ. (59) (2014), 16.

[26] Traore, A. and Sene, N. Model of economic growth in the context of
fractional derivative, Alex. Eng. J. 59(6) (2020), 4843–4850.

How to cite this article
Bagherpoorfard, M. and Akhavan Ghassabzade, F., Analysis and optimal
control of a fractional MSD model. Iran. j. numer. anal. optim., 2023;
13(3): 481-499. https://doi.org/10.22067/ijnao.2022.73126.1189

Iran. j. numer. anal. optim., Vol. 13, No. 3, 2023,pp 481–499

https://doi.org/10.22067/ijnao.2022.73126.1189.

	Analysis and optimal control of a fractional MSD model
	M. Bagherpoorfard and F. Akhavan Ghassabzade

