Error estimates for approximating fixed points and best proximity points for noncyclic and cyclic contraction mappings

Document Type : Research Article


Department of Pure Mathematics, Payame Noor University (PNU), P. O. Box: 19395-3697, Tehran, Iran.


In this article, we find a priori and a posteriori error estimates of the fixed point for the Picard iteration associated with a noncyclic contraction map, which is defined on a uniformly convex Banach space with a modulus of convexity of power type. As a result, we obtain priori and posteriori error estimates of Zlatanov for approximating the best proximity points of
cyclic contraction maps on this type of space.


Main Subjects

[1] Beauzamy, B. Introduction to Banach spaces and their geometry, North–Holland Publishing Company, Amsterdam, 1979.
[2] Berinde, V. Iterative approximation of fixed points, Springer, Berlin, 2007.
[3] Deville, R., Godefroy, G. and Zizler, V. Smoothness and renormings in Banach spaces, Longman Scientific Technical, Harlow; copublished in the United States with John Wiley Sons, Inc., New York, 1993.
[4] Eldred, A. and Veeramani, P. Existence and convergence of best prox-imity points, J. Math. Anal. Appl. 323(2) (2006), 1001–1006.
[5] Fabian, M., Habala, P., Hajek, P., Montesinos, V., Pelant, J. and Zizler, V. Functional analysis and infinite-dimensional geometry, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 8. Springer-Verlag, New York, 2001.
[6] Fallahi, K., Ghahramani, H. and Soleimani Rad, G. Integral type con-tractions in partially ordered metric spaces and best proximity point, Iran. J. Sci. Technol., Trans. A, Sci. 44 (2020), 177–183.
[7] Fallahi, K. and Soleimani Rad, G. Best proximity points theorem in b-metric spaces endowed with a graph, Fixed Point Theory, 21(2) (2020), 465–474.
[8] Gabeleh, M. and Shahzad, N. Best proximity pair and fixed point results for noncyclic mappings in convex metric spaces, Filomat, 30(12) (2016), 3149–3158.
[9] Goebel, K. and Kirk, W.A. Topics in metric fixed point theory, Cam-bridge University Press, 1990.
[10] Hristov, M., Ilchev, A. and Zlatanov, B. On the best proximity points for p-cyclic summing contractions, Mathematics, 8(7) (2020), 1–11.
[11] Ilchev, A. Error estimates for approximating best proximity points for Kannan cyclic contractive maps, AIP Conference Proceedings, 2048(1) (2018), 050002.
12] Kirk, W., Srinivasan, P. and Veeramani, P. Fixed points for map-pings satisfying cyclical contractive conditions, Fixed Point Theory, 4(1) (2003), 79–89.
[13] Meir, A. On the Uniform Convexity of Lp Spaces 1 < p < 2, Illinois J. Math. 28(3) (1984), 420–424.
[14] Safari-Hafshejani, A. The existence of best proximity points for gener-alized cyclic quasi-contractions in metric spaces with the UC and ultra-metric properties, Fixed Point Theory, 23(2) (2022), 507–518.
[15] Safari-Hafshejani, A., Amini-Harandi, A. and Fakhar, M. Best proximity points and fixed points results for noncyclic and cyclic Fisher quasi-contractions, Numer. Funct. Anal. Optim. 40(5) (2019), 603–619.
[16] Scheu, G. On the optimization of the error estimate of a fixed point theorem, J. Math. Anal. Appl. 57 (1977), 298–322.
[17] Zlatanov, B. Error estimates for approximating best proximity points for cyclic contractive maps, Carpathian J. Math. 32(2) (2016), 265–270.