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Abstract

In this study, we explore the theoretical features of a multiobjective
interval-valued programming problem with vanishing constraints. In view
of this, we have defined a multiobjective interval-valued programming prob-
lem with vanishing constraints in which the objective functions are consid-
ered to be interval-valued functions, and we define an LU-efficient solution
by employing partial ordering relations. Under the assumption of general-
ized convexity, we investigate the optimality conditions for a (weakly) LU-
efficient solution to a multiobjective interval-valued programming problem
with vanishing constraints. Furthermore, we establish Wolfe and Mond–
Weir duality results under appropriate convexity hypotheses. The study
concludes with examples designed to validate our findings.
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1 Introduction

In modern mathematical research, the concept of mathematical program-
ming with vanishing constraints has emerged as a novel type of constrained
optimization problems. Formal analysis was conducted by Achtziger and
Kanzow [1]. Dorsch, Shikhman, and Stein [9] presented a topological analy-
sis of mathematical programs with vanishing constraints and introduced the
new concept of a T -stationary point. By applying the concept of local reg-
ularization to mathematical programs with vanishing constraints, Hohesiel,
Kanzow, and Schwartz [13] derived a new solution method for solving such a
class of optimization problems and proved several convergence results. Later,
to compute the mathematical problems involving vanishing constraints nu-
merically, Hoheisel et al. [14] investigated and compared four regularization
methods, each impacted by a single regularization parameter. The study
of mathematical programming with vanishing constraints has a wide range
of real-world applications, including the development of robot motion plans
[8, 19], the design of optimal truss topologies for mechanical structures [11],
and the design of nonlinear optimal control problems for mixed integers [20].
A multiobjective programming problem involves minimizing multiple objec-
tives over a set of feasible solutions. Multiobjective programming is chal-
lenging due to the fact that the objectives for vector optimization problems
compete with each other, and an improvement on one objective can reduce
goals for other objectives. There is an enormous amount of literature on op-
timal conditions and numerous kinds of dualities in multiobjective program-
ming problems (see, for example, [7, 22, 23]). A constraint qualification is an
element critical to the existence of Lagrange multipliers in multiobjective op-
timization problems, as it allows Karush–Kuhn–Tucker optimality conditions
to hold, thereby assisting with and enhancing optimization algorithms design.
There have been several recent articles published on optimality, stationarity,
criticality, and constraint qualification; for instance, we refer to [10, 12, 17].
Jayswal and Singh [18] studied about modified objective function approach
for an equivalent η-approximated multiobjective optimization problem with
vanishing constraints and also discussed saddle point criteria. The class of
differentiable semi-infinite multiobjective programming problems with van-
ishing constraints was discussed by Antczak [4].
Using separate considerations of minimization and maximization, Ishibuchi
and Tanaka [16] investigated multiobjective optimization problems in which
the objective functions are interval-valued and developed an ordering rela-
tionship between two closed intervals. A general methodology proposed by
Urli and Nadeau [26] provides a way of formulating the non-deterministic
multiobjective linear programming problem with interval coefficients in a de-
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terministic way and then solving it with an interactive approach. Under cer-
tain convexity assumptions, The Karush–Kuhn–Tucker necessary optimality
conditions for nonlinear differentiable multiobjective programming problems
with an interval-valued objective and constraint functions were derived by
Hosseinzade and Hassanpour [15]. Studies on optimality conditions and dif-
ferent types of duality for multiobjective programming problems with interval
objective function are quite widespread (refer to [6, 27, 28, 15, 21]). In this
paper, we aim to investigate the optimality conditions and the duality results
for multiobjective interval-valued programming problems with vanishing con-
straints under the Abadie constraint qualification.
Following is an outline of the rest of this paper: Section 2 consists of some
basic definitions, background material, and the necessary optimality condi-
tions. Section 3 represents the sufficient optimality conditions for multiob-
jective interval-valued optimization problems with vanishing constraints. In
Sections 4 and 5, Wolfe type dual and Mond–Weir type dual are presented,
and appropriate duality results are also discussed. Section 6 explores special
cases. Finally, the paper is concluded in Section 7.

2 Preliminaries

This section contains a list of notations and basic definitions which will
be used throughout the article. Let Rn be the Euclidean space with n-
dimensions and Rn

+ be its nonnegative orthant. For a given a, Θ(a) is the
system of the neighborhoods of a. For A ⊆ Rn, spanA and posA stands for
its linear hull and convex cone (containing the origin) of A, respectively. Let
A ̸= ϕ and let the contingent cone of set A at the point a, be denoted by
T(A, a). Let I(R) be the set of all closed and bounded intervals in R. For the
case where Λ1 ∈ I(R) is a closed interval, we use the notation Λ1 = [αL

0 , α
U
0 ],

where αL
0 and αU

0 represent the minimum and maximum values of Λ1, re-
spectively. Let

Λ1 = [αL
0 , α

U
0 ], Λ2 = [βL

0 , β
U
0 ] ∈ I(R).

Then we have

(i) Λ1 + Λ2 = {α0 + β0 | α0 ∈ Λ1 and β0 ∈ Λ2} = [αL
0 + βL

0 , α
U
0 + βU

0 ],

(ii) −Λ1 = {α0 | α0 ∈ Λ1} = [−αU
0 ,−αL

0 ],

(iii) Λ1 − Λ2 = Λ1 + (−Λ2) = [αL
0 − βU

0 , α
U
0 − βL

0 ],

(iv) kΛ1 = {kα0 | α0 ∈ Λ1} =

{
[kαL

0 , kα
U
0 ], if k ≥ 0,

[kαU
0 , kα

L
0 ], if k < 0,

where k is a real

number.
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The real number k ∈ R is equivalent to the closed interval Λ1k = [k, k].
Let Λ1 = [αL

0 , α
U
0 ] ∈ I(R) be a closed interval. We write the sum of an inter-

val Λ1 ∈ I(R) and a real number k as Λ1 +Λ1k . Thus, Λ1 + k = Λ1 +Λ1k =
[αL

0 + k, αU
0 + k].

For Λ1 = [αL
0 , α

U
0 ] and Λ2 = [βL

0 , β
U
0 ], the order relation ⪯LU is defined

as follows:

(i) Λ1 ⪯LU Λ2 if and only if αL
0 ≤ βL

0 and αU
0 ≤ βU

0 .

(ii) Λ1 ≺LU Λ2 if and only if Λ1 ⪯LU Λ2 and Λ1 ̸= Λ2.
It is obvious that, Λ1 ≺LU Λ2 if and only if

αL
0 < βL

0 and αU
0 < βU

0 ,

or, αL
0 ≤ βL

0 and αU
0 < βU

0 ,

or, αL
0 < βL

0 and αU
0 ≤ βU

0 .

Furthermore, for u̇, v̇ ∈ Rm, we use the following notations:

(i). u̇ ≺ v̇ ⇔ u̇i < v̇i, for all i ∈ {1, 2, . . . ,m}, u̇ ⊀ v̇ is the negation of u̇ ≺
v̇

(ii). u̇ ⪯ v̇ ⇔

{
u̇i ≤ v̇i, for all i ∈ {1, 2, . . . ,m}
u̇i0 < v̇i0 , for at least one i0 ∈ {1, 2, . . . ,m},

u̇ ⪯̸ v̇ is the negation of u̇ ⪯ v̇.

In the present analysis, we consider the following differentiable vector opti-
mization problem with multiple interval-valued objective function with van-
ishing constraints (MIVVC):

MIVVC min ϑ(ξ) = (ϑ1(ξ), ϑ2(ξ), . . . , ϑm(ξ))

subject to
τi(ξ) ≤ 0, for all i = 1, 2, . . . , p,

σi(ξ) = 0, for all i = 1, 2, . . . , q,

ρi(ξ) ≥ 0, for all i = 1, 2, . . . , r,

ωi(ξ)ρi(ξ) ≤ 0, for all i = 1, 2, . . . , r,

where each ϑi : Rn → I(R), i ∈ T = {1, 2, . . . ,m} is an interval-valued
function; that is, ϑi(ξ) = [ϑLi (ξ), ϑ

U
i (ξ)], i ∈ T and τi(i = 1, 2, . . . , p),

σi(i = 1, 2, . . . , q), ρi, ωi(i = 1, 2, . . . , r) are assumed to be continuously
differentiable functions from Rn → R. Let us denote Tτ := {1, 2, . . . , p},
Tσ := {1, 2, . . . , q}, and Tr := {1, 2, . . . , r}. The feasible solution set of
MIVVC is given by

FVC =

{
ξ ∈ Rn | τi(ξ) ≤ 0, for all i = 1, 2, . . . , p,
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σi(ξ) = 0, for all i = 1, 2, . . . , q,

ρi(ξ) ≥ 0, for all i = 1, 2, . . . , r,

ωi(ξ)ρi(ξ) ≤ 0, for all i = 1, 2, . . . , r

}
.

Definition 1. A point a ∈ FVC is said to be a locally LU-efficient solution
of MIVVC, if there exists a neighborhood U ∈ Θ(a) such that there is no
ξ ∈ FVC ∩ U satisfying

ϑ(ξ) ⪯LU ϑ(a).

Definition 2. A point a ∈ FVC is said to be a locally weakly LU-efficient
solution of MIVVC, if there exists a neighborhood U ∈ Θ(a) such that there
is no ξ ∈ FVC ∩ U satisfying

ϑ(ξ) ≺LU ϑ(a).

Let a ∈ FVC be any feasible solution of the MIVVC. The following index
sets will be used:

T+(a) := {i ∈ Tr | ρi(a) > 0},

T0(a) := {i ∈ Tr | ρi(a) = 0}.

Furthermore, the index set T+ can be divided into the following subsets

T+0(a) := {i ∈ Tr | ρi(a) > 0, ωi(a) = 0},

T+−(a) := {i ∈ Tr | ρi(a) > 0, ωi(a) < 0}.

Similarly, the index set T0 can be partitioned in the following way

T0+(a) := {i ∈ Tr | ρi(a) = 0, ωi(a) > 0},

T00(a) := {i ∈ Tr | ρi(a) = 0, ωi(a) = 0},

T0−(a) := {i ∈ Tr | ρi(a) = 0, ωi(a) < 0}.

Definition 3. A point a ∈ FVC is said to be a strong stationary point of
MIVVC if and only if there exists (αL, αU , λτ , λσ, λω, λρ) ∈ Rm

+ ×Rm
+ ×Rp×

Rq ×Rr ×Rr with
∑
i∈T

(
αL
i + αU

i

)
= 1, λρT+(a) = 0, λρT00(a)∪T0−(a) ≥ 0,

λωT+−(a)∪T0+(a)∪T00(a)∪T0−(a) = 0 and λωT+0(a)
≥ 0 such that∑

i∈T

αL
i ∇ϑLi (a) +

∑
i∈T

αU
i ∇ϑUi (a) +

∑
i∈Tτ

λτi ∇τi(a) +
∑
i∈Tσ

λσi ∇σi(a)

+
∑

i∈T+0

λωi ∇ωi(a)−
∑

i∈T0+∪T00∪T0−

λρi∇ρi(a) = 0.

Definition 4. A point a ∈ FVC is said to be a VC-stationary point of MIVVC
if and only if there exists (αL, αU , λτ , λσ, λω, λρ) ∈ Rm

+ × Rm
+ × Rp × Rq ×
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Rr ×Rr with
∑
i∈T

(
αL
i + αU

i

)
= 1, λρT+(a) = 0, λρT00(a)∪T0−(a) ≥ 0,

λωT+−(a)∪T0+(a)∪T00(a)∪T0−(a) = 0 and λωT+0(a)∪T00(a)
≥ 0 such that∑

i∈T

αL
i ∇ϑLi (a) +

∑
i∈T

αU
i ∇ϑUi (a) +

∑
i∈Tτ

λτi ∇τi(a) +
∑
i∈Tσ

λσi ∇σi(a)

−
∑

i∈T0+∪T00∪T0−

λρi∇ρi(a) +
∑

i∈T+0

λωi ∇ωi(a) = 0.

For a ∈ FVC and (λτ , λσ, λω, λρ) ∈ Rp ×Rq ×Rr ×Rr, let us define

T+
τ (a) := {i ∈ Tτ (a) | λτi > 0},

T+
σ (a) := {i ∈ Tσ(a) | λσi > 0}, T−

σ (a) := {i ∈ Tσ(a) | λσi < 0},

T̂+
+ (a) := {i ∈ T+(a) | λρi > 0},

T̂+
0 (a) := {i ∈ T0(a) | λρi > 0}, T̂−

0 (a) := {i ∈ T0(a) | λρi < 0},

T̂+
0+(a) := {i ∈ T0+(a) | λρi > 0}, T̂−

0+(a) := {i ∈ T0+(a) | λρi < 0},

T̂+
00(a) := {i ∈ T00(a) | λρi > 0}, T̂−

00(a) := {i ∈ T00(a) | λρi < 0},

T̂+
0−(a) := {i ∈ T0−(a) | λρi > 0},

T+
+0(a) := {i ∈ T+0(a) | λωi > 0}, T−

+0(a) := {i ∈ T+0(a) | λωi < 0},

T+
+−(a) := {i ∈ T+−(a) | λωi > 0},

T+
0+(a) := {i ∈ T0+(a) | λωi > 0}, T−

0+(a) := {i ∈ T0+(a) | λωi < 0},

T+
00(a) := {i ∈ T00(a) | λωi > 0}, T−

00(a) := {i ∈ T00(a) | λωi < 0},

T+
0−(a) := {i ∈ T0−(a) | λωi > 0}.

Definition 5. Let a ∈ FVC.

(i) The linearized cone of MIVVC at a is
L(a) := {d ∈ Rn | ⟨∇τi(a), d⟩ ≤ 0 (i ∈ Tτ ), ⟨∇σi(a), d⟩ = 0 (i ∈ Tσ),
⟨∇ρi(a), d⟩ = 0 (i ∈ T0+), ⟨∇ρi(a), d⟩ ≥ 0 (i ∈ T00 ∪ T0−),
⟨∇ωi(a), d⟩ ≤ 0 (i ∈ T+0)} .

(ii) The VC-linearized cone of MIVVC at a is
LV C(a) := {d ∈ Rn | ⟨∇τi(a), d⟩ ≤ 0 (i ∈ Tτ ), ⟨∇σi(a), d⟩ = 0 (i ∈ Tσ),
⟨∇ρi(a), d⟩ = 0 (i ∈ T0+), ⟨∇ρi(a), d⟩ ≥ 0 (i ∈ T00 ∪ T0−),
⟨∇ωi(a), d⟩ ≤ 0 (i ∈ T+0 ∪ T00)} .

Definition 6. The Abadie constraint qualification (MIVVC-ACQ) is said to
hold at a ∈ FVC if

L(a) ⊆ T(FVC, a).
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Definition 7. The vanishing Abadie constraint qualification (MIVVC-VACQ)
is said to hold at a ∈ FVC if

LV C(a) ⊆ T(FVC, a).

The following theorem can be written in a similar way to Proposition 1
of Tung [25].

Theorem 1 (Necessary optimality conditions). Let ξ0 be a locally weakly
LU-efficient solution of primal problem MIVVC and also further assume that
if MIVVC-VACQ holds at ξ0 and the set

∆1 := pos

 ∪
i∈Tτ

∇τi(ξ0) ∪
∪

i∈T00∪T0−

(−∇ρi(ξ0)) ∪
∪

i∈T+0∪T00

∇ωi(ξ0)



+ span

 ∪
i∈Tσ

∇σi(ξ0) ∪
∪

i∈T0+

∇ρi(ξ0)


is closed, then there exists (αL, αU , λτ , λσ, λω, λρ) ∈ Rm

+ × Rm
+ × Rp ×

Rq × Rr × Rr with
∑
i∈T

(αL
i + αU

i ) = 1, λρT+(ξ0)
= 0, λρT00(ξ0)∪T0−(ξ0)

≥

0, λωT+−(ξ0)∪T0+(ξ0)∪T0−(ξ0)
= 0 and λωT+0(ξ0)∪T00(ξ0)

≥ 0 such that∑
i∈T

αL
i ∇ϑLi (a) +

∑
i∈T

αU
i ∇ϑUi (a) +

∑
i∈Tτ

λτi ∇τi(a) +
∑
i∈Tσ

λσi ∇σi(a)

−
∑
i∈Tr

λρi∇ρi(a) +
∑
i∈Tr

λωi ∇ωi(a) = 0.

3 Sufficient optimality conditions

In this section, we establish sufficient optimality conditions for the problem
MIVVC using the concept of generalized convexity.

Theorem 2. Let ξ0 be a strong stationary point of MIVVC. Suppose that
T̂−
0+ ∪ T+

+0 = ϕ and τi (i ∈ Tτ ), σi (i ∈ T+
σ ), −σi (i ∈ T−

σ ), ωi (i ∈
T+
+0), −ρi (i ∈ T̂+

0+ ∪ T̂+
00 ∪ T̂+

0−) are quasiconvex functions at ξ0. If∑
i∈T

αL
i ϑ

L
i (·) +

∑
i∈T

αU
i ϑ

U
i (·) is pseudoconvex function at ξ0, then ξ0 is an LU-

efficient solution of MIVVC.

Proof. Since ξ0 is a strong stationary point of MIVVC, there exists (αL, αU ,
λτ , λσ, λω, λρ) ∈ Rm

+×Rm
+×Rp×Rq×Rr×Rr with

∑
i∈T

(
αL
i + αU

i

)
= 1, λρT+

=

0, λρT00∪T0−
≥ 0, λωT+−∪T0+∪T0−

= 0 and λωT+0
≥ 0 such that
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361 On optimality and duality for multiobjective ...∑
i∈T

αL
i ∇ϑLi (ξ0) +

∑
i∈T

αU
i ∇ϑUi (ξ0) +

∑
i∈Tτ

λτi ∇τi(ξ0) +
∑
i∈Tσ

λσi ∇σi(ξ0)

−
∑
i∈Tr

λρi∇ρi(ξ0) +
∑
i∈Tr

λωi ∇ωi(ξ0) = 0. (1)

For an arbitrary ξ ∈ FVC, we get τi(ξ) ≤ 0 = τi(ξ0) for each i ∈ Tτ . Thus the
quasiconvexity at ξ0 of τi (i ∈ Tτ ) gives that

⟨∇τi(ξ0), ξ − ξ0⟩ ≤ 0, for all i ∈ Tτ ,

consequently, together with λτi ∈ Rp leads that⟨∑
i∈Tτ

λτi ∇τi(ξ0), ξ − ξ0

⟩
≤ 0. (2)

We deduce from ξ, ξ0 ∈ FVC that σi(ξ) = σi(ξ0) = 0, for all i ∈ Tσ, and
hence,

σi(ξ) ≤ σi(ξ0) = 0, for all i ∈ T+
σ and −σi(ξ) ≤ −σi(ξ0) = 0, for all i ∈ T−

σ .

The above inequalities along with the quasiconvexity at ξ0 of σi (i ∈ T+
σ )

and −σi (i ∈ T−
σ ) ensure that

⟨∇σi(ξ0), ξ − ξ0⟩ ≤ 0, for all i ∈ T+
σ and ⟨−∇σi(ξ0), ξ − ξ0⟩ ≤ 0, for all i ∈ T−

σ .

Thus, taking into account the definitions of T+
σ , T

−
σ results in⟨∑

i∈Tσ

λσi ∇σi(ξ0), ξ − ξ0

⟩
≤ 0. (3)

Again, we deduce from ξ ∈ FVC that −ρi(ξ) ≤ 0, ωi(ξ) ≥ 0, for all i ∈ Tr.
Thus, {

−ρi(ξ) ≤ −ρi(ξ0), i ∈ T̂+
0+ ∪ T̂+

00 ∪ T̂
+
0−,

ωi(ξ) ≤ ωi(ξ0), i ∈ T+
+0.

Therefore, the quasiconvexity of −ρi, i ∈ T̂+
0+ ∪ T̂+

00 ∪ T̂
+
0− and ωi, i ∈ T+

+0 at
ξ0 yields that

⟨−∇ρi(ξ0), ξ − ξ0⟩ ≤ 0, for all i ∈ T̂+
0+ ∪ T̂+

00 ∪ T̂
+
0−, (4)

⟨∇ωi(ξ0), ξ − ξ0⟩ ≤ 0, for all i ∈ T+
+0. (5)

As T+
+0 ∪ T̂

−
0+ = ϕ, we presume from (1)–(5) that
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i∈T

αL
i ∇ϑLi (ξ0) +

∑
i∈T

αU
i ∇ϑUi (ξ0), ξ − ξ0

⟩

=

⟨∑
i∈Tτ

λτi ∇τi(ξ0) +
∑
i∈Tσ

λσi ∇σi(ξ0)−
∑
i∈Tr

λρi∇ρi(ξ0)+

∑
i∈Tr

λωi ∇ωi(ξ0), ξ − ξ0

⟩
≥ 0, (6)

for all ξ ∈ FVC.
On the contrary, suppose ξ0 is not an LU-efficient solution of MIVVC. This
leads to the existence of a feasible point ξ̃ ∈ FVC such that

ϑ(ξ̃) ⪯LU ϑ(ξ0);

that is, for i ∈ T ,{
ϑLi (ξ̃) < ϑLi (ξ0)

ϑUi (ξ̃) ≤ ϑUi (ξ0)
, or

{
ϑLi (ξ̃) ≤ ϑLi (ξ0)

ϑUi (ξ̃) < ϑUi (ξ0)
, or

{
ϑLi (ξ̃) < ϑLi (ξ0)

ϑUi (ξ̃) < ϑUi (ξ0)
.

From the fact αL ∈ Rm
+ , α

U ∈ Rm
+ with

∑
i∈T

(
αL
i + αU

i

)
= 1, then above in-

equalities together yield∑
i∈T

αL
i ϑ

L
i (ξ̃) +

∑
i∈T

αU
i ϑ

U
i (ξ̃) <

∑
i∈T

αL
i ϑ

L
i (ξ0) +

∑
i∈T

αU
i ϑ

U
i (ξ0),

which by the pseudoconvexity of
∑
i∈T

αL
i ϑ

L
i (·) +

∑
i∈T

αU
i ϑ

U
i (·), we obtain

⟨∑
i∈T

αL
i ∇ϑLi (ξ0) +

∑
i∈T

αU
i ∇ϑUi (ξ0), ξ̃ − ξ0

⟩
< 0,

contradicting to (6).

Theorem 3. Let ξ0 be a strong stationary point of MIVVC. Suppose that
T̂−
0+ ∪ T+

+0 = ϕ and τi (i ∈ Tτ ), σi (i ∈ T+
σ ),−σi (i ∈ T−

σ ), ωi (i ∈
T+
+0),−ρi (i ∈ T̂+

0+ ∪ T̂+
00 ∪ T̂+

0−) are quasiconvex functions at ξ0. If∑
i∈T

αL
i ϑ

L
i (·) +

∑
i∈T

αU
i ϑ

U
i (·) is strictly pseudoconvex function at ξ0, then ξ0

is a weakly LU-efficient solution of MIVVC.

Proof. Similar to the proof of Theorem 2, we get⟨∑
i∈T

αL
i ∇ϑLi (ξ0) +

∑
i∈T

αU
i ∇ϑUi (ξ0), ξ − ξ0

⟩

Iran. j. numer. anal. optim., Vol. 13, No. 3, 2023,pp 354–384



363 On optimality and duality for multiobjective ...

=

⟨∑
i∈Tτ

λτi ∇τi(ξ0) +
∑
i∈Tσ

λσi ∇σi(ξ0)−
∑
i∈Tr

λρi∇ρi(ξ0)+

∑
i∈Tr

λωi ∇ωi(ξ0), ξ − ξ0

⟩
≥ 0. (7)

Reasoning by contraposition, assume that ξ0 is not a weakly LU-efficient
solution. Then there exists a feasible point ξ̃ satisfying

ϑ(ξ̃) ≺LU ϑ(ξ0);

that is, for i ∈ T , {
ϑLi (ξ̃) < ϑLi (ξ0),

ϑUi (ξ̃) < ϑUi (ξ0).

From the fact that αL ∈ Rm
+ , α

U ∈ Rm
+ with

∑
i∈T

(
αL
i + αU

i

)
= 1, and by the

above inequalities, we get∑
i∈T

αL
i ϑ

L
i (ξ̃) +

∑
i∈T

αU
i ϑ

U
i (ξ̃) <

∑
i∈T

αL
i ϑ

L
i (ξ0) +

∑
i∈T

αU
i ϑ

U
i (ξ0).

By using the strictly pseudoconvexity of
∑
i∈T

αL
i ϑ

L
i (·) +

∑
i∈T

αU
i ϑ

U
i (·) at ξ̃ on

FVC, we get ⟨∑
i∈T

αL
i ∇ϑLi (ξ0) +

∑
i∈T

αU
i ∇ϑUi (ξ0), ξ̃ − ξ0

⟩
< 0,

contradicting to (7).

Now, we verify the sufficient optimality conditions by an example.

Example 1. Consider the following multiobjective interval-valued program-
ming problem with vanishing constraints (MIVVC-1):

MIV V C − 1 R+−min ϑ(ξ) = (ϑ1(ξ), ϑ2(ξ))

=
(
[4ξ2 − ξ, 4ξ2 + ξ + 1], [ξ2 − 2ξ, ξ4 + 2ξ]

)
subject to
ρ1(ξ) = ξ ≥ 0,

ω1(ξ)ρ1(ξ) = (−1− ξ)ξ ≤ 0,

where ϑL1 (ξ) = 4ξ2− ξ, ϑL2 (ξ) = ξ2−2ξ, ϑU1 (ξ) = 4ξ2+ ξ+1, ϑU2 (ξ) = ξ4+2ξ,
which is in the form of MIVVC with m = 2, n = 1, p = q = 0, and r = 1.

The feasible region of MIVVC-1 is FVC1 = {ξ ∈ R | ρ1(ξ) ≥ 0, ω1(ξ)ρ1(ξ) ≤
0}.
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(a) Graphical view of ϑ1(ξ) = [ϑL1 (ξ), ϑU1 (ξ)] (b) Graphical view of ϑ2(ξ) = [ϑL2 (ξ), ϑU2 (ξ)]

Graphical view of the feasible region of MIVVC-1

Note that ξ0 = 0 is a feasible solution of MIVVC-1. By simple cal-
culations, we get T(FVC1, ξ0) = FVC1, ∇ϑL1 (ξ0) = {−1} , ∇ϑL2 (ξ0) =
{−2} , ∇ϑU1 (ξ0) = {1} , ∇ϑU2 (ξ0) = {2} , ∇ρ1(ξ0) = {1} , ∇ω1(ξ0) = {−1} ,
T+ = T0+ = T0− = ϕ, T00 = {1},( ∪

i∈T00

(−∇ρi(ξ0))

)−

= {ξ ∈ R | ξ ≥ 1},

( ∪
i∈T00

(∇ωi(ξ0))

)−

= {ξ ∈ R | ξ ≥ 1},

( ∪
i∈T00

(−∇ρi(ξ0))

)−

∩

( ∪
i∈T00

∇ωi(ξ0)

)−

= {ξ ∈ R | ξ ≥ 1}.

Hence,
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i∈T00

(−∇ρi(ξ0))

)−

∩

( ∪
i∈T00

(∇ωi(ξ0))

)−

⊂ T (FVC1, ξ0),

yields that MIVVC-VACQ satisfies at ξ0. Moreover,

∆1 := pos

( ∪
i∈T00

(−∇ρi(ξ0)) ∪
∪

i∈T00

∇ωi(ξ0)

)
= {ξ ∈ R | ξ ≥ −1}

is closed. Thus, all assumptions in Theorem 1 are satisfied. Then there exist
αL
1 = αL

2 = 1
2 , α

U
1 = αU

2 = 1
2 , λ

ρ
1 = 0, λω1 = 0 such that (1) is satisfied at

ξ0 = 0 for the problem MIVVC-1. Furthermore, it can be easily observed
that the hypothesis of Theorem 3 hold at ξ0 = 0, and owing to the fact that
for ξ ̸= ξ0, ϑ(ξ) ⊀LU ϑ(ξ0). Then, we assert that ξ0 is a locally weakly
LU-efficient solution of MIVVC-1.

4 The Wolfe type duality

In this section, we present the Wolfe type dual problem to MIVVC assuming
that all the functions to be convex. For a given ū, Θ(ū) is the system of the
neighborhoods of ū. For ξ0 ∈ FVC, (u, α

L, αU , λτ , λσ, λω, λρ) ∈ Rn × Rm
+ ×

Rm
+ × Rp × Rq × Rr × Rr with

∑
i∈T

(αL
i + αU

i ) = 1, λρT+(ξ0)
≥ 0, λωT0+(ξ0)

≤ 0,

and λωT+−(ξ0)∪T0−(ξ0)
≥ 0, we define

L(u, αL, αU , λτ , λσ, λω, λρ) =

(
ϑ1(u) +

(∑
i∈Tτ

λτi τi(u) +
∑
i∈Tσ

λσi σi(u)

−
∑
i∈Tr

λρi ρi(u) +
∑
i∈Tr

λωi ωi(u)

)
e+ · · ·

+ϑm(u) +

(∑
i∈Tτ

λτi τi(u) +
∑
i∈Tσ

λσi σi(u)−

∑
i∈Tr

λρi ρi(u) +
∑
i∈Tr

λωi ωi(u)

)
e

)
,

where e := (1, . . . , 1) ∈ Rm. We consider the Wolfe type dual problem as
follows:

(WDw(ξ0)) Rm
+−maxL(u, αL, αU , λτ , λσ, λω, λρ)

subject to∑
i∈T

αL
i ∇ϑLi (u) +

∑
i∈T

αU
i ∇ϑUi (u) +

∑
i∈Tτ

λτi ∇τi(u)
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+
∑
i∈Tσ

λσi ∇σi(u)−
∑
i∈Tr

λρi∇ρi(u) +
∑
i∈Tr

λωi ∇ωi(u) = 0,

∑
i∈T

(
αL
i + αU

i

)
= 1, λρT+(ξ0)

≥ 0, λωT0+(ξ0)
≤ 0 and

λωT+−(ξ0)∪T0−(ξ0)
≥ 0, (u, αL, αU , λτ , λσ, λω, λρ) ∈

Rn ×Rm
+ ×Rm

+ ×Rp ×Rq ×Rr ×Rr.

The feasible set of (WDw(ξ0)) is defined by

FVCw(ξ0) :=

{
(u, αL, αU , λτ , λσ, λω, λρ) ∈ Rn ×Rm

+ ×Rm
+ ×Rp ×Rq ×Rr

×Rr|
∑
i∈T

(
αL
i + αU

i

)
= 1, λρT+(ξ0)

≥ 0, λωT0+(ξ0)
≤ 0, and

λωT+−(ξ0)∪T0−(ξ0)
≥ 0,

∑
i∈T

αL
i ∇ϑLi (u) +

∑
i∈T

αU
i ∇ϑUi (u)+∑

i∈Tτ

λτi ∇τi(u) +
∑
i∈Tσ

λσi ∇σi(u)−
∑
i∈Tr

λρi∇ρi(u)+

∑
i∈Tr

λωi ∇ωi(u) = 0

}
.

The Wolfe type duality problem of MIVVC, which is not dependent on
ξ0, is

(WDw) : Rm
+ −maxL(ψ, αL, αU , λτ , λσ, λω, λρ)

subject to

(ψ, αL, αU , λτ , λσ, λω, λρ) ∈ FVCw :=
∩

ξ0∈FVC

FVCw(ξ0).

Definition 8. Let ξ0 ∈ FVC. Then (ū, ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ) ∈ FVCw(ξ0)
is a locally LU-efficient solution of (WDw(ξ0)) (locally weakly LU-efficient
solution of (WDw(ξ0))) if there exists U ∈ Θ(ū) such that there is no
(u, αL, αU , λτ , λσ, λω, λρ) ∈ FVCw(ξ0) ∩ U satisfying

L(ū, ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ) ⪯LU L(u, αL, αU , λτ , λσ, λω, λρ),(
L(ū, ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ) ≺LU L(u, αL, αU , λτ , λσ, λω, λρ)

)
.

Theorem 4 (Weak Duality). Let ξ ∈ FVC and let (ψ, αL, αU , λτ , λσ, λω, λρ) ∈
FVCw. Suppose that τi(i ∈ T+

τ (ξ)), σi(i ∈ T+
σ (ξ)),−σi(i ∈ T−

σ (ξ)), ρi(i ∈
T̂−
0 (ξ)),−ρi(i ∈ T̂+

+ (ξ) ∪ T̂+
0 (ξ)), ωi(i ∈ T+

+0(ξ) ∪ T
+
+−(ξ) ∪ T+

00(ξ) ∪ T
+
0−(ξ)),

−ωi(i ∈ T−
+0(ξ) ∪ T

−
0+(ξ) ∪ T

−
00(ξ)) are convex functions at ψ,

(i) If ϑLi , ϑUi (i ∈ T ) are convex functions at ψ, then
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ϑ(ξ) ⊀LU L(ψ, αL, αU , λτ , λσ, λω, λρ).

(ii) If ϑLi , ϑUi (i ∈ T ) are strictly convex functions at ψ, then

ϑ(ξ) ⪯̸LU L(ψ, αL, αU , λτ , λσ, λω, λρ).

Proof. For ξ ∈ FVC and (ψ, αL, αU , λτ , λσ, λω, λρ) ∈ FVCw =
∩

ξ0∈FVC

FVCw(ξ0),

one gets

τi(ξ) ≤ 0 (i ∈ Tτ ), σi(ξ) = 0 (i ∈ Tσ), ρi(ξ) ≥ 0 (i ∈ Tr), ωi(ξ)ρi(ξ) ≤ 0 (i ∈ Tr)
(8)

and ∑
i∈T

αL
i ∇ϑLi (ψ) +

∑
i∈T

αU
i ∇ϑUi (ψ) +

∑
i∈Tτ

λτi ∇τi(ψ)

+
∑
i∈Tσ

λσi ∇σi(ψ)−
∑
i∈Tr

λρi∇ρi(ψ) +
∑
i∈Tr

λωi ∇ωi(ψ) = 0 (9)

with∑
i∈T

(
αL
i + αU

i

)
= 1, λρT+(ξ) ≥ 0, λωT0+(ξ) ≤ 0, λωT+−(ξ)∪T0−(ξ) ≥ 0. (10)

Therefore we conclude from (8), based on the convexity of τi (i ∈ T+
τ (ξ)), σi (i ∈

T+
σ (ξ)),−σi (i ∈ T−

σ (ξ)), ρi (i ∈ T̂−
0 (ξ)),−ρi (i ∈ T̂+

+ (ξ) ∪ T̂+
0 (ξ)), ωi (i ∈

T+
+0(ξ) ∪ T

+
+−(ξ) ∪ T+

00(ξ) ∪ T
+
0−(ξ)),−ωi (i ∈ T−

+0(ξ) ∪ T
−
0+(ξ) ∪ T

−
00(ξ)) at ψ

and by the definitions of index sets that

τi(ψ) + ⟨∇τi(ψ), ξ − ψ⟩ ≤ τi(ξ) ≤ 0, λτi > 0, for all i ∈ T+
τ (ξ),

σi(ψ) + ⟨∇σi(ψ), ξ − ψ⟩ ≤ σi(ξ) = 0, λσi > 0, for all i ∈ T+
σ (ξ),

−σi(ψ) + ⟨−∇σi(ψ), ξ − ψ⟩ ≤ −σi(ξ) = 0, λσi < 0, for all i ∈ T−
σ (ξ),

ρi(ψ) + ⟨∇ρi(ψ), ξ − ψ⟩ ≤ ρi(ξ) = 0, λρi < 0, for all i ∈ T̂−
0 (ξ),

−ρi(ψ) + ⟨−∇ρi(ψ), ξ − ψ⟩ ≤ −ρi(ξ) < 0, λρi > 0, for all i ∈ T̂+
+ (ξ),

−ρi(ψ) + ⟨−∇ρi(ψ), ξ − ψ⟩ ≤ −ρi(ξ) < 0, λρi > 0, for all i ∈ T̂+
0 (ξ),

ωi(ψ) + ⟨∇ωi(ψ), ξ − ψ⟩ ≤ ωi(ξ) = 0, λωi > 0, for all i ∈ T+
+0(ξ) ∪ T

+
00(ξ),

ωi(ψ) + ⟨∇ωi(ψ), ξ − ψ⟩ ≤ ωi(ξ) < 0, λωi > 0, for all i ∈ T+
+−(ξ) ∪ T+

0−(ξ),

−ωi(ψ)+⟨−∇ωi(ψ), ξ − ψ⟩ ≤ −ωi(ξ) = 0, λωi > 0, for all i ∈ T−
+0(ξ)∪T

−
00(ξ),

−ωi(ψ) + ⟨−∇ωi(ψ), ξ − ψ⟩ ≤ −ωi(ξ) < 0, λωi < 0, for all i ∈ T−
0+(ξ).

The above inequalities imply that
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i∈Tτ

λτi τi(ψ) +
∑
i∈Tσ

λσi σi(ψ)−
∑
i∈Tr

λρi ρi(ψ) +
∑
i∈Tr

λωi ωi(ψ)

+

⟨∑
i∈Tτ

λτi ∇τi(ψ) +
∑
i∈Tσ

λσi ∇σi(ψ)−
∑
i∈Tr

λρi∇ρi(ψ)

+
∑
i∈Tr

λωi ∇ωi(ψ), ξ − ψ

⟩
≤ 0. (11)

By using (9) and (11), we obtain⟨∑
i∈T

αL
i ∇ϑLi (ψ) +

∑
i∈T

αU
i ∇ϑUi (ψ), ξ − ψ

⟩

= −

⟨∑
i∈Tτ

λτi ∇τi(ψ) +
∑
i∈Tσ

λσi ∇σi(ψ)−
∑
i∈Tr

λρi∇ρi(ψ) +
∑
i∈Tr

λωi ∇ωi(ψ), ξ − ψ

⟩
≥

∑
i∈Tτ

λτi τi(ψ) +
∑
i∈Tσ

λσi σi(ψ)−
∑
i∈Tr

λρi ρi(ψ) +
∑
i∈Tr

λωi ωi(ψ). (12)

(i) Suppose to the contrary that

ϑ(ξ) ≺LU L(ψ, αL, αU , λτ , λσ, λω, λρ). (13)

Then, we deduce from (13) and αL ∈ Rm
+ , α

U ∈ Rm
+ that⟨

αL, ϑL(ξ)− L(ψ, αL, αU , λτ , λσ, λω, λρ)
⟩
< 0,⟨

αU , ϑU (ξ)− L(ψ, αL, αU , λτ , λσ, λω, λρ)
⟩
< 0,

which is equivalent to

m∑
i=1

αL
i

(
ϑLi (ξ)− ϑLi (ψ)

)
−

m∑
i=1

αL
i

(∑
i∈Tτ

λτi τi(ψ) +
∑
i∈Tσ

λσi σi(ψ)

−
∑
i∈Tr

λρi ρi(ψ) +
∑
i∈Tr

λωi ωi(ψ)

)
< 0,

m∑
i=1

αU
i

(
ϑUi (ξ)− ϑUi (ψ)

)
−

m∑
i=1

αU
i

(∑
i∈Tτ

λτi τi(ψ) +
∑
i∈Tσ

λσi σi(ψ)

−
∑
i∈Tr

λρi ρi(ψ) +
∑
i∈Tr

λωi ωi(ψ)

)
< 0.

On adding, we have
m∑
i=1

αL
i

(
ϑLi (ξ)− ϑLi (ψ)

)
+

m∑
i=1

αU
i

(
ϑUi (ξ)− ϑUi (ψ)

)
−

m∑
i=1

(
αL
i + αU

i

)
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i∈Tτ

λτi τi(ψ) +
∑
i∈Tσ

λσi σi(ψ)−
∑
i∈Tr

λρi ρi(ψ) +
∑
i∈Tr

λωi ωi(ψ)

)
< 0.

It follows from
m∑
i=1

(
αL
i + αU

i

)
= 1 that

m∑
i=1

αL
i

(
ϑLi (ξ)− ϑLi (ψ)

)
+

m∑
i=1

αU
i

(
ϑUi (ξ)− ϑUi (ψ)

)

<

(∑
i∈Tτ

λτi τi(ψ) +
∑
i∈Tσ

λσi σi(ψ)−
∑
i∈Tr

λρi ρi(ψ) +
∑
i∈Tr

λωi ωi(ψ)

)
. (14)

From the convexity of ϑLi , ϑUi (i ∈ T ) at ψ, we get⟨
∇ϑLi (ψ), ξ − ψ

⟩
≤ ϑLi (ξ)− ϑLi (ψ), for all i ∈ T,⟨

∇ϑUi (ψ), ξ − ψ
⟩
≤ ϑUi (ξ)− ϑUi (ψ), for all i ∈ T,

which leads that⟨
m∑
i=1

αL
i ∇ϑLi (ψ), ξ − ψ

⟩
≤

m∑
i=1

αL
i

(
ϑLi (ξ)− ϑLi (ψ)

)
,

⟨
m∑
i=1

αU
i ∇ϑUi (ψ), ξ − ψ

⟩
≤

m∑
i=1

αU
i

(
ϑUi (ξ)− ϑUi (ψ)

)
. (15)

We deduce from the above inequalities and (14) that⟨
m∑
i=1

αL
i ∇ϑLi (ψ) +

m∑
i=1

αU
i ∇ϑUi (ψ), ξ − ψ

⟩

<

(∑
i∈Tτ

λτi τi(ψ) +
∑
i∈Tσ

λσi σi(ψ)−
∑
i∈Tr

λρi ρi(ψ) +
∑
i∈Tr

λωi ωi(ψ)

)
,

which contradicts with (12).

(ii) Reasoning by contraposition, suppose that

ϑ(ξ) ⪯LU L(ψ, αL, αU , λτ , λσ, λω, λρ). (16)

We deduce from (16) and αL ∈ Rm
+ , α

U ∈ Rm
+ that{ ⟨

αL, ϑL(ξ)− L(ψ, αL, αU , λτ , λσ, λω, λρ)
⟩
< 0,⟨

αU , ϑU (ξ)− L(ψ, αL, αU , λτ , λσ, λω, λρ)
⟩
≤ 0,

or
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αL, ϑL(ξ)− L(ψ, αL, αU , λτ , λσ, λω, λρ)

⟩
≤ 0,⟨

αU , ϑU (ξ)− L(ψ, αL, αU , λτ , λσ, λω, λρ)
⟩
< 0,

or { ⟨
αL, ϑL(ξ)− L(ψ, αL, αU , λτ , λσ, λω, λρ)

⟩
< 0,⟨

αU , ϑU (ξ)− L(ψ, αL, αU , λτ , λσ, λω, λρ)
⟩
< 0,

which is equivalent to
m∑
i=1

αL
i

(
ϑLi (ξ)− ϑLi (ψ)

)
+

m∑
i=1

αU
i

(
ϑUi (ξ)− ϑUi (ψ)

)

≤
m∑
i=1

(
αL
i + αU

i

)(∑
i∈Tτ

λτi τi(ψ) +
∑
i∈Tσ

λσi σi(ψ)−
∑
i∈Tr

λρi ρi(ψ) +
∑
i∈Tr

λωi ωi(ψ)

)
.

It follows from
∑m

i=1

(
αL
i + αU

i

)
= 1 that

m∑
i=1

αL
i

(
ϑLi (ξ)− ϑLi (ψ)

)
+

m∑
i=1

αU
i

(
ϑUi (ξ)− ϑUi (ψ)

)

≤

(∑
i∈Tτ

λτi τi(ψ) +
∑
i∈Tσ

λσi σi(ψ)−
∑
i∈Tr

λρi ρi(ψ) +
∑
i∈Tr

λωi ωi(ψ)

)
. (17)

From the strict convexity of ϑLi , ϑUi (i ∈ T ) at ψ, we get⟨
∇ϑLi (ψ), ξ − ψ

⟩
< ϑLi (ξ)− ϑLi (ψ), for all i ∈ T⟨

∇ϑUi (ψ), ξ − ψ
⟩
< ϑUi (ξ)− ϑUi (ψ), for all i ∈ T ,

which leads that⟨
m∑
i=1

αL
i ∇ϑLi (ψ), ξ − ψ

⟩
<

m∑
i=1

αL
i

(
ϑLi (ξ)− ϑLi (ψ)

)
,

⟨
m∑
i=1

αU
i ∇ϑUi (ψ), ξ − ψ

⟩
<

m∑
i=1

αU
i

(
ϑUi (ξ)− ϑUi (ψ)

)
. (18)

It follows from (17) and (18) that⟨
m∑
i=1

αL
i ∇ϑLi (ψ) +

m∑
i=1

αU
i ∇ϑUi (ψ), ξ − ψ

⟩

<

(∑
i∈Tτ

λτi τi(ψ) +
∑
i∈Tσ

λσi σi(ψ)−
∑
i∈Tr

λρi ρi(ψ) +
∑
i∈Tr

λωi ωi(ψ)

)
,
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contradicting to (12).

Example 2. Consider the following multiobjective interval-valued program-
ming problem with vanishing constraints (MIVVC-2):

MIV V C − 2 R+−min ϑ(ξ) = (ϑ1(ξ), ϑ2(ξ))

=
(
[2ξ + 4, e2ξ], [−2ξ + 1,−ξ − 1])

subject to
ρ1(ξ) = ξ ≥ 0,

ω1(ξ)ρ1(ξ) = −e1−ξξ ≤ 0,

where ϑL1 (ξ) = 2ξ + 4, ϑL2 (ξ) = −2ξ + 1, ϑU1 (ξ) = e2ξ, ϑU2 (ξ) = −ξ − 1, which
is in the form of MIVVC with m = n = 1, p = q = 0 and r = 1. The feasible
set of MIVVC-2 is FVC2 = {ξ ∈ R | ρ1(ξ) ≥ 0, ω1(ξ)ρ1(ξ) ≤ 0}. For any
ξ0 ∈ FVC2, the corresponding Wolfe type dual problem to MIVVC-2 is given
by

(WDw(ξ0)− 1)Rm
+ −maxL(u, αL, αU , λω, λρ)

=
(
[2u+ 4, e2u] + (−λρ1(u) + λω1 (−e1−u))(1),

[−2u+ 1,−u− 1] + (−λρ1(u) + λω1 (−e1−u))(1)
)

subject to
αL
1 (2) + αU

1 (2e
2u) + αL

2 (−2) + αU
2 (−1)− λρ1(1)

+ λω1 (−1) = 0,

αL
1 + αU

1 = 1, αL
2 + αU

2 = 1, λρ1

{
≥ 0, if1 ∈ T+(ξ0),

∈ R, if1 ∈ T0(ξ0),

λω1


≤ 0, if1 ∈ T0+(ξ0),

≥ 0, if1 ∈ T+−(ξ0) ∪ T0−(ξ0),
∈ R, if1 ∈ T+0(ξ0) ∪ T00(ξ0),

where (u, αL
1 , α

U
1 ,α

L
2 , α

U
2 , λ

ω, λρ) ∈ R×R+ ×R+ ×R+ ×R+ ×R×R.

Therefore, we get the following feasible set of problem (WDw(ξ0)− 1):

(FVCw(ξ0)− 1) :=

{
(u, αL

1 , α
U
1 , α

L
2 , α

U
2 , λ

ω, λρ) ∈ Rn ×Rm
+ ×Rm

+

×Rm
+ ×Rm

+ ×Rr ×Rr|αL
1 + αU

1 = 1, αL
2 + αU

2 = 1,

λρ1 ∈ R, λω1 ∈ R,αL
1∇ϑL1 (u) + αU

1 ∇ϑU1 (u) + αL
2∇ϑL2 (u)

+ αU
2 ∇ϑU2 (u)− λρ1∇ρ1(u) + λω1∇ω1(u) = 0

}
.
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By elementary calculations, we get ∇ϑL1 (ξ0) = {2} , ∇ϑU1 (ξ0) = {2} ,
∇ϑL2 (ξ0) = {−2} ,∇ϑU2 (ξ0) = {−1} , ∇ρ1(ξ0) = {1} , ∇ω1(ξ0) = {e} , T+ =
T0+ = T0− = ϕ, T00 = {1}.
Clearly, (u, αL

1 , α
U
1 , α

L
2 , α

U
2 , λ

ω, λρ) = (0, 12 ,
1
2 ,

1
2 ,

1
2 , 0,

1
2 ) is a feasible solution

to (WDw(ξ0)−1). We also note that ξ0 = 0 is a feasible solution to MIVVC-
2. On the other hand, it is easily verified that the hypothesis (i) and (ii) of
Theorem 4 are satisfied at u = 0.

Theorem 5 (Strong duality). Let ξ0 ∈ FVC be a locally weakly efficient
solution of MIVVC. If MIVVC-VACQ holds at ξ0 and the set ∆1 is closed,
then there exists (ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ) ∈ Rm

+ × Rm
+ × Rp × Rq × Rr × Rr

with λ̄ρT+(ξ0)
= 0, λ̄ρT00(ξ0)∪T0−(ξ0)

≥ 0, λ̄ωT+−(ξ0)∪T0+(ξ0)∪T0−(ξ0)
= 0 and

λ̄ωT+0(ξ0)∪T00(ξ0)
≥ 0 such that (ξ0, ᾱ

L, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ) ∈ FVCw(ξ0) and
ϑ(ξ0) = L(ξ0, ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ). Furthermore, assume that τi(i ∈
T+
τ (ξ0)), σi (i ∈ T+

σ (ξ0)),−σi(i ∈ T−
σ (ξ0)), ρi(i ∈ T̂−

0 (ξ0)),−ρi(i ∈ T̂+
+ (ξ0) ∪

T̂+
0 (ξ0)), ωi(i ∈ T+

+0(ξ0) ∪ T+
+−(ξ0) ∪ T+

00(ξ0) ∪ T+
0−(ξ0)),−ωi(i ∈ T−

+0(ξ0) ∪
T−
0+(ξ0) ∪ T

−
00(ξ0)) are convex functions at ξ0.

(i) If ϑLi , ϑUi (i ∈ T ) are convex functions at ξ0, then (ξ0, ᾱ
L, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ)

is a weakly LU-efficient solution of WDw(ξ0).
(ii) If ϑLi , ϑUi (i ∈ T ) are strictly convex functions at ξ0, then (ξ0, ᾱ

L, ᾱU , λ̄τ ,
λ̄σ, λ̄ω, λ̄ρ) is an LU-efficient solution of WDw(ξ0).

Proof. In view of Theorem 1, there exists (ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ) ∈ Rm
+ ×

Rm
+ ×Rp ×Rq ×Rr ×Rr with λ̄ρT+(ξ0)

= 0, λ̄ρT00(ξ0)∪T0−(ξ0)
≥ 0,

λ̄ωT+−(ξ0)∪T0+(ξ0)∪T0−(ξ0)
= 0 and λ̄ωT+0(ξ0)∪T00(ξ0)

≥ 0 such that∑
i∈T

ᾱL
i ∇ϑLi (ξ0) +

∑
i∈T

ᾱU
i ∇ϑUi (ξ0) +

∑
i∈Tτ

λ̄τi ∇τi(ξ0) +
∑
i∈Tσ

λ̄σi ∇σi(ξ0)

−
∑
i∈Tr

λ̄ρi∇ρi(ξ0) +
∑
i∈Tr

λ̄ωi ∇ωi(ξ0) = 0.

Since λ̄τ ∈ Rp, one has λ̄τi τi(ξ0) = 0 for all i ∈ Tτ , and thus,
∑
i∈Tτ

λ̄τi τi(ξ0) = 0.

The fact ξ0 ∈ FVC guarantees that
∑

i∈Tσ

λ̄σi σi(ξ0) = 0. Moreover, we observe

by λ̄ρT+(ξ0)
= 0 and ρi(ξ0) = 0 for all i ∈ T0(ξ0) that

∑
i∈Tr

λ̄ρi ρi(ξ0) = 0. Anal-

ogously, as λ̄ωT+−(ξ0)∪T0+(ξ0)∪T0−(ξ0)
= 0 and ωi(ξ0) = 0 for all i ∈ T+0(ξ0) ∪

T00(ξ0), we know that
∑
i∈Tr

λ̄ωi ωi(ξ0) = 0. Thus, (ξ0, ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ) ∈

FVCw(ξ0) and
∑
i∈Tτ

λ̄τi τi(ξ0)+
∑

i∈Tσ

λ̄σi σi(ξ0)−
∑
i∈Tr

λ̄ρi ρi(ξ0)+
∑
i∈Tr

λ̄ωi ωi(ξ0) = 0

which is nothing else but the following equality ϑ(ξ0) = L(ξ0, ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ).
(i). Now, arguing by contradiction, let us suppose that (ξ0, ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ)
is not a weakly LU-efficient solution of WDw(ξ0). By the definition, there
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exists (u, αL, αU , λτ , λσ, λω, λρ) ∈ FVCw(ξ0) such that

L(ξ0, ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ) ≺LU L(u, αL, αU , λτ , λσ, λω, λρ).

This shows that ϑ(ξ0) ≺LU L(u, αL, αU , λτ , λσ, λω, λρ), which contradicts
with Theorem 4(i).

(ii). Reasoning to the contrary, let us assume that (ξ0, ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ)
is not an LU-efficient solution of WDw(ξ0). Then it guarantees the existence
of (u, αL, αU , λτ , λσ, λω, λρ) ∈ FVCw(ξ0) such that

L(ξ0, ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ) ⪯LU L(u, αL, αU , λτ , λσ, λω, λρ).

Consequently, ϑ(ξ0) ⪯LU L(u, αL, αU , λτ , λσ, λω, λρ) which contradicts with
Theorem 4(ii).

Theorem 6 (Strict converse duality). Let ξ̃ ∈ FVC be a locally weakly
efficient solution of MIVVC such that MIVVC-VACQ holds at ξ̃ and the
strong duality between the MIVVC and the (WDW (ξ̃)) as in Theorem 5
holds. Also, let (ψ̃, α̃L, α̃U , λ̃τ , λ̃σ, λ̃ω, λ̃ρ) ∈ FVCw be an LU-efficient solu-
tion of (WDW (ξ̃)). Moreover, Assume that ϑLi , ϑUi (i ∈ T ) are strictly con-
vex functions and that τi(i ∈ T+

τ (ξ̃)), σi(i ∈ T+
σ (ξ̃)),−σi(i ∈ T−

σ (ξ̃)), ρi(i ∈
T̂−
0 (ξ̃)),−ρi(i ∈ T̂+

+ (ξ̃)∪T̂+
0 (ξ̃)), ωi(i ∈ T+

+0(ξ̃)∪T
+
+−(ξ̃)∪T+

00(ξ̃)∪T
+
0−(ξ̃)),−ωi(i ∈

T−
+0(ξ̃)∪T

−
0+(ξ̃)∪T

−
00(ξ̃)) are convex functions at ψ̃, respectively. Then, ξ̃ = ψ̃.

Proof. Suppose on the contrary, ξ̃ ̸= ψ̃. Then, by Theorem 5, there exist
ξ̃ ∈ FVC and (ψ̃, α̃L, α̃U , λ̃τ , λ̃σ, λ̃ω, λ̃ρ) ∈ FVCw, and hence

ϑ(ξ̃) = L(ψ̃, α̃L, α̃U , λ̃τ , λ̃σ, λ̃ω, λ̃ρ). (19)

The strict convexity of ϑLi , ϑUi (i ∈ T ) at ψ̃ gives that⟨
m∑
i=1

αL
i ∇ϑLi (ψ̃) +

m∑
i=1

αU
i ∇ϑUi (ψ̃), ξ̃ − ψ̃

⟩

<

(∑
i∈Tτ

λτi τi(ψ̃) +
∑
i∈Tσ

λσi σi(ψ̃)−
∑
i∈Tr

λρi ρi(ψ̃) +
∑
i∈Tr

λωi ωi(ψ̃)

)
. (20)

The convexity of τi(i ∈ T+
τ (ξ̃)), σi(i ∈ T+

σ (ξ̃)),−σi(i ∈ T−
σ (ξ̃)),

ρi(i ∈ T̂−
0 (ξ̃)),−ρi(i ∈ T̂+

+ (ξ̃) ∪ T̂+
0 (ξ̃)), ωi(i ∈ T+

+0(ξ̃) ∪ T+
+−(ξ̃) ∪ T+

00(ξ̃) ∪
T+
0−(ξ̃)),−ωi(i ∈ T−

+0(ξ̃) ∪ T−
0+(ξ̃) ∪ T−

00(ξ̃)) at ψ̃ and by the definitions of
index sets imply that

τi(ψ̃) +
⟨
∇τi(ψ̃), ξ̃ − ψ̃

⟩
≤ τi(ξ̃) = 0, λτi > 0, for all i ∈ T+

τ (ξ̃),

σi(ψ̃) +
⟨
∇σi(ψ̃), ξ̃ − ψ̃

⟩
≤ σi(ξ̃) = 0, λσi > 0, for all i ∈ T+

σ (ξ̃),
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−σi(ψ̃) +
⟨
−∇σi(ψ̃), ξ̃ − ψ̃

⟩
≤ −σi(ξ̃) = 0, λσi < 0, for all i ∈ T−

σ (ξ̃),

ρi(ψ̃) +
⟨
∇ρi(ψ̃), ξ̃ − ψ̃

⟩
≤ ρi(ξ̃) = 0, λρi < 0, for all i ∈ T̂−

0 (ξ̃),

−ρi(ψ̃) +
⟨
−∇ρi(ψ̃), ξ̃ − ψ̃

⟩
≤ −ρi(ξ̃) < 0, λρi > 0, for all i ∈ T̂+

+ (ξ̃),

−ρi(ψ̃) +
⟨
−∇ρi(ψ̃), ξ̃ − ψ̃

⟩
≤ −ρi(ξ̃) < 0, λρi > 0, for all i ∈ T̂+

0 (ξ̃),

ωi(ψ̃) +
⟨
∇ωi(ψ̃), ξ̃ − ψ̃

⟩
≤ ωi(ξ̃) = 0, λωi > 0, for all i ∈ T+

+0(ξ̃) ∪ T
+
00(ξ̃),

ωi(ψ̃) +
⟨
∇ωi(ψ̃), ξ̃ − ψ̃

⟩
≤ ωi(ξ̃) < 0, λωi > 0, for all i ∈ T+

+−(ξ̃) ∪ T+
0−(ξ̃),

which implies that

∑
i∈Tτ

λτi τi(ξ̃) +
∑
i∈Tσ

λσi σi(ξ̃)−
∑
i∈Tr

λρi ρi(ξ̃) +
∑
i∈Tr

λωi ωi(ξ̃) +

⟨∑
i∈Tτ

λτi ∇τi(ψ̃)

+
∑
i∈Tσ

λσi ∇σi(ψ̃)−
∑
i∈Tr

λρi∇ρi(ψ̃) +
∑
i∈Tr

λωi ∇ωi(ψ̃), ξ̃ − ψ̃

⟩
≤ 0. (21)

On adding the inequalities (20) and (21) and by using the duality constraint
(9) of (WDw(ξ̃)), we have

L(ψ̃, α̃L, α̃U , λ̃τ , λ̃σ, λ̃ω, λ̃ρ) ≺LU ϑ(ξ̃),

which contradicts with (19).

5 The Mond–Weir type duality

The Wolfe dual of the primal problem, which we discussed in the last section,
says that all functions must be convex. Wolfe duality does not work for func-
tions, where the objective function is only pseudoconvex and the constraints
are only quasiconvex in the primal problem MIVVC (see, Mond [24]). So,
in this section, we propose a Mond–Weir type dual to the primal problem
MIVVC to weaken the convexity assumptions.

Consider ξ0 ∈ FVC, (u, α
L, αU , λτ , λσ, λω, λρ) ∈ Rn × Rm

+ × Rm
+ × Rp ×

Rq × Rr × Rr with
∑
i∈T

(αL
i + αU

i ) = 1, λρT+(ξ0)
≥ 0, λωT0+(ξ0)

≤ 0, and

λωT+−(ξ0)∪T0−(ξ0)
≥ 0. We consider the Mond–Weir type dual problem as

follows:

(MWDM (ξ0)) R
m
+ −max ϑ(u)

subject to

Iran. j. numer. anal. optim., Vol. 13, No. 3, 2023,pp 354–384



375 On optimality and duality for multiobjective ...∑
i∈T

αL
i ∇ϑLi (u) +

∑
i∈T

αU
i ∇ϑUi (u) +

∑
i∈Tτ

λτi ∇τi(u)+∑
i∈Tσ

λσi ∇σi(u)−
∑
i∈Tr

λρi∇ρi(u) +
∑
i∈Tr

λωi ∇ωi(u) = 0,

λτi τi(u) ≥ 0 (i ∈ Tτ ), λ
σ
i σi(u) = 0 (i ∈ Tσ),−λρi ρi(u) ≥ 0

(i ∈ Tr), λ
ω
i ωi(u) ≥ 0 (i ∈ Tr),

∑
i∈T

(
αL
i + αU

i

)
= 1,

λρT+(ξ0)
≥ 0, λωT0+(ξ0)

≤ 0 and λωT+−(ξ0)∪T0−(ξ0)
≥ 0, (u, αL, αU ,

λτ , λσ, λω, λρ) ∈ Rn ×Rm
+ ×Rm

+ ×Rp ×Rq ×Rr ×Rr.

The feasible set of (MWDM (ξ0)) is defined by

FVCM (ξ0) :=

{
(u, αL, αU , λτ , λσ, λω, λρ) ∈ Rn ×Rm

+ ×Rm
+ ×Rp ×Rq

×Rr ×Rr | λτi τi(u) ≥ 0 (i ∈ Tτ ), λ
σ
i σi(u) = 0 (i ∈ Tσ),

− λρi ρi(u) ≥ 0 (i ∈ Tr), λ
ω
i ωi(u) ≥ 0 (i ∈ Tr),∑

i∈T

(
αL
i + αU

i

)
= 1, λρT+(ξ0)

≥ 0, λωT0+(ξ0)
≤ 0, and

λωT+−(ξ0)∪T0−(ξ0)
≥ 0,

∑
i∈T

αL
i ∇ϑLi (u) +

∑
i∈T

αU
i ∇ϑUi (u)

+
∑
i∈Tτ

λτi ∇τi(u) +
∑
i∈Tσ

λσi ∇σi(u)−
∑
i∈Tr

λρi∇ρi(u)

+
∑
i∈Tr

λωi ∇ωi(u) = 0

}
.

Furthermore, let us denote by ΓM the projection of FVCM on Rn; that is,

ΓM (ξ0) :=
{
u ∈ Rn|(u, αL, αU , λτ , λσ, λω, λρ) ∈ ΓM (ξ0)

}
.

The other Mond–Weir type duality problem of MIVVC, which is not depen-
dent on ξ0, is

(MWDM ) : Rm
+ −max ϑ(ψ)

subject to

(ψ, αL, αU , λτ , λσ, λω, λρ) ∈ ΓM :=
∩
ξ0∈Γ

ΓM (ξ0).

Definition 9. Let ξ0 ∈ FVC. Then (ū, ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ) ∈ FVCM (ξ0) is
a locally LU-efficient solution of (MWDM (ξ0)) (locally weakly LU-efficient
solution of (MWDM (ξ0))) if there exists U ∈ Θ(ū) such that there is no
(u, αL, αU , λτ , λσ, λω, λρ) ∈ FVCM (ξ0) ∩ U satisfying
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ϑ(ū) ⪯LU ϑ(u)

(ϑ(ū) ≺LU ϑ(u))

Theorem 7 (Weak duality). Let ξ ∈ FVC and (ψ, αL, αU , λτ , λσ, λω, λρ) ∈
FVCM . Suppose that τi (i ∈ T+

τ (ξ)), σi (i ∈ T+
σ (ξ)),−σi (i ∈ T−

σ (ξ)), ρi (i ∈
T̂−
0 (ξ)),−ρi (i ∈ T̂+

+ (ξ) ∪ T̂+
0 (ξ)), ωi (i ∈ T+

+0(ξ) ∪ T+
+−(ξ) ∪ T+

00(ξ) ∪
T+
0−(ξ)),−ωi (i ∈ T−

+0(ξ) ∪ T−
0+(ξ) ∪ T−

00(ξ)) are quasiconvex functions at
ψ on FVCM ∪ ΓM . If ϑLi , ϑUi (i ∈ T ) are strictly pseudoconvex functions at ψ
on FVCM ∪ ΓM , then ϑ(ξ) ⪯̸LU ϑ(ψ).

Proof. For ξ ∈ FVCM and

(ψ, αL, αU , λτ , λσ, λω, λρ) ∈ FVCM =
∩

ξ0∈FVCM

FVCM (ξ0),

we have

τi(ξ) ≤ 0 (i ∈ Tτ ), σi(ξ) = 0 (i ∈ Tσ), ρi(ξ) ≥ 0 (i ∈ Tr), ωi(ξ)ρi(ξ) ≤ 0 (i ∈ Tr),
(22)∑

i∈T

αL
i ∇ϑLi (ψ) +

∑
i∈T

αU
i ∇ϑUi (ψ) +

∑
i∈Tτ

λτi ∇τi(ψ) +
∑
i∈Tσ

λσi ∇σi(ψ)

−
∑
i∈Tr

λρi∇ρi(ψ) +
∑
i∈Tr

λωi ∇ωi(ψ) = 0, (23)

and
λτi τi(ψ) ≥ 0 (i ∈ Tτ ), λσi σi(ψ) = 0 (i ∈ Tσ),

−λρi ρi(ψ) ≥ 0 (i ∈ Tr), λωi ωi(ψ) ≥ 0 (i ∈ Tr), (24)

with∑
i∈T

(
αL
i + αU

i

)
= 1, λρT+(ξ) ≥ 0, λωT0+(ξ) ≤ 0, λωT+−(ξ)∪T0−(ξ) ≥ 0. (25)

It follows from the above inequalities that

τi(ξ) ≤ 0 ≤ τi(ψ) ≤ 0, for all i ∈ T+
τ (ξ),

σi(ξ) = σi(ψ) = 0, for all i ∈ T+
σ (ξ) ∪ T−

σ (ξ),

ρi(ξ) = 0 ≤ ρi(ψ), for all i ∈ T̂−
0 (ξ),

−ρi(ξ) ≤ 0 ≤ −ρi(ψ), for all i ∈ T̂+
+ (ξ) ∪ T̂+

0 (ξ),

ωi(ξ) ≤ 0 ≤ ωi(ψ), for all i ∈ T+
+0(ξ) ∪ T

+
+−(ξ) ∪ T+

00(ξ) ∪ T
+
0−(ξ),

−ωi(ξ) ≤ 0 ≤ −ωi(ψ) = 0, for all i ∈ T−
+0(ξ) ∪ T

−
0+(ξ) ∪ T

−
00(ξ).

Thus, we deduce from the quasiconvexity of τi (i ∈ T+
τ (ξ)), σi (i ∈ T+

σ (ξ)),
− σi (i ∈ T−

σ (ξ)), ρi (i ∈ T̂−
0 (ξ)),−ρi (i ∈ T̂+

+ (ξ) ∪ T̂+
0 (ξ)),
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ωi (i ∈ T+
+0(ξ) ∪ T

+
+−(ξ) ∪ T+

00(ξ) ∪ T
+
0−(ξ)),−ωi (i ∈ T−

+0(ξ)∪T
−
0+(ξ)∪T

−
00(ξ))

at ψ and the definitions of index sets that

⟨∇τi(ψ), ξ − ψ⟩ ≤ 0, λτi > 0, for all i ∈ T+
τ (ξ),

⟨∇σi(ψ), ξ − ψ⟩ ≤ 0, λσi > 0, for all i ∈ T+
σ (ξ),

⟨−∇σi(ψ), ξ − ψ⟩ ≤ 0, λσi < 0, for all i ∈ T−
σ (ξ),

⟨∇ρi(ψ), ξ − ψ⟩ ≤ 0, λρi < 0, for all i ∈ T̂−
0 (ξ),

⟨−∇ρi(ψ), ξ − ψ⟩ ≤ 0, λρi > 0, for all i ∈ T̂+
+ (ξ) ∪ T̂+

0 (ξ),

⟨∇ωi(ψ), ξ − ψ⟩ ≤ 0, λωi > 0, for all i∈ T+
+0(ξ) ∪ T

+
+−(ξ) ∪ T+

00(ξ) ∪ T
+
0−(ξ),

⟨−∇ωi(ψ), ξ − ψ⟩ ≤ 0, λωi < 0, for all i∈ T−
+0(ξ) ∪ T

−
0+(ξ) ∪ T

−
00(ξ),

Employing this together with (23) gives us the inequality⟨∑
i∈T

αL
i ∇ϑLi (ψ) +

∑
i∈T

αU
i ∇ϑUi (ψ), ξ − ψ

⟩

= −

⟨∑
i∈Tτ

λτi ∇τi(ψ) +
∑
i∈Tσ

λσi ∇σi(ψ)−
∑
i∈Tr

λρi∇ρi(ψ) +
∑
i∈Tr

λωi ∇ωi(ψ), ξ − ψ

⟩
≥ 0. (26)

Assume by contradiction that

ϑ(ξ) ⪯LU ϑ(ψ).

This is equivalent to{
ϑL(ξ) < ϑL(ψ)

ϑU (ξ) ≤ ϑU (ψ)
, or

{
ϑL(ξ) ≤ ϑL(ψ)

ϑU (ξ) < ϑU (ψ)
, or

{
ϑL(ξ) < ϑL(ψ)

ϑU (ξ) < ϑU (ψ)
.

Since ϑLi , ϑUi (i ∈ T ) are strictly pseudoconvex functions at ψ, we have⟨
∇ϑLi (ψ), ξ − ψ

⟩
< 0, for all i ∈ T,⟨

∇ϑUi (ψ), ξ − ψ
⟩
< 0, for all i ∈ T.

Taking into account αL ∈ Rm
+ , α

U ∈ Rm
+ and from

∑m
i=1

(
αL
i + αU

i

)
= 1, we

have ⟨
m∑
i=1

αL
i ∇ϑLi (ψ) +

m∑
i=1

αU
i ∇ϑUi (ψ), ξ − ψ

⟩
< 0,

contradicting to (26).

Example 3. Let m = n = 1, let p = q = 0 and let r = 1. Let us investigate
the following (MIV V C − 3):
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MIV V C − 3 R+−min ϑ(ξ) = (ϑ1(ξ), ϑ2(ξ))

=
(
[4ξ2 − ξ, 4ξ2 + ξ + 1], [ξ2 − 2ξ, ξ4 + 2ξ]

)
subject to
ρ1(ξ) = ξ ≥ 0,

ω1(ξ)ρ1(ξ) = (−1− ξ)ξ ≤ 0.

Then, FVC3 = {ξ ∈ R | ρ1(ξ) ≥ 0, ω1(ξ)ρ1(ξ) ≤ 0}. For any ξ0 ∈ FVC3, the
corresponding Mond–Weir dual problem to MIVVC-3 is given by

(MWDM − 1) Rm
+ −max ϑ(u)

=
(
[4u2 − u, 4u2 + u+ 1], [u2 − 2u, u4 + 2u]

)
subject to
αL
1 (8u− 1) + αU

1 (8u+ 1) + αL
2 (2u− 2) + αU

2 (4u
3 + 2)

− λρ1(1) + λω1 (−1) = 0,−λρ1(u) ≥ 0, λω1 (−1− u) ≥ 0,

αL
1 + αU

1 = 1, αL
2 + αU

2 = 1,

λρ1

{
≥ 0, if1 ∈ T+(ξ0),

∈ R, if1 ∈ T0(ξ0),
λω1


≤ 0, if1 ∈ T0+(ξ0),

≥ 0, if1 ∈ T+−(ξ0) ∪ T0−(ξ0),
∈ R, if1 ∈ T+0(ξ0) ∪ T00(ξ0),

where (u, αL
1 ,α

U
1 , α

L
2 , α

U
2 , λ

ω
1 , λ

ρ
1) ∈ R×R+ ×R+ ×R+ ×R+ ×R×R.

Therefore, we get the following feasible set of problem (MWDM (ξ0)− 1):

(FVCM (ξ0)− 1) :=

{
(u, αL

1 , α
U
1 , α

L
2 , α

U
2 , λ

ω, λρ) ∈ Rn ×Rm
+ ×Rm

+ ×Rm
+

×Rm
+ ×Rr ×Rr | − λρ1(u) ≥ 0, λω1 (−1− u) ≥ 0,

αL
1 + αU

1 = 1, αL
2 + αU

2 = 1, λρ1 ∈ R, λω1 ∈ R,

αL
1∇ϑL1 (u) + αU

1 ∇ϑU1 (u) + αL
2∇ϑL2 (u)

+ αU
2 ∇ϑU2 (u)− λρ1∇ρ1(u) + λω1∇ω1(u) = 0

}
.

By taking ξ0 = 0 ∈ FVC3, we evidence from Examples 1 and 2 that all
suppositions of Theorem 1 are fulfilled. Now, by choosing αL

1 = αU
1 = 1

2 , α
L
2 =

αU
2 = 1

2 , λ
ω
1 = 0, λρ1 = 0,

we have

−λρ1(ξ0) ≥ 0, λω1 (−1− ξ0) ≥ 0,

1

2
(−1) +

1

2
(1) +

1

2
(−2) +

1

2
(2)− λρ1(1) + λω1 (−1) = 0.

Finally, by the strict pseudoconvexity of ϑLi , ϑ
U
i (i ∈ T ) at ψ on FVCM ∪ ΓM

and by simple calculations, we get ϑ(ξ) ⪯̸LU ϑ(ψ).
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Theorem 8 (Strong duality). Let ξ0 ∈ FVC be a locally weakly effi-
cient solution of MIVVC. If MIVVC-VACQ holds at ξ0 and the set ∆1

is closed, then there exists (ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ) ∈ Rm
+ × Rm

+ × Rp ×
Rq × Rr × Rr with

∑m
i=1

(
ᾱL
i + ᾱU

i

)
= 1, λ̄ρT+(ξ0)

= 0, λ̄ρT00(ξ0)∪T0−(ξ0)
≥

0, λ̄ωT+−(ξ0)∪T0+(ξ0)∪T0−(ξ0)
= 0 and λ̄ωT+0(ξ0)∪T00(ξ0)

≥ 0 such that (ξ0, ᾱ
L,

ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ) ∈ FVCM (ξ0). Furthermore, assume that τi(i ∈ T+
τ (ξ0)), σi(i ∈

T+
σ (ξ0)),−σi(i ∈ T−

σ (ξ0)), ρi(i ∈ T̂−
0 (ξ0)),−ρi(i ∈ T̂+

+ (ξ0) ∪ T̂+
0 (ξ0)), ωi(i ∈

T+
+0(ξ0) ∪ T

+
+−(ξ0) ∪ T+

00(ξ0) ∪ T
+
0−(ξ0)),−ωi(i ∈ T−

+0(ξ0) ∪ T
−
0+(ξ0) ∪ T

−
00(ξ0))

are quasiconvex functions at ξ0. If ϑLi , ϑUi (i ∈ T ) are strictly pseudoconvex
functions at ξ0, then (ξ0, ᾱ

L, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ) is an LU-efficient solution of
MWDM (ξ0).

Proof. By Theorem (1), there exists (ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ) ∈ Rm
+ × Rm

+ ×
Rp ×Rq ×Rr ×Rr with

∑m
i=1

(
αL
i + αU

i

)
= 1, λ̄ρT+(ξ0)

= 0, λ̄ρT00(ξ0)∪T0−(ξ0)
≥

0, λ̄ωT+−(ξ0)∪T0+(ξ0)∪T0−(ξ0)
= 0 and λ̄ωT+0(ξ0)∪T00(ξ0)

≥ 0 such that∑
i∈T

αL
i ∇ϑLi (ψ) +

∑
i∈T

αU
i ∇ϑUi (ψ) +

∑
i∈Tτ

λτi ∇τi(ψ) +
∑
i∈Tσ

λσi ∇σi(ψ)

−
∑
i∈Tr

λρi∇ρi(ψ) +
∑
i∈Tr

λωi ∇ωi(ψ) = 0.

Since λ̄τ ∈ Rp, one has λ̄τi τi(ξ0) = 0 for all i ∈ Tτ . The fact that ξ0 ∈ FVC
guarantees that λ̄σi σi(ξ0) = 0. Furthermore, we deduce from λ̄ρT+(ξ0)

= 0 and
ρi(ξ0) = 0 for all i ∈ T0(ξ0) that −λ̄ρi ρi(ξ0) = 0 for all i ∈ Tr. In addition,
we get from λ̄ωT+−(ξ0)∪T0+(ξ0)∪T0−(ξ0)

= 0 and ωi(ξ0) = 0 for all i ∈ T+0(ξ0) ∪
T00(ξ0), that λ̄ωi ωi(ξ0) = 0 for all i ∈ Tr. Thus, (ξ0, ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ) ∈
FVCM (ξ0).

(i). Now, arguing by contradiction, let us suppose that (ξ0, ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ)
is not a weakly LU-efficient solution of MWDM (ξ0). By the definition, there
exists (u, αL, αU , λτ , λσ, λω, λρ) ∈ FVCM (ξ0) such that

ϑ(ξ0) ≺LU ϑ(u),

which contradicts with Theorem 4(i).
(ii). Reasoning to the contrary, Let us assume that (ξ0, ᾱL, ᾱU , λ̄τ , λ̄σ, λ̄ω, λ̄ρ)
is not an LU-efficient solution ofMWDM (ξ0). Then, there exists (u, αL, αU , λτ ,
λσ, λω, λρ) ∈ FVCM (ξ0) such that

ϑ(ξ0) ⪯LU ϑ(u)

which contradicts with Theorem 4(ii), and thus, completes the proof.

Theorem 9 (Strict converse duality). Let ξ̃ ∈ FVC be a locally weakly effi-
cient solution of MIVVC such that MIVVC-VACQ holds at ξ̃ and the strong
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duality between the MIVVC and the (MWDM )(ξ̃) as in Theorem 8 holds.
Also, let (ψ̃, α̃L, α̃U , λ̃τ , λ̃σ, λ̃ω, λ̃ρ) ∈ FVCM be an LU-efficient solution of
(MWDM )(ξ̃). Moreover, Suppose that ϑLi , ϑUi (i ∈ T ) are strictly pseudocon-
vex functions and that τi(i ∈ T+

τ (ξ̃)), σi(i ∈ T+
σ (ξ̃)),−σi(i ∈ T−

σ (ξ̃)), ρi(i ∈
T̂−
0 (ξ̃)),−ρi(i ∈ T̂+

+ (ξ̃) ∪ T̂+
0 (ξ̃)), ωi(i ∈ T+

+0(ξ̃) ∪ T
+
+−(ξ̃) ∪ T+

00(ξ̃) ∪ T
+
0−(ξ̃)),

− ωi(i ∈ T−
+0(ξ̃) ∪ T−

0+(ξ̃) ∪ T−
00(ξ̃)) are quasiconvex functions at ψ̃ on

FVCM ∪ ΓM , respectively.

Proof. Suppose, contrary to the result, that ξ̃ ̸= ψ̃. Then, by the strong
duality theorem, there exist (αL, αU , λτ , λσ, λω, λρ) ∈ Rm

+ ×Rm
+ ×Rp×Rq ×

Rr × Rr such that (ψ̃, αL, αU , λτ , λσ, λω, λρ) is an LU-efficient solution of
MWDM (ξ̃), and hence

ϑ(ξ̃) = ϑ(ψ̃). (27)

By the strict pseudoconvexity of ϑLi , ϑUi (i ∈ T ) at ψ̃ on FVCM ∪ΓM , we have⟨
m∑
i=1

αL
i ∇ϑLi (ψ̃) +

m∑
i=1

αU
i ∇ϑUi (ψ̃), ξ̃ − ψ̃

⟩
< 0. (28)

By the quasiconvexity of τi(i ∈ T+
τ (ξ̃)), σi(i ∈ T+

σ (ξ̃)),−σi(i ∈ T−
σ (ξ̃)), ρi(i ∈

T̂−
0 (ξ̃)), −ρi(i ∈ T̂+

+ (ξ̃) ∪ T̂+
0 (ξ̃)), ωi(i ∈ T+

+0(ξ̃) ∪ T
+
+−(ξ̃) ∪ T+

00(ξ̃) ∪ T
+
0−(ξ̃)),

−ωi(i ∈ T−
+0(ξ̃)∪T

−
0+(ξ̃)∪T

−
00(ξ̃)) at ψ̃ on FVC∪ΓMWD and by the definitions

of index sets, we have⟨
∇τi(ψ̃), ξ̃ − ψ̃

⟩
≤ 0, λτi > 0, for all i ∈ T+

τ (ξ̃),⟨
∇σi(ψ̃), ξ̃ − ψ̃

⟩
≤ 0, λσi > 0, for all i ∈ T+

σ (ξ̃),⟨
−∇σi(ψ̃), ξ̃ − ψ̃

⟩
≤ 0, λσi < 0, for all i ∈ T−

σ (ξ̃),⟨
∇ρi(ψ̃), ξ̃ − ψ̃

⟩
≤ 0, λρi < 0, for all i ∈ T̂−

0 (ξ̃),⟨
−∇ρi(ψ̃), ξ̃ − ψ̃

⟩
≤ 0, λρi > 0, for all i ∈ T̂+

+ (ξ̃) ∪ T̂+
0 (ξ̃),⟨

∇ωi(ψ̃), ξ̃ − ψ̃
⟩
≤ 0, λωi > 0, for all i∈ T+

+0(ξ̃) ∪ T
+
+−(ξ̃) ∪ T+

00(ξ̃) ∪ T
+
0−(ξ̃),⟨

−∇ωi(ψ̃), ξ̃ − ψ̃
⟩
≤ 0, λωi < 0, for all i∈ T−

+0(ξ̃) ∪ T
−
0+(ξ̃) ∪ T

−
00(ξ̃),

which implies that⟨∑
i∈Tτ

λτi ∇τi(ψ̃) +
∑
i∈Tσ

λσi ∇σi(ψ̃)−
∑
i∈Tr

λρi∇ρi(ψ̃) +
∑
i∈Tr

λωi ∇ωi(ψ̃), ξ̃ − ψ̃

⟩
≤ 0.

(29)
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On adding the inequalities (28) and (29) and by using the duality constraint
of (MWDM (ξ0)), we have

ϑ(ψ̃) ≺LU ϑ(ξ̃).

which contradicts with (27).

6 Special cases

(i). If ϑ1(ξ) = ϑ2(ξ) = · · · = ϑm(ξ) then the MIVVC problem reduces to
the following (IVVC) problem of Ahmad et al. [2]:

(P-1) min ϑ(ξ) = (ϑ1(ξ)) = [ϑL1 (ξ), ϑ
U
1 (ξ)]

subject to
τi(ξ) ≤ 0, for all i = 1, 2, . . . , p,

σi(ξ) = 0, for all i = 1, 2, . . . , q,

ρi(ξ) ≥ 0, for all i = 1, 2, . . . , r,

ωi(ξ)ρi(ξ) ≤ 0, for all i = 1, 2, . . . , r.

(ii). If ϑ1(ξ) = ϑ2(ξ) = · · · = ϑm(ξ) and ϑL1 (ξ) = ϑU1 (ξ) then the MIVVC
problem reduces to the following (MPVC) problem of Hoheisel and
Kanzow [12] and the (MPVC) problem of Ahmad, Kummari, and Al-
Homidan [3]:

(P-2) min ϑ(ξ)

subject to
τi(ξ) ≤ 0, for all i = 1, 2, . . . , p,

σi(ξ) = 0, for all i = 1, 2, . . . , q,

ρi(ξ) ≥ 0, for all i = 1, 2, . . . , r,

ωi(ξ)ρi(ξ) ≤ 0, for all i = 1, 2, . . . , r.

(iii). If ρi(ξ) = 0 = ωi(ξ), for all i = 1, 2, . . . , r, then MIVVC problem re-
duces to the following IVP problem of Antczak and Michalak [5]:

(P-3) min ϑ(ξ) = (ϑ1(ξ), ϑ2(ξ), . . . , ϑm(ξ))

subject to
τi(ξ) ≤ 0, for all i = 1, 2, . . . , p,

σi(ξ) = 0, for all i = 1, 2, . . . , q.

As a result of the above special cases, it is evident that the problem MIVVC
presented in this article is more generalized.
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7 Conclusion

In this paper, we have considered a multiobjective interval-valued program-
ming problem involving vanishing constraints. Based on generalized convex-
ity assumptions, the sufficiency of the Karush–Khun–Tucker necessary op-
timality conditions has been established. Furthermore, we have anticipated
Wolfe and Mond–Weir dual problems for the considered multiobjective pro-
gramming problem with interval-valued objective function and delved into
several duality results under convexity assumptions. The results established
in the paper were exemplified by an example.
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