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Evaluation of iterative methods for
solving nonlinear scalar equations
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Abstract
This study is aimed at performing a comprehensive numerical evalua-

tion of the iterative solution techniques without memory for solving non-
linear scalar equations with simple real roots, in order to specify the most
efficient and applicable methods for practical purposes. In this regard,
the capabilities of the methods for applicable purposes are be evaluated,
in which the ability of the methods to solve different types of nonlinear
equations is be studied. First, 26 different iterative methods with the best
performance are reviewed. These methods are selected based on performing
more than 46000 analyses on 166 different available nonlinear solvers. For
the easier application of the techniques, consistent mathematical notation
is employed to present reviewed approaches. After presenting the diverse
methodologies suggested for solving nonlinear equations, the performances
of the reviewed methods are evaluated by solving 28 different nonlinear
equations. The utilized test functions, which are selected from the re-
viewed research works, are solved by all schemes and by assuming different
initial guesses. To select the initial guesses, endpoints of five neighboring
intervals with different sizes around the root of test functions are used.
Therefore, each problem is solved by ten different starting points. In order
to calculate novel computational efficiency indices and rank them accu-
rately, the results of the obtained solutions are used. These data include
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the number of iterations, number of function evaluations, and convergence
times. In addition, the successful runs for each process are used to rank
the evaluated schemes. Although, in general, the choice of the method de-
pends on the problem in practice, but in practical applications, especially
in engineering, changing the solution method for different problems is not
feasible all the time, and accordingly, the findings of the present study can
be used as a guide to specify the fastest and most appropriate solution
technique for solving nonlinear problems.

AMS subject classifications (2020): Primary 45D05; Secondary 42C10, 65G99.

Keywords: Nonlinear scalar equations; Iterative method; Efficiency index;
Order of convergence; Initial guess; Function evaluation.

1 Introduction

Most of the practical problems in engineering and other fields of science can
be modeled by mathematical functions, which are mostly nonlinear. For
instance, in engineering applications, nonlinear structural analysis, or com-
putation of three-dimensional stresses require to solve nonlinear equations.
Another example of the case in civil engineering practice that requires solv-
ing a nonlinear scalar equation is the computation of the torsional-flexural
buckling load of steel columns. Similarly, the final step in the mathemat-
ical modeling and formulation of many other fields of science is to solve a
nonlinear equation. Therefore, a reliable and applicable method for solving
nonlinear equations is a necessary tool for scientific research. This device is
utilized in performing different science-based activities, such as analysis and
design. This need was felt many years ago and consequently, various solu-
tion methods are proposed for solving nonlinear equations. From the early
works in this field until now, many different schemes are proposed. Some of
these techniques are analytical approaches that are limited to special cases of
nonlinear equations, but most of them are numerical iterative schemes. An
iterative solution technique, as its name indicates, computes the root of a
nonlinear function through several iteration cycles by an initial guess. Most
of these methods are modifications of the basic earlier techniques, like the
Newton method.

The different iterative approach has different convergence order. Order
of convergence is an important mathematical quantity that indicates the effi-
ciency of the solver. However, despite this mathematical standpoint, from the
practical view, a method with a higher order of convergence is not necessarily
the best choice, and the performance of a solver depends on many different
factors. On the other hand, the large number of existing iterative methods
makes it more difficult to choose a suitable technique for a special applicable
problem. Therefore, the main motivation of this study is to provide a clear
understanding of the performance of many of these iterative schemes. For
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this purpose, it is attempted to review many of the basic and well-known as
well as newly proposed solution approaches in the first part of this study.
Some big questions arise when facing this large number of iterative nonlinear
solvers: Which method should be used for solving a given problem? Which
approach is the fastest? Which one requires the least computational effort?
Do they necessarily converge to the desired response?

The answer to these questions is not simple and certain and depends on
many factors, including the problem at hand, the utilized initial guess, num-
ber of floating-point arithmetic, and the termination criterion. However, it
is assured that no method can solve all the possible problems. The inves-
tigators who proposed the iterative solution schemes performed convergence
analysis to demonstrate the ability of their methods to find the root of non-
linear functions. Therefore, they proposed a convergence order that, from
the mathematical point of view, is an indication of the solution speed. In
general, a solution method with a higher convergence order should converge
faster to the response. However, in practice, the situation is not as easy as
it seems. There is no guarantee that a certain solver can find the roots of
a given nonlinear problem. Moreover, it is widely known that higher-order
solvers converge faster when the initial guess is close enough to the root. In
other words, increasing the order of convergence results in a smaller region
of attraction for a certain number of iterations. Therefore, in practical prob-
lems where the initial guess may fall in a wide range around the response, a
higher-order method is not necessarily superior. In cases, when the selected
starting point is far from the root of the function, the higher order of con-
vergence may lead to the inability of the method to find the response within
a permissible number of iterations. Even in some cases, the method may
diverge.

To the authors’ best knowledge, despite a large number of available iter-
ative methods for solving nonlinear scalar equations, there are very limited
reviews about these techniques. One of the limited reviews in this field is
performed by Babajee and Dauhoo [1]. They investigated the performance
of the variants of the Newton method with cubic convergence. They also
extended some of these methods to multivariate cases. In another similar
study, Varona [27] performed a numerical and graphical comparison between
some of the well-known solution methods. However, Varona utilized many
different criteria for the evaluation of the solution methods, but his research
work is mostly limited to traditional and well-known techniques, and their
performance is evaluated by extensive applications during the past decades.
Two more recent valuable review studies have also been performed by Cătinaş
[2, 3]. Occasionally various researchers propose the same methods indepen-
dently. This is due to the fact that there are so many iterative techniques
available, and this quantity increases very fast every year. Therefore, there is
a great need for studies like the present paper to provide useful information
for the researchers in this regard to prevent the proposition of the same for-
mulations by different investigators. Another merit of the present research
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work is to study the effect of the initial guess on the performance of the
methods and also evaluate the practical efficiency of different approaches.

The question of which solver is better remained unanswered. Due to
the variable nature of different nonlinear problems in the various fields of
science and application, giving a definite answer to this question is impos-
sible. This study, it is comprehensively tried to provide a clearer image of
the performance of a large number of iterative solution methods without
memory. For this purpose, 26 different solution techniques (selected as the
best-performing methods among 166 reviewed solvers which are not reported
in this manuscript) are used to solve 28 different nonlinear functions by using
ten diverse initial guesses for each function. Different initial guesses are used,
to investigate their effect of them on the performance of the solution methods.
It is worth mentioning that this important effect has been neglected in much
of the previous research in this field. To compare the abilities of discussed
approaches, a new computational efficiency index is proposed and utilized
against the others which were used previously. All solvers are ranked based
on the results of presented extensive numerical evaluations. The suggested
index has a qualitative-quantitative base and can successfully rank the solu-
tion schemes. To indicate the most applicable solver, the results of the new
index are compared with those attained by the traditional and well-known
efficiency indices. Findings show that the suggested way can better distin-
guish the performance and efficiency of the nonlinear solvers for practical
applications. Finally, according to the obtained results, the reviewed meth-
ods are ranked to specify the ones which are more efficient and applicable to
be utilized, especially, in engineering practice.

2 Review of the available iterative solvers

In this section, various nonlinear solvers are reviewed briefly and presented
in historical order. These methods fall in the category of iterative methods
without memory; that is, only the results of the current iteration would
be used to determine the next estimation. The iterative formula of each
technique is provided for the n + 1th estimation of the root, assuming that
the nth evaluation is available. The process commences by using an initial
guess, x0. Here, f(x) indicate the nonlinear function needs to be solved.
The reviewed methods are presented in Table 1, using uniform mathematical
notations.
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Table 1: Iterative solution methods

No Method Iterative Formula
1 Newton xn+1 = xn − f(xn)

f ′(xn)

2 Ostrowski [22] xn+1 = yn − f(xn)
f(xn)−2f(yn)

f(yn)
f ′(xn)

3 Traub–Ostrowski [26] xn+1 = xn − f(xn)
f ′(xn)

(
f(xn)−f(yn)
f(xn)−2f(yn)

)
4 Jarrat relation [12] xn+1 = xn − 1

2
f(xn)
f ′(xn)

+ f(xn)
f ′(xn)−3f ′(ỹn)

5 4th order Newton [20] xn+1 = yn − f(yn)
f ′(yn)

6 Three step Newton [4] xn+1 = x∗
n − f(x∗

n)
f ′(xn)

x∗
n = yn − f(yn)

f ′(xn)

7 Hansen and Patrick [11] xn+1 = xn − mf(xn)

(m+1
2m )f ′(xn)− f(xn)f′′(xn)

2f′(xn)

8 King method [13] xn+1 = yn − f(yn)
f ′(xn)

f(xn)
f(xn)−2f(yn)

9 Kung–Traub [15] xn+1 = yn − f(xn)f(yn)

[f(xn)−f(yn)]
2

f(xn)
f ′(xn)

10 Potra and Ptak [23] xn+1 = xn − f(xn)+f(yn)
f ′(xn)

11 Halley [8] xn+1 = xn − f(xn)

f ′(xn)− 1
2

f′′(xn)f(xn)

f′(xn)

12 Dong method [6] xn+1 = x∗
n −

m
m+1 f(xn)

(1+ 1
m )

m
f ′(x∗

n)−f ′(xn)

x∗
n = xn − m

m+1
f(xn)
f ′(xn)

13 Osada [21] xn+1 = xn − 1
2m (m+ 1) f(xn)

f ′(xn)

+ 1
2 (m− 1)

2 f ′(xn)
f ′′(xn)

14 Grau and Barrero method [9] xn+1 = x∗
n − xn−yn

f(xn)−2f(yn)
f (x∗

n)

x∗
n = yn − xn−yn

f(xn)−2f(yn)
f (yn)

15 Noor, 1st method [19] xn+1 = x∗
n − f(x∗

n)
f ′(x∗

n)

x∗
n = xn − 2f(xn)

f ′(xn)±
√

f ′2(xn)−4f3(xn)

16 Noor, 2nd method [16] xn+1 = xn + 4 (x∗
n − xn)

f(xn)
3f(xn)−2f(x∗

n)

x∗
n = xn − 1

2
2f(xn)

f ′(xn)±
√

f ′2(xn)+4f2(xn)

17 Nedzhibov method [16] xn+1 = xn − 1
2

f(xn)
f ′(xn)

(
3f ′(yn)+f ′(xn)
3f ′(yn)−f ′(xn)

)
18 Kou et al. method [14] xn+1 = xn −

[
1− 3

4

(f ′ỹn)−f ′(xn))(7f ′(ỹn)+f ′(xn))
(3f ′(ỹn)+5f ′(xn))(2f ′(ỹn)−f ′(xn))

]
f(xn)
f ′(xn)

19 Sharma and Guha [25] xn+1 = x∗
n − f(xn)+f(yn)

f(xn)−f(yn)
f(x∗

n)
f ′(xn)

x∗
n = yn − f(xn)

f(xn)−2f(yn)
f(yn)
f ′(xn)

20 Yun [28] xn+1 = yn − f(yn)
f ′(xn)

− f(x∗
n)

f ′(xn)

x∗
n = yn − f(yn)

f ′(xn)

21 Fernandez and Aquino method [7] xn+1 = xn + f2(xn)
(f(yn)−f(xn))f ′(xn)

− f2(yn)f(xn)(f(yn)−3f(xn))

(f(yn)−f(xn))
2(f(yn)−2f(xn))f ′(xn)

22 Noor, 3rd method [18] xn+1 = yn − f(yn)

f ′( xn+yn
2 )

23 Noor, 4th method [18] xn+1 = x∗
n − f(x∗

n)

f ′
(

xn+x∗
n

2

)
x∗
n = yn − f(yn)

f ′( xn+yn
2 )

24 Noor, 5th method [18] xn+1 = x∗
n − 4f(x∗

n)

f ′(xn)+3f ′
(

xn+2x∗
n

3

)
x∗
n = yn − 4f(yn)

f ′(xn)+3f ′( xn+2yn
3 )

25 Shah and Noor 1th method [24] xn+1 = x∗
n − 2f(x∗

n)f
′(xn)

2f ′2(xn)−f(xn)f ′′(xn)

x∗
n = xn − 2f(xn)f

′(xn)
2f ′2(xn)−f(xn)f ′′(xn)

26 Shah and Noor, 2nd method [24] xn+1 = x∗
n − 2f(x∗

n)f
′(xn)

2f ′2(xn)−f(xn)f ′′(xn)

x∗
n = x∗∗

n − 2f(x∗∗
n )f ′(xn)

2f ′2(xn)−f(xn)f ′′(xn)

x∗∗
n = xn − 2f(xn)f

′(xn)
2f ′2(xn)−f(xn)f ′′(xn)

In this table, m stands for the multiplicity of the roots. In addition, it
should be noted that in the relations including ± sign in the denominator, the
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sign should be selected so as to maximize absolute value of the denominator.
The utilized intermediate variables used in the above-mentioned relations are
defined as follows:

yn = xn − f (xn)

f ′ (xn)
, (1)

ỹn = xn − 2

3

f (xn)

f ′ (xn)
, (2)

yn = xn − 1

2

f (xn)

f ′ (xn)
. (3)

3 Efficiency and performance evaluations

The order of convergence is an important mathematical feature of a nonlinear
solver, and the higher order of convergence is an indicator of the better
performance of the methods from a mathematical standpoint. However, it
is well known that increasing the order of convergence reduces the size of
attraction intervals of Newton-type solution methods. The attraction interval
is an interval around the root of the function that if the initial guess falls in
this interval, the required iteration for converging to the root would be less
than a specific number. In the higher-order methods, it is necessary to utilize
initial guesses that are closer to the root of the function, which is practically
difficult, because, in some cases, the range of possible responses is not known
beforehand.

The comparison between different methods is not an easy task and de-
pends on many factors, mostly the context in which the method is going to be
used. However, the concentration of this study is on scalar nonlinear equa-
tions with real simple roots. In this regard, previous investigators proposed
some efficiency indices for this purpose. The most well-known efficiency index
is the one proposed by Traub [22]. Many of the reviewed researches utilized
this index, which is defined by equation (4), to evaluate the performance of
the proposed techniques:

EI = p
1
q . (4)

In this relation, p is the convergence order and q is the number of function
evaluations per step (NFE). There is also another common index, which is
called the informational index, and is defined as follows:

EII =
p

q
. (5)

In both indices, the higher value of the index is considered a sign of better
performance. This is a widely accepted concept by mathematicians. However,
from the practical point of view, for instance, for an engineer who aims to
solve a nonlinear equation to find the response to a practical design problem,
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it raises some questions. For example, two different methods with the same
order of convergence and the total number of function evaluations have the
same values of efficiency indices, but it is obvious that their performances
are not necessarily similar. To show this complexity, the efficiency indices for
the evaluated methods are calculated by the authors and shown in Table 2.
These results present the convergence order and NFE, as well as, the values
of the two introduced efficiency indices.

Table 2: Efficiency indices of the solution methods

No Function Name Convergence
order

NFE Informational
Index( P

q )
Efficiency
Index(P

1
q )

1 Newton 2 2 1.000 1.414
2 Ostrowski [22] 4 3 1.333 1.587
3 Traub-Ostrowski

[26]
4 3 1.333 1.587

4 Jarrat relation [12] 4 3 1.333 1.587
5 4th order Newton

[20]
4 4 1.000 1.414

6 Three step Newton
[4]

4 4 1.000 1.414

7 Hansen and Patrick
[11]

3 3 1.333 1.442

8 King method [13] 4 3 1.333 1.587
9 Kung–Traub [15] 8 3 2.667 2.000

10 Potra and Ptak [23] 3 3 1.000 1.442
11 Halley [8] 2 3 0.667 1.260
12 Dong method [6] 2 2 1.000 1.414
13 Osada [21] 3 3 1.000 1.442
14 Grau and Barrero

method [9]
6 4 1.500 1.565

15 Noor, 1st method
[19]

4 4 1.000 1.414

16 Noor, 2nd method
[19]

4 3 1.333 1.587

17 Nedzhibov method
[16]

3 3 1.000 1.442

18 Kou et al. method
[14]

4 3 1.333 1.587

19 Sharma and Guha
[25]

6 4 1.500 1.565

20 Yun [28] 4 3 1.333 1.587
21 Fernandez and

Aquino method [7]
4 3 1.333 1.587

22 Noor, 3rd method
[18]

3 4 0.750 1.316

23 Noor, 4th method
[18]

3 4 0.750 1.316

24 Noor, 5th method
[18]

3 4 0.750 1.316

25 Shah and Noor 1th
method [24]

4 4 1.000 1.414

26 Shah and Noor, 2nd
method [24]

5 5 1.000 1.380

It is concluded from this comprehensive study that many of the available
methods have the same value as the efficiency indices, but as will be revealed
in the coming sections, the solved problems show very different performances
for these techniques. Moreover, the effect of the starting point on the per-
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formance of a solution method is not included in these indices. Accordingly,
it seems that these indices are not sufficient to judge about the applicability
of them in solving different types of applied problems, such as engineering
problems.

In most of the reviewed research, after the proposition of the method,
mathematical proofs about the order of convergence of the suggested schemes
are provided. In some of these studies, numerical evaluations were performed,
in which; a limited number of test functions were solved, and the obtained
results were compared with some other nonlinear solution techniques. The
number of iterations, the total number of function evaluations, solution time,
computational order of convergence, residual error of the function value, and
difference of the last two estimations were the parameters, which were usu-
ally recorded in the numerical evaluations. Some of the available solution
methods are able to calculate roots of nonlinear functions with very high
accuracy, for example 10−100. However, in practical applications, such high
accuracy is not required. Instead, a robust method should be able to com-
pute the response of different types of nonlinear functions within the least
possible number of iterations. Moreover, the exact ranges of the responses
for some practical purposes, such as nonlinear structural problems, are not
known beforehand, or it is difficult to estimate such ranges in highly non-
linear problems in structural engineering. Therefore, a robust method must
be able to solve a problem with a random initial guess. Therefore, some
investigators attempted to study the effects of different initial guesses on
the performance of the suggested methods by using assessing the basin of
attractions [27, 5, 17, 10].

For the applicable purposes, a method is considered desirable if it can solve
different types of nonlinear equations and by using diverse initial guesses.
Moreover, a powerful solution technique requires a fewer number of func-
tion evaluations and computational time. Accordingly, to rank the reviewed
methods and specify the most efficient techniques for applicable purposes, a
thorough numerical evaluation program is necessary. Such a responsibility is
defined and undertaken in the following of this study.

4 Test functions

To study the performance of these methods, 28 different scalar nonlinear
functions are solved. These test equations, which are selected from the re-
viewed research works, are listed in Table 3. All of these nonlinear equa-
tions are famous benchmark problems. As was mentioned previously, the
exact ranges of the responses for some practical purposes, such as nonlin-
ear structural problems, are not known beforehand, or it is difficult to es-
timate such ranges in highly nonlinear problems in structural engineering.
Therefore, a robust process must be able to find the response even in the
cases that the initial guess is not close to the root. To investigate accu-
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rately the effect of the selected starting point on the performance of the
approaches, each test function is solved ten times by using ten different ini-
tial guesses. These starting points are selected as the endpoints of a sym-
metrical interval around the roots of the functions. Five intervals, namely,
[x∗ − 0.1, x∗ + 0.1], [x∗ − 1, x∗ + 1], [x∗ − 10, x∗ + 10], [x∗ − 100, x∗ + 100]
and [x∗ − 1000, x∗ + 1000] are selected. They are named very small, small,
medium, large, and very large neighboring intervals. As mentioned in Table
3, x∗ represents the root of the function.

Table 3: Test functions

No. Test Functions x∗

1 f (x) = x3 + 4x2 − 15 1.63198
2 f (x) = xex

2 − sin2 (x) + 3cos (x) + 5 -1.20764
3 f (x) = cos (x) − x 0.73908
4 f (x) = x3 + 1 -1.00000
5 f (x) = 2xe−5 + 1− 2e−5x 0.13826
6 f (x) = 2xe−10 + 1− 2e−10x 0.06931
7 f (x) = sin−1

(
x2 − 1

)
− x

2
+ 1 0.59481

8 f (x) = x5 + 23x− 6 0.26082
9 f (x) = x3 + 4x2 − 10 1.36500
10 f (x) = ln

(
x2 + x+ 2

)
− x+ 1 4.15200

11 f (x) = e(−x2+x+2) − 1 -1.00000
12 f (x) = x5 + x4 + 4x2 − 15 1.34700
13 f (x) = x5 + x− 10000 6.30800
14 f (x) = (x− 1)3 − 1 2.00000
15 f (x) = x3 − 10 2.15440
16 f (x) = x3 − 2x− 5 2.09450
17 f (x) = (x− 1)3 − 2 2.25992
18 f (x) = e(x

2+7x−30) − 1 3.00000
19 f (x) = (x+ 2) ex − 1 -0.44280
20 x3 − e−x 0.77290
21 f (x) = e(−x2+x+2) − cos (x+ 1) + x3 + 1 -1.0000
22 f (x) = x3 + 4x2 − 25 2.03500
23 f (x) = sin2 (x) + x 0.00000
24 f (x) = tan−1(x) − 1 1.55740
25 f (x) = x3 − cos (x) + 2 -1.17250
26 f (x) = x3 + 4x2 + 8x+ 8 -2.00000
27 f (x) = x2 − (1− x)5 0.34595
28 f (x) = xlog (x) −1.2 2.74064

It must be noted that due to the described approach for the selection
of the starting points of the iterative process, the nonlinear functions, with
only one root, are selected for this study. The number of iterations, the total
number of function evaluations, and convergence time are recorded for each
run that reached the root within the admissible number of iterations. In
this study, the permissible number of iterations is assumed to be 1000. It
is noteworthy that the admissible tolerance for the convergence is selected
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as equal to 10−10. This value is mostly more than the necessary value for
applicable engineering problems.

5 Proposed efficiency index

In addition to the ability to solve different nonlinear problems for dissimilar
initial guesses, a powerful solution technique should be able to compute the
response by utilizing a lesser number of function evaluations or computation
time. Since the performance of a method for different types of nonlinear
problems is not uniform, it is difficult to select more efficient methods di-
rectly based on the recorded parameters for each test function, including
convergence time and the total number of function evaluations. Compre-
hensive numerical experiences inform the authors that more sophisticated
approaches are necessary. In this study, a computational efficiency index in
the following form is suggested:

EIc = α+ β + 70

(
imax − i

imax − imin

)
, (6)

where EIc is the computational index that can be computed for any of the
recorded values, including convergence time or total number of function eval-
uations. The parameters α and β are calculated by the following relations:

α =

{
0 if the method diverged,
10 if the solver converged to the response,

(7)

β =


0 if the method didn’t converge within the admissible

number of iterations,
20 if the method converged within the admissible

number of iterations.

(8)

In equation (6), i stands for the selected parameter, which can be the
number of function evaluations or the solution time. For a given starting
point, imax and imin are the maximum and the minimum values of the se-
lected parameter for the different solution methods. Because the number of
the maximum allowable iterations is equal to 1000, the maximum and min-
imums are specified for the methods that have converged to the response in
the admissible number of iterations. Therefore, the third term in the right-
hand side of equation (6) is equal to 0 for the approaches that have diverged
or cannot compute the response within the permissible iterations. It must
be noted that the mentioned values for different parameters in the suggested
efficiency index are found and proposed by the authors. In fact, the computa-
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tional efficiency index and the related parameters are selected in the process
of extensive numerical experiences as a tool for providing meaningful results.
These are not based on any special mathematical concept. For various solu-
tion techniques, these indices are computed in a test function and for each
initial guess. Then, the mean value of each neighboring interval is calculated
by averaging the values of the initial guesses corresponding to the start and
end point of the intervals. Finally, the averages of the derived values for all
the test functions are computed.

It is evident that the suggested index, which varies between 0 and 100, has
three different phases. These phases are specified by four boundary values
of 0, 10, 30, and 100. The average efficiency index equal to 0 indicates
that the solution method is not able to solve the nonlinear problems at all.
Obviously, it is an extreme case that will not happen for any of the available
solution techniques in the average results, because a solver, no matter how
weak, is able to solve some type of nonlinear problems. The value of 10
demonstrates that a solution technique can converge to the response of the
nonlinear problem but with iterations more than the admissible number.
Therefore, if the average computational efficiency index for a solution method
in a given neighboring interval falls between 0 and 10, it is an indication that
the technique is probably not able to solve the problem on the condition that
the initial guess is close to the endpoints of that interval. This probability is
higher if the value is closer to 0. It must be noted that the term “probably” in
the previous statement is of extreme importance because a solution method
does not demonstrate the same performance for different types of nonlinear
functions. On the other hand, the calculated indices in this study are derived
based on solving a limited number of test functions. Therefore, it is neither
possible nor logical to make a “certain” statement.

The next boundary value is 30, which characterizes the borderline be-
tween the probability of convergence to the response with fewer and more
iterations than the permissible number of iterations. Therefore, the value of
the efficiency index between 10 and 30 is the sign of the ability of the solu-
tion technique to converge to the root of the nonlinear function for a given
neighboring interval. However, the number of required iterations is expected
to be more than the admissible iterations. The values closer to 10 indicate a
lower probability of convergence. Hence, the methods which have efficiency
indices in the range of (10, 30) are not numerically efficient, but there is an
acceptable probability that they are able to solve nonlinear problems.

Finally, the last boundary value is 100, which shows that a solution
method is the most efficient one, among the evaluated solution techniques.
The values of efficiency indices between 30 and 100 show that there is a
high probability of solving diverse nonlinear problems by the corresponding
solution technique for the given neighboring. A technique is deemed more
efficient if its average efficiency indices are closer to 100. It must be stated
that the mentioned values are selected by the authors to provide a clear im-
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age of the performance of the methods. Obviously, it is possible to choose
different boundaries for the three phases of the proposed index.

6 The obtained results

The test functions presented in Table 2 are solved by the nonlinear solu-
tion methods listed in Table 1, and the previously mentioned parameters are
recorded for each initial guess. To shorten the paper, the recorded values for
each problem are not included in the text. The recorded values are used to
calculate the performance criteria which were introduced in the previous sec-
tion. Table 4 presents the total number of failed runs, as well as, the success
ratio for each method.

Table 4: The success ratio of different solution methods

Rank Function Name Number of
failed runs

Success
ratio (%)

1 Halley 32 88.57
2 Traub–Ostrowski 33 88.21
2 Hansen and Patrick 33 88.21
3 Ostrowski 34 87.86
3 King method 34 87.86
3 Shah and Noor, 1st method 36 87.14
4 Shah and Noor, 2nd method 36 87.14
4 Grau and Barrero method 37 86.79
5 Noor, 2nd method 37 86.79
5 4th order Newton 38 86.43
6 Newton 39 86.07
7 Kou et al. method 39 86.07
7 Noor, 4th method 39 86.07
7 Jarrat relation 40 85.71
8 Osada 40 85.71
8 Noor, 5th method 40 85.71
8 Three step Newton method 41 85.36
9 Kung-Traub 41 85.36
9 Dong method 41 85.36
9 Yun 41 85.36
9 Noor, 3rd method 41 85.36
9 Potra and Ptak 42 85.00
10 Noor, 1st method 42 85.00
10 Nedzhibov method 42 85.00
10 Sharma and Guha 42 85.00
10 Fernandez and Aquino method 42 85.00

According to the total number of function evaluations, the average com-
putational efficiency indices are listed in Table 5. These outcomes include
separate results for each neighboring interval, and an overall average.
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Table 5: The average computational efficiency indices based on the total number of
function evaluations for different solution methods

No Function
Name

Neighboring interval

[x∗ −
1000, x∗ +

1000]

[x∗ −
100, x∗ +

100]

[x∗ −
10, x∗ +

10]

[x∗ −
1, x∗ + 1]

[x∗ −
0.1, x∗ +

0.1]

Average

1 Newton 73.101 76.014 83.273 87.158 96.147 83.139
2 Ostrowski

[22]
73.071 77.045 88.475 89.494 96.845 84.986

3 Traub–
Ostrowski
[26]

71.914 77.424 89.328 89.494 96.845 85.001

4 Jarrat rela-
tion [12]

71.999 75.304 83.486 87.640 96.845 83.055

5 4th order
Newton [20]

71.777 74.519 81.233 86.306 95.763 81.919

6 Three step
Newton [4]

71.226 71.920 81.602 80.263 93.961 79.794

7 Hansen and
Patrick [11]

70.477 74.770 91.034 92.024 96.400 84.941

8 King
method
[13]

73.071 77.045 88.475 89.494 96.845 84.986

9 Kung–
Traub [15]

71.784 73.546 83.822 87.438 96.822 82.683

10 Potra and
Ptak [23]

71.396 74.216 81.595 82.334 93.190 80.546

11 Halley [8] 70.503 73.860 92.453 92.457 96.845 85.223
12 Dong

method
[6]

71.204 75.192 84.251 90.540 97.812 83.800

13 Osada [21] 68.974 71.690 80.842 84.379 94.221 80.021
14 Grau and

Barrero
method [9]

73.621 74.829 84.297 87.235 96.235 83.243

15 Noor, 1st
method [19]

66.743 67.428 80.845 88.717 90.966 78.940

16 Noor, 2nd
method [19]

28.192 60.246 86.995 86.501 88.122 70.011

17 Nedzhibov
method [16]

70.384 73.727 83.486 87.640 96.845 82.417

18 Kou et al.
method [14]

72.420 78.026 85.926 86.146 96.863 83.876

19 Sharma and
Guha [25]

71.552 75.038 82.283 83.326 96.227 81.685

20 Yun [28] 72.189 73.530 82.751 80.935 95.024 80.886
21 Fernandez

and Aquino
method [7]

72.002 73.790 81.968 87.158 96.488 82.281

22 Noor, 3rd
method [18]

72.489 74.307 82.175 81.684 93.060 80.743

23 Noor, 4th
method [18]

73.215 75.330 82.800 84.895 95.768 82.402

24 Noor, 5th
method [18]

71.891 75.321 82.977 84.743 95.763 82.139

25 Shah and
Noor, 1th
method [24]

68.756 73.769 85.590 90.221 95.794 82.826

26 Shah and
Noor, 2nd
method [24]

66.049 70.799 88.613 89.720 94.820 82.000
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Finally, the average computational efficiency indices based on the conver-
gence time are presented in Table 6. The attained results will be discussed
in the next section.

7 Discussion about the results

The first interesting finding according to the calculated success ratio is that
the Halley approach, which is one of the basic solution techniques, performs
better than all the other schemes, including those which are proposed newly
and those which have a higher order of convergence. The other remarkable
observation is the outstanding performance of the classical Newton method,
which is ranked 6, among 26 reviewed procedures. Its success ratio is only
about 2 percent less than the Halley technique! Based on the findings, most
of the traditional solution techniques are ranked among the top solvers, ac-
cording to the success ratio, while many of the recently proposed iterative
approaches perform poorly.

The derived results for efficiency indices in Tables 5 and 6 provide the
opportunity to study the effect of the starting point on the performance of
reviewed methods. Before presenting a further discussion about the attained
results, it seems necessary to rank the reviewed method based on the obtained
outcomes. For the criteria of the success ratio, the presented results in Table
4 are ranked in descending order. As was expected, most of the reviewed
techniques have computational efficiency indices higher than 90 for a very
small neighboring interval. This is a sign of fast convergence because the
starting point of the iterative process is very close to the response. The
general trend of efficiency index variation shows that the efficiency of the
methods reduces by increasing the distance of the initial guess from the root
of the test functions. It is interesting to note that the traditional solution
techniques, such as Newton and Traub–Ostrowski perform as well as the
newly proposed higher-order schemes and are even better than many of them.
As it was expected, the efficiency indices of convergence time and the total
number of function evaluations are compatible with each other.

According to the computed indices, the Halley technique is one of the
best approaches. An ironic and astonishing finding is that according to the
three considered criteria, many of the basic and traditional nonlinear solu-
tion techniques, such as, Halley, Hansen and Patrick, Ostrowski, Newton,
Traub–Ostrowski, and King are among the best solvers. Obviously more de-
tailed discussion is possible about the performance of the reviewed methods
according to the results of the comprehensive numerical evaluation under-
taken in this study. For example, it is possible to study the effect of the type
of nonlinear functions on the performance of the methods. It is noteworthy
that this study, and the presented results can be useful means for the future
investigator in the field of nonlinear solution techniques, as well as, the scien-
tists and engineers who seek to select a powerful method for solving practical
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Table 6: The average computational efficiency indices based on convergence time for
different solution methods

No Function
Name

Neighboring interval

[x∗ −
1000, x∗ +

1000]

x∗ −
100, x∗ +

100]

[x∗ −
10, x∗ +

10]

[x∗ −
1, x∗ +

1]

[x∗ −
0.1, x∗ +

0.1]

Average

1 Newton 74.451 78.192 84.341 89.797 98.603 85.077
2 Ostrowski

[22]
73.344 77.217 88.019 90.528 97.874 85.396

3 Traub-
Ostrowski
[26]

72.058 76.861 87.860 89.844 97.132 84.751

4 Jarrat rela-
tion [12]

72.668 76.066 83.829 88.956 97.912 83.886

5 4th order
Newton [20]

73.845 77.997 83.910 90.135 99.157 85.009

6 Three step
Newton [4]

73.439 75.250 83.178 84.405 96.630 82.580

7 Hansen and
Patrick [11]

71.501 76.920 92.294 94.485 98.558 86.751

8 King method
[13]

73.139 77.217 87.849 90.193 97.622 85.204

9 Kung–Traub
[15]

72.074 72.994 82.945 87.763 96.997 82.555

10 Potra and
Ptak [23]

73.066 75.573 82.470 84.502 94.799 82.082

11 Halley [8] 71.503 76.377 93.845 94.867 98.964 87.111
12 Dong method

[6]
71.666 75.657 84.771 91.766 98.810 84.534

13 Osada [21] 70.783 75.918 83.053 88.715 97.950 83.284
14 Grau and

Barrero
method [9]

74.486 76.892 85.450 89.366 98.458 84.930

15 Noor, 1st
method [19]

68.174 68.515 80.645 90.791 92.626 80.150

16 Noor, 2nd
method [19]

28.416 53.152 83.386 84.333 86.913 67.240

17 Nedzhibov
method [16]

71.299 75.571 84.629 89.877 98.974 84.070

18 Kou et al.
method [14]

73.062 79.502 86.988 88.036 98.742 85.266

19 Sharma and
Guha [25]

71.808 74.764 81.532 83.318 96.303 81.545

20 Yun [28] 73.311 74.854 83.280 83.158 96.527 82.226
21 Fernandez

and Aquino
method [7]

71.627 71.338 79.678 84.718 94.360 80.344

22 Noor, 3rd
method [18]

74.152 77.893 84.388 85.932 97.004 83.874

23 Noor, 4th
method [18]

74.284 77.414 83.957 87.609 98.373 84.327

24 Noor, 5th
method [18]

72.752 77.210 84.164 87.422 98.264 83.963

25 Shah and
Noor, 1th
method [24]

69.782 75.328 86.200 91.905 97.637 84.170

26 Shah and
Noor, 2nd
method [24]

66.809 71.563 88.311 90.772 96.203 82.732
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nonlinear equations. In order to evaluate the performance of future solution
techniques in a more realistic and applicable manner, the proposed efficiency
index can be used along with the previous indices.

8 Conclusion

In this study, 26 different iterative nonlinear solution techniques for solving
nonlinear scalar equations were reviewed and evaluated numerically. For
this purpose, 28 different nonlinear problems, which were selected from a
review of the previous studies in this field, were solved by the discussed
techniques. To study the effects of the starting point on the performance of
solvers, each problem was solved by assuming different initial guesses. The
selected starting points for the iterative process were the endpoints of the
symmetrical neighboring interval around the root of the solved functions. In
each run of a solver, the recorded parameters include the total number of
function evaluations and convergence time.

To compare the mentioned methods and rank them according to their
performances, three different criteria, namely, success ratio, computational
efficiency index of the total number of function evaluations, and also the so-
lution time’s efficiency index were defined. The first criterion was a simple
ratio of the successful runs to the total number of runs for each scheme. The
other two criteria were compared based on a new computational efficiency
index, which was suggested by the authors in order to provide a clear pic-
ture of the procedure performances. The reason for proposing this new index
was the inability of the classical efficiency indices, such as the well-known
Traub index, in distinguishing between the performance of different solution
methods that have the same order of convergence and the number of function
evaluations per step. The solver is considered more efficient if its index is
closer to 100. The comprehensive obtained results showed that the higher or-
der of convergence is not necessarily a sign of better performance. Moreover,
it is observed that many of the most powerful solution techniques are among
the old and traditional approaches, such as Halley, Hansen and Patrick, Os-
trowski, and even Newton. Astonishingly, it is found that some of the newly
presented solvers are not as operational as the old ones. According to the
performances of 26 different iterative techniques, the first four effective pro-
cedures for solving nonlinear equations can be ranked as follows: 1. Halley,
2. Traub–Ostrowski, 3. Ostrowski 4. Hansen and Patrick.
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