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Abstract

The complexity of solving differential equations in real-world applica-
tions motivates researchers to extend numerical methods. Among different
numerical and semi-analytical methods for solving initial and boundary
value problems, the differential transform method (DTM) has received no-
table attention. It has developed and experienced generalizations for im-
plementing other types of mathematical problems such as optimal control,
calculus of variations, and integral equations. This review aims to provide
insight into DTM. History, theoretical base, applications, computational
aspects, and its revisions are reviewed. The present study helps to un-
derstand the theory, capabilities, and features of the DTM, as well as its
drawbacks and limitations.
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1 Introduction

There are many practical problems, which are formulated as boundary value
problems (BVPs). They have appeared, for example, in studying the bound-
ary layer flow [61], the squeezing nanofluids [62], the formation of rogue waves
in the ocean [20], electrical heating of conductors [26], and modeling the be-
havior of induction motors [6]. In addition, other types of important prob-
lems, such as calculus of variations or optimal control problems, are reduced
to a set of BVPs or initial value problems (IVPs). The multitude of such
applications and the complexity of solving BVPs motivated the researcher to
develop solving methods. Solving strategy has three categories as follows:
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• Analytical methods: Methods that find the exact or analytical solu-
tion of the BVPs as a function or closed-form are known as analytical
methods. Direct integration [44], method of images [44], separation
of variables, and Green’s function method [37] are some examples of
analytical methods. Despite exact results, the analytical methods are
usually restricted to simple or special forms of BVPs. Moreover, they
require manual calculations that make their implementation on com-
puters difficult.

• Numerical algorithms: Numerical methods are suitable for computeri-
zation while their results contain errors and convergences issues should
be checked. These types of methods are based on the numerical approxi-
mation of derivatives like finite difference [51] and shooting method [52].
Some of the numerical methods have also motivated from the physics
of the problem, such as lattice Boltzmann [83].

• Semi-analytical methods: When the result of a method is a function or
a sequence of functions converging to the exact solution, the method is
semi-analytical. Collocation finite element [52], Galerkin finite element
[52], Adomian decomposition [22], and iterative approximations [55] are
some examples of semi-analytical methods. They have the advantage
of finding function answers and computer implementation while they
have errors in results.

Among semi-analytical methods, the differential transform method (DTM)
is one of the most popular and practical algorithms. This method was intro-
duced by Zhou [95] in 1986 for solving IVPs in the field of electrical circuits.
The method is based on the calculation of the coefficients of the Taylor se-
ries of the problem’s solution. The method has been developed for solving
BVPs in one and more dimensions, integral equations, calculus of variations,
and optimal control. Especially in the last decade, it was used for analyzing
several physical phenomena with stochastic and fractional behavior.

These applications and implementations of the DTM are motivations for
reviewing the method in the present work. The aim is to give a comprehensive
review of the method, including the theory, improvements, and applications.
Some examples related to the method are explained to show its accuracy and
benefits. Finally, the restrictions and drawbacks of the method are noted.

The present review helps researchers who are attending to use the method
for solving a practical problem to be familiar with this method and its limi-
tations.

The review is organized as follows: after introductions in Section 1, the
literature review and history are given in Section 2. Section 3 assigns the
method description, benefits, and drawbacks. Finally, some concluding re-
marks are expressed in Section 4.
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2 Literature review

This section is divided into two subsections: the historical and application
reviews. A graphical review based on the research’ subjects is also included.

2.1 Historical review

In this subsection, the papers with independent research on extending or
improving the DTM have been reviewed in historical order.

• 1986: The concept of differential transform was established by Zhou,
a Chinese researcher in the field of electrical engineering. The method
was originally explained in [95] for IVPs.

• 1996: DTM has been extended to cover the hybrid boundary conditions
for eigenvalue problems in [23].

• 1998: The method was improved in the case of BVPs in an infinite
horizon. As a practical implementation, it has been implemented to
solve the Blasius problem efficiently in [94].

• 1999: The two-dimensional differential transform has been proposed for
solving IVPs with partial differential equations in [24].

• 2003: Following the extensions for two-dimensional DTM, new theo-
rems were given in [14] with applications of the method for diffusion
equation.

• 2004: The three-dimensional DTM was introduced for solving systems
of partial differential equations (PDEs) accompanied by the initial con-
ditions in [15]. The DTM has also been applied to find accurate solu-
tions for algebraic differential equations of ordinary type in [16].

• 2005: The integro-differential equations with boundary conditions were
the next type of problems examined for their solution by DTM in [9].
General theorems were derived, and the method was successfully ap-
plied to solve examples of linear and nonlinear integro-differential prob-
lems.

• 2006: The DTM was extended to solve difference equations with dif-
ferent types and orders in [10]. Solving differential-difference equations
with boundary conditions with DTM have been also reported in [11].

• 2007: The concept of fractional derivatives and the growing topic of
fractional differential equations cause to define the fractional differential
transform. In [65], the theory of fractional DTM was established for
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solving ordinary fractional with initial conditions. The method was
later proposed using generalized Taylor series and Caputo fractional
derivative.

• 2008: The fractional DTM for ordinary equations has been more gener-
alized for equations with multi-order in [31]. The method of fractional
DTM has been extended to linear PDEs of fractional order in [69].
The extension of the method to systems of fractional PDEs with initial
conditions was also given in [32]. A modified DTM based on Laplace
transform and Padé approximation was introduced to find oscillatory
solutions.

• 2009: The two-dimensional DTM was implemented to solve a class
of linear and nonlinear Volterra integral equations in [87]. To resolve
the complexity of computation in a multidimensional DTM, a reduced
method was introduced in [53]. The method is based on the separa-
tion of variables. The efficiency of the method has been demonstrated
by its application on several IVPs. In the follow-up to the fractional
derivatives, the DTM was examined for fractional integro-differential
equations in [12]. Another notable work is [76], where the DTM is
combined with Padé approximation to solve BVPs with infinite horizon.
The fuzzy DTM was introduced in [7] to solve fuzzy differential equa-
tions. The method is based on the generalized H-differentiability. The
DTM was also applied to solving nonlinear optimal control problems in
[43]. Two approaches for finite and infinite horizon problems were pro-
posed based on the minimum principle and the dynamic programming
on Hamilton–Jacobi–Bellman equations, respectively, in combination
with DTM.

• 2010: To accelerate the convergence of the DTM solution, a multi-step
DTM was proposed in [70]. In this version of DTM, the solution is a
piecewise function consisting of a finite number of DTM solutions for
consecutive time intervals. Another derivation of DTM called projected
DTM, was also proposed in [45]. In this method, the solution of two-
dimensional PDEs is obtained with DTM for one variable while the
coefficients are functions of the other variable.

• 2011: The piecewise DTM has been further extended for solving frac-
tional chaotic dynamical systems in [8]. It is indeed the extension of
[70] in fractional cases.

• 2012: Random DTM is another version of DTM for solving random
differential equations based on the mean fourth calculus proposed in
[90]. The results of the implementation of the method for Riccati dif-
ferential problems show the efficiency of this approach. A combination
of the Adomian decomposition method and DTM was proposed in [29]
for solving fractional differential equations.
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• 2013: The fuzzy DTM method [7] has been extended to cover solv-
ing Volterra integral equations in [81]. A combination of DTM with
Adomian polynomial was proposed in [34] to overcome the problem of
nonlinear terms in ordinary differential equations (ODEs) when DTM
is used. For the calculus of variation problem with a differentiable
solution, there exists a two-point boundary problem obtained by the
Euler–Lagrange equation. Using the method proposed in [67], this
problem was solved by the DTM to derive a numerical method for
finding semi-analytical stationary functions. A DTM for solving lin-
ear optimal control problems with a quadratic performance index was
introduced in [80]. The method uses the Pontryagin maximum princi-
ple to obtain a BVP, which is finally solved by DTM. Reduced DTM
is examined for solving two-dimensional Volterra integral equations in
[2]. Based on the simulations, the results of reduced MTD are more
accurate in comparison with traditional DTM.

• 2014: In [3], the nonlinear integro-differential equations with propor-
tional delay are under investigation with DTM. Some theorems related
to the delayed functions and their transforms were also proved in addi-
tion to the numerical simulation. To enlarge the domain of convergence
of DTM, a method was proposed in [17]. The Laplace–Padé resumma-
tion was examined to solve partial differential algebraic equations.

• 2015: The generalized DTM method for IVPs on fractional PDEs has
been extended to BVPs in [27]. DTM was applied in [35] as a new
tool to compute the Laplace transform of real-valued single variable
functions. The Cauchy-type singular integral equations are solved by a
proposed method based on DTM in [4]. The forms of differential trans-
form of kernel functions were obtained with high-accuracy solutions on
several examples with two kernel types. DTM was also used to solve
optimal control problems in [66]. The method is based on applying the
DTM to the BVPs resulting from sufficient conditions for solving linear
and nonlinear optimal control problems.

• 2016: Two-dimensional extended DTM was proposed for solving PDEs
with local fractional derivatives in [93]. The concept of this version
of DTM for nondifferential functions was analyzed, and basic theorems
were proved. The efficiency and accuracy of the method were shown via
numerical simulations. A class of BVPs defined for nonlinear singular
second-order ODE was examined with DTM in [91]. The method ben-
efits from the Adomian polynomials to overcome the nonlinear terms.
In addition, to demonstrate the applicability of the method by some
examples, an upper bound for the error was also obtained. Multi-point
BVPs also found their DTM solution. The problem of unknown initial
conditions in these types of problems was resolved in [92]. The first
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two DTM coefficients were taken unknown and were determined from
a system of algebraic equations.

• 2017: A version of DTM was introduced in [88] for solving comfortable
fractional differential equations. The generalized DTM for solving frac-
tional problems was further studied from a theoretical perspective in
[71]. The sufficient conditions for convergence of the method and esti-
mation of truncation error were obtained. An efficient version of multi-
step DTM was addressed in [70]. The method reduces the number of
subintervals and consequently improves the computational complexity
of multi-step DTM.

• 2018: The projected DTM was combined with integral transform to
provide an efficient method for solving fractional PDEs in [82]. The
results showed that the method is accurate and fast convergent. Fuzzy
DTM was extended for solving fuzzy Volterra integro-differential equa-
tions in [19]. The method is based on a generalization of Seikkala
differentiability for fuzzy functions.

• 2019: The switching DTM was introduced in [61] to cover infinite hori-
zons, that is, boundary conditions at infinity. In the proposed ap-
proach, the solution has two parts: a DTM solution and an analytical
solution that matches the condition at infinity.

• 2020: In [30], the method of [29] was applied for computing two-
dimensional DTM solutions of PDE problems. The method reduced
the computational complexity of traditional two-dimensional DTM. A
combination of differential transform and smoothed particle hydrody-
namics was proposed in [57] for solving transient heat conduction prob-
lems. Numerical simulations showed that the method is robust and
accurate. Tarig transform was combined with projected DTM to de-
velop an effective method for solving fractional nonlinear PDEs in [60].

• 2021: As recent applications of DTM to practical problems, we can
address [46], where the problem of thermal distribution through a
longitudinal trapezoidal moving fin has been investigated using one-
dimensional Padé-DTM. Similar work for a moving rod was reported
in [84], where two-dimensional Padé-DTM is implemented.

• 2022: A comparison between sinc approximation and DTM on nonlin-
ear Hammerstein integral equations has been made in [50]. In the case
of separable kernels, the DTM performs more accurately and faster than
the sinc approximation. Integro-differential equations with a retarded
argument have notable engineering applications. In [42], these types of
problems have been solved by DTM with satisfactory and applicable
results.
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To demonstrate the review of fulfilled research on the concept of DTM, a
graphical tree of a subject is given in Figure 1. There are four main blocks
determining the top subjects, along with subblocks indicating the details.
The related references to each subject are written close to the related box.

Figure 1: Subjective review of researches on DTM

• Fluid mechanics: Fractional coupled Burgers’ equations [58], Blssius
equation of boundary layer flow [94], nanoparticle migration [56], nano
boundary-layers over-stretching surfaces [77], magnetohydrodynamics
(MHD) boundary-layer equations [76], MHD in a laminar liquid film
[78], parametric investigation of the thermal analysis for solar collectors
[28], the study of time-dependent MHD heat transfer flow of Jeffrey
fluid [54], and analysis an unsaturated single-phase fluid flow in porous
media [25].

• Electrical engineering: Solving telegraph equation by DTM [18] and
reduced DTM [86, 85], solving Thomas-Fermi equation by the improved
DTM [38], and dynamic simulation of power systems [59].

• Acoustics: KdV and modified KdV equations [48], two-dimensional
fractional Helmholtz equation [5], and Kadomtsev–Petviashvili equa-
tions [63].

• Physics: Solving a model of fractional telegraph point reactor kinetics
[39] and solving Fokker–Planck equation [41].

• Quantum Mechanics: Klein–Gordon equation [79] and Burgers–Huxley
equations [1].

• Structures and vibration: Vibration analysis of a rotating tapered can-
tilever Bernoulli–Euler beam [72], nonlinear oscillators [64], analysis
and prediction of vibration of a nanobeam [40], investigation of flapwise
bending free vibration of isotropic rotating Timoshenko microbeams

7

Figure 1: Subjective review of researches on DTM

2.2 Application review

In this subsection, some notable applications of DTM in the real world and
practical problems are listed.

• Fluid mechanics: Fractional coupled Burgers’ equations [58], Blssius
equation of boundary layer flow [94], nanoparticle migration [56], nano
boundary-layers over-stretching surfaces [77], magnetohydrodynamics
(MHD) boundary-layer equations [76], MHD in a laminar liquid film
[78], parametric investigation of the thermal analysis for solar collectors
[28], the study of time-dependent MHD heat transfer flow of Jeffrey
fluid [54], and analysis an unsaturated single-phase fluid flow in porous
media [25].

• Electrical engineering: Solving telegraph equation by DTM [18] and
reduced DTM [86, 85], solving Thomas-Fermi equation by the improved
DTM [38], and dynamic simulation of power systems [59].
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• Acoustics: KdV and modified KdV equations [48], two-dimensional
fractional Helmholtz equation [5], and Kadomtsev–Petviashvili equa-
tions [63].

• Physics: Solving a model of fractional telegraph point reactor kinetics
[39] and solving Fokker–Planck equation [41].

• Quantum Mechanics: Klein–Gordon equation [79] and Burgers–Huxley
equations [1].

• Structures and vibration: Vibration analysis of a rotating tapered can-
tilever Bernoulli–Euler beam [72], nonlinear oscillators [64], analysis
and prediction of vibration of a nanobeam [40], investigation of flapwise
bending free vibration of isotropic rotating Timoshenko microbeams
[13], analyzing the thermal buckling of a functionally graded circular
plate [33], solving nonlinear Duffing oscillator [68], and buckling anal-
ysis of nanobeams [47].

• Miscellaneous applications: Population growth estimation [73], solving
a typhoid fever model [74], solving tumor-immune system [49], analysis
of fish-farm model [89], solving the model of pollution for a system of
lakes [17], and modeling of jamming transition problem in traffic flow
[36].

3 How does DTM work?

In this section, the basic definitions and fundamental properties of the differ-
ential transform method are presented. Let us consider the following ordinary
differential equation:

T (x, u(x), u′(x), u′′(x), . . . , u(n)(x)) = 0, (1)

where T is a transformation on a class of sufficiently differentiable functions
u(x). Assume that under specific conditions, the above-mentioned differential
equation has a unique solution u(x) satisfying in

u(0) = u0, u
′(0) = u′

0, . . . , u
(n)(0) = u

(n)
0 , (2)

where u0, u
′
0, . . . , u

(n)
0 are given. Now, the aim of DTM in the simplest case

is to solve the IVP (1)–(2). Let us consider the Taylor series of the solution
in a neighborhood of x = 0:

u(x) =

∞∑
k=0

u(k)(0)

k!
xk. (3)

It may be also rewritten as
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u(x) =

∞∑
k=0

U(k)xk, (4)

where
U(k) =

u(k)(0)

k!
(5)

Therefore, if the values of U(k) are available, then the solution may be con-
structed from (4). This is the key of the DTM method that defines a trans-
formation from u(x) to the set of coefficients {U(1), U(2), . . .} and vice versa.
This transformation is called the differential transformation. Now, in DTM,
U(k)’s are substituted in (1) converting it to a system of algebraic equations.
This will be performed using the basic properties of the differential trans-
form. Some of these properties are listed below:
Let us assume, for simplicity, that DT−−→ denotes the differential transform. If
λ is a constant scalar, u(x) DT−−→ U(k), and v(x)

DT−−→ V (k), where U(k) and
V (k) are differential transformations of u(x) and v(x), respectively, then

• u(x) + v(x)
DT−−→ U(k) + V (k);

• λu(x)
DT−−→ λU(k);

• u(x)v(x)
DT−−→

∑k
i=0 U(i)V (k − i);

• u′(x)
DT−−→ (k + 1)U(k + 1);

• u′′(x)
DT−−→ (k + 1)(k + 2)U(k + 2);

• u(n)(x)
DT−−→ (k + 1)(k + 2) · · · (k + n)U(k + n);

• u(x) =
∫ x

0
v(s)ds

DT−−→ U(k) =

{
V (k−1)

k , k ≥ 1,
0, k = 0;

• u(x) = xn DT−−→ U(k) = δ(k − n) =

{
1, k = n,
0, k ̸= n;

• u(x) = eλx
DT−−→ U(k) = λk

k! .

These properties will be obtained directly for the definition of the differential
transform given by (5).

In what follows, the implementation of the method for solving a simple
IVP is given.

Example 1. Let us consider the following IVP:

(x2 + 9)u′′ + 2xu′ = 0, (6)

u(0) = π, u′(0) =
4

3
. (7)
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The problem has the following unique solution:

u(x) = 4 tan−1
(x
3

)
+ π. (8)

To implement the DTM on this problem, let us assume that u(x)
DT−−→ U(k).

Then, by the above-mentioned properties of differential transform and sub-
stituting the corresponding transforms of individuals terms of (6), we have

k∑
i=0

(δ(i− 2) + 9δ(i)) (k − i+ 1)(k − i+ 2)U(k − i+ 2)

+2

k∑
i=0

δ(i− 1)(k − i+ 1)U(k − i+ 1) = 0. (9)

Regarding the initial conditions in (7) and the definition of Dirac delta func-
tion, the transformed problem is defined by the following recursive converted
equation:

U(0) = π, (10)

U(1) =
4

3
, (11)

U(k + 2) =
−k

9(k + 2)
U(k), k ≥ 0. (12)

The unknown coefficients will be calculated from the above relations, and
then the solution of the problem in the form of an infinite series is determined
by (4). One can truncate this series with n terms as

un(x) =

n∑
k=0

U(k)xk (13)

to approximate the solution. For example, the solution for n = 8 with 4-digit
accuracy is calculated as follows:

u8(x) = 3.1416 + 1.3333x− 0.04934x3 + 0.0033x5 − 0.0003x7. (14)

The approximate solution (14) has decreasing coefficients and indicates that
{un(x)} converges pointwise to the solution of the problem when 0 ≤ x < 1.
As also depicted in Figure 2, the obtained DTM solution (14) is very close
to the exact one. However, when x > 1, the convergence of the sequence of
approximations does not guarantee. For instance, in Figure 3, the exact and
the DTM solutions have been drawn for 0 ≤ x ≤ 4. As it can be seen, despite
the coincidence of the DTM and exact solutions in [0, 1], the DTM solution
diverges for x > 1. Therefore, when using the DTM, we have to check the
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Figure 2: Exact and numerical solutions of Example 1 for 0 ≤ x ≤ 1.

k∑
i=0

(δ(i− 2) + δ(i)) (k − i+ 1)(k − i+ 2)U(k − i+ 2)

+

k∑
i=0

δ(i− 1)(k − i+ 1)U(k − i+ 1)− U(k) = δ(k − 2). (18)

The first boundary condition leads to U(0) = 1, however the value of U(1)
is unknown and will be found by using the second boundary condition. Let
us assume temporary that U(1) = α. Then implementing the conditions and
properties of Dirac delta function results in

U(0) = 1, (19)
U(1) = α, (20)

U(2) =
1

2
, (21)

U(3) = 0, (22)

U(4) = − 1

24
, (23)

U(k + 2) = −k − 1

k + 2
U(k), k ≥ 3. (24)

Therefore, the solution with n = 8 terms has the following form:

un(x) = 1.0000 + αx+ 0.5000x2 − 0.0417x4 + 0.0208x6 − 0.0130x8. (25)

Now, we implement the second boundary condition at x = 1 to the above
solution and find α = −0.3674. The exact value of α, which is obtained from

11

Figure 2: Exact and numerical solutions of Example 1 for 0 ≤ x ≤ 1.

range of validity of the solution. In the next example, the implementation of
the method on a BVP is discussed.

Example 2. Let us consider the following BVP:

(1 + x2)u′′ + xu′ − u = x2, (15)

u(0) = 1, u(1) = −
√
5

6
+

√
2

3
+ 1. (16)

The problem has the following unique solution:

u(x) = −
√
5

6
x+

1

3

√
1 + x2 +

1

3
(2 + x2). (17)

The corresponding equation in the transform space has the following form:

k∑
i=0

(δ(i− 2) + δ(i)) (k − i+ 1)(k − i+ 2)U(k − i+ 2)

+

k∑
i=0

δ(i− 1)(k − i+ 1)U(k − i+ 1)− U(k) = δ(k − 2). (18)

The first boundary condition leads to U(0) = 1, however the value of U(1)
is unknown and will be found by using the second boundary condition. Let
us assume temporary that U(1) = α. Then implementing the conditions and
properties of Dirac delta function results in

U(0) = 1, (19)
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Figure 3: Exact and numerical solutions of Example 1 for 0 ≤ x ≤ 4.

the exact solution, is −0.3727. The resulting DTM solution in this case is
close to the exact one as depicted in Figure 4.

If the interval of the solution is extended to [0, 2], with boundary condition
u(2) = 2, then the exact solution remains unchanged and α = 0.8320 differs
from −0.3727, the exact value of u′(0). Therefore, a large deviation from the
exact solution is anticipated. When the two curves are compared (Figure 4),
we can see that the behavior of the DTM solution differs from the exact one
due to the power of x above 1. This is similar to the case of IVPs, except
that here the constraint on the second point forces the solution to prevent
large oscillations.

3.1 Extensions and improvements
After the early implementation of DTM to initial and boundary value prob-
lems for ODEs, the researchers extended the method for other types of math-
ematical problems as encountered in section 2. In the present section, some
of these modifications are explained.

3.2 Multi-step DTM
As indicated in Example 2, the domain where the DTM solution is valid is
usually narrow. In order to extend the solution for large intervals of indepen-
dent variables, the multi-step DTM is proposed. The method is applied in
sub-intervals instead of the entire domain. The solution is, indeed, a piece-
wise function of particular DTM solutions of the following form:

12

Figure 3: Exact and numerical solutions of Example 1 for 0 ≤ x ≤ 4.

U(1) = α, (20)

U(2) =
1

2
, (21)

U(3) = 0, (22)

U(4) = − 1

24
, (23)

U(k + 2) = −k − 1

k + 2
U(k), k ≥ 3. (24)

Therefore, the solution with n = 8 terms has the following form:

u8(x) = 1.0000 + αx+ 0.5000x2 − 0.0417x4 + 0.0208x6 − 0.0130x8. (25)

Now, we implement the second boundary condition at x = 1 to the above
solution and find α = −0.3674. The exact value of α, which is obtained from
the exact solution, is −0.3727. The resulting DTM solution in this case is
close to the exact one as depicted in Figure 4.

If the interval of the solution is extended to [0, 2], with boundary condi-
tion u(2) = 2, then the exact solution remains unchanged and α = 0.8320
differs from −0.3727, for the exact value of u(2). Therefore, a large deviation
from the exact solution is anticipated. When the two curves are compared
(Figure 4), we can see that the behavior of the DTM solution differs from
the exact one due to the power of x above 1. This is similar to the case of
IVPs, except that here the constraint on the second point forces the solution
to prevent large oscillations.
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Figure 4: Exact and numerical solutions of Example 2 for 0 ≤ x ≤ 1 and
0 ≤ x ≤ 2.

u(x) =


∑N

k=0 U0(k)x
k, x ∈ [0, x1],∑N

k=0 U1(k)(x− x1)
k, x ∈ [x1, x2],

...
...∑N

k=0 Up(k)(x− xp−1)
k, x ∈ [xp−1, xp].

(26)

The initial condition for each piece is obtained from the previous stage.
Therefore, the method has errors but leads to better results compared to
the traditional one. As an example, the multi-step DTM solution has been
obtained for Example 1 as follows:

u(x) =



3.1416 + 1.3333x− 0.0494x3 + 0.0033x5 − 0.0003x7, x ∈ [0, 1],
3.2705 + 1.0797x+ 0.1086x2 − 0.0230x3 − 0.00066x4

− 0.0020x5 + 0.0016x6 − 0.0002x7, x ∈ [1, 2],
3.6890 + 0.7183x+ 0.1688x2 − 0.0518x3 + 0.0326x4

− 0.0151x5 + 0.0030x6 − 0.0002x7, x ∈ [2, 3],
4.5191 + 0.6477x2 − 0.3598x3 + 0.1439x4 − 0.0336x5

+ 0.0040x6 − 0.0002x7, x ∈ [3, 4].
(27)

Figure 5 demonstrates the resulting multi-step DTM solution, the exact
and the one-step DTM solution. Comparing these curves elucidate that the
multi-step DTM is more close to the exact solution and does not diverge like
the traditional DTM solution.

13

Figure 4: Exact and numerical solutions of Example 2 for 0 ≤ x ≤ 1 and
0 ≤ x ≤ 2.

3.1 Extensions and improvements

After the early implementation of DTM to initial and boundary value prob-
lems for ODEs, the researchers extended the method for other types of math-
ematical problems as encountered in Section 2. In the present section, some
of these modifications are explained.

3.2 Multi-step DTM

As indicated in Example 2, the domain where the DTM solution is valid is
usually narrow. In order to extend the solution for large intervals of indepen-
dent variables, the multi-step DTM is proposed. The method is applied in
sub-intervals instead of the entire domain. The solution is, indeed, a piece-
wise function of particular DTM solutions of the following form:

u(x) =


∑N

k=0 U0(k)x
k, x ∈ [0, x1],∑N

k=0 U1(k)(x− x1)
k, x ∈ [x1, x2],

...
...∑N

k=0 Up(k)(x− xp−1)
k, x ∈ [xp−1, xp].

(26)

The initial condition for each piece is obtained from the previous stage.
Therefore, the method has errors but leads to better results compared to
the traditional one. As an example, the multi-step DTM solution has been
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obtained for Example 1 as follows:

u(x) =



3.1416 + 1.3333x− 0.0494x3 + 0.0033x5 − 0.0003x7, x ∈ [0, 1],
3.2705 + 1.0797x+ 0.1086x2 − 0.0230x3 − 0.00066x4

− 0.0020x5 + 0.0016x6 − 0.0002x7, x ∈ [1, 2],
3.6890 + 0.7183x+ 0.1688x2 − 0.0518x3 + 0.0326x4

− 0.0151x5 + 0.0030x6 − 0.0002x7, x ∈ [2, 3],
4.5191 + 0.6477x2 − 0.3598x3 + 0.1439x4 − 0.0336x5

+ 0.0040x6 − 0.0002x7, x ∈ [3, 4].
(27)

Figure 5 Demonstrates the resulting multi-step DTM solution, the exact
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Figure 5: Exact, DTM, and multi-step DTM solutions of Example 1 for
0 ≤ x ≤ 4.

3.3 Infinite horizons
There are BVPs with conditions at infinity; that is, the domain of the inde-
pendent variable is not bounded. In this subsection, two approaches of DTM
when facing this situation are reviewed.

3.3.1 Padé Approximation

One of the well-known methods to approximate a real-valued function as a
rational function is Padé approximation, which is usually used when simu-
lating the behavior of a function at infinity is desired. This method has been
combined with DTM to solve the infinite horizon BVP for the first time in
[76]. Despite the application of this method in solving problems with condi-
tions at infinity, such as [78, 75], it seems that this approach is not applicable.
To illustrate this issue, let us consider the following rational function:

RL,M (x) =
p0 + p1x+ p2x

2 + · · ·+ pLx
L

1 + q1x+ q2x2 + · · ·+ qLxM
. (28)

Moreover, RL,M is the Padé approximation of u(x) if its value and derivatives
coincide with those of u(x) at x = 0, that is

RL,M (0) = u(0), (29)
R′

L,M (0) = u′(0), (30)
R′′

L,M (0) = u′′(0), (31)
...

14

Figure 5: Exact, DTM, and multi-step DTM solutions of Example 1 for
0 ≤ x ≤ 4.

and the one-step DTM solution. Comparing these curves elucidate that the
multi-step DTM is more close to the exact solution and does not diverge like
the traditional DTM solution.

3.3 Infinite horizons

There are BVPs with some conditions at infinity; that is, the domain of the
independent variable is not bounded. In this subsection, two approaches of
DTM when facing this situation are reviewed.
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3.3.1 Padé Approximation

One of the well-known methods to approximate a real-valued function as a
rational function is Padé approximation, which is usually used when simu-
lating the behavior of a function at infinity is desired. This method has been
combined with DTM to solve the infinite horizon BVP for the first time in
[76]. Despite the application of this method in solving problems with condi-
tions at infinity, such as [78, 75], it seems that this approach is not applicable.
To illustrate this issue, let us consider the following rational function:

RL,M (x) =
p0 + p1x+ p2x

2 + · · ·+ pLx
L

1 + q1x+ q2x2 + · · ·+ qLxM
. (28)

Moreover, RL,M is the Padé approximation of u(x) if its value and derivatives
coincide with those of u(x) at x = 0, that is

RL,M (0) = u(0), (29)
R′

L,M (0) = u′(0), (30)
R′′

L,M (0) = u′′(0), (31)
...

R
(L+M)
L,M (0) = u(L+M)(0). (32)

Therefore, in approximating u(x) ≈ RL,M (x), the rational function has the
initial value and derivatives as the main function. Also, far field behavior
may be controlled with degrees of RL,M .
Let us examine the method on a famous problem in fluid dynamics (see [76]):

u′′′ + uu′′ − βu′2 −Mu′ = 0, (33)
u(0) = 0, u′(0) = 1, (34)
u′(+∞) = 0. (35)

Clearly, by the application of DTM, a polynomial approximating the solution
in the vicinity of x = 0 will result. However, the polynomial does not have
marginal behavior at infinity as required by (35). To cope with the problem,
after finding the DTM solution un(x), a Padé approximation with L+M = n
is obtained. Therefore, the following relation should be occurred:

U(0)+U(1)x+U(2)x2+· · ·+U(n)xn =
p0 + p1x+ p2x

2 + · · ·+ pLx
L

1 + q1x+ q2x2 + · · ·+ qLxM
. (36)

Two initial conditions will translate to U(0) = 0 and U(1) = 1, however the
degree of equation requires another initial condition. Therefore, U(2) is taken
as an unknown α, which will be determined from u′(+∞) = 0 after finding
the rational approximation. Then L + M unknown coefficients a0, a1, . . .,
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aL, b1, b2, . . ., bM will be found by equating two sides up to xL+M .

Studying the results of this method in [78] in detail shows that the method
does not lead to valid solutions easily. For example, the following Padé-DTM
solution is claimed in [76] for β = 1.5 and M = 50:

R10,10(x) = (x− 22.6935x2 − 20.8798x3 − 31.0628x4 − 19.2098x5

−0.841719x6 + 16.6574x7 + 1.82323x8 + 5.78142x9

−0.00715648x10)/(1− 19.1112x− 97.9261x2 − 202.307x3

−222.828x4 − 119.697x5 + 11.8529x6 + 70.5985x7 + 55.4051x8

+22.1859x9 + 4.17935x10)

If we draw the above u(x) near the origin with step size larger than 10−5,
then the solution agrees with physics as depicted in Figure 7 of [76]. However,
when we take distance from x = 0, the solution shows different behavior.
In Figure 6, the claimed solution is drawn for 0 ≤ x ≤ 2 with step size
∆x = 0.01. It has a clear jump near 1 = 1.4, which is unexpected. Therefore,
it cannot be the correct solution. If the step size of the graph is finer, then
the amplitude of the jump increases, indicating a singularity in the rational
function. When we examine the roots of the denominator, it reveals that
it has two real roots, approximately at x = 0.0423118 and x = 1.40647.
The first one is visible when the step size of plotting is smaller than 10−5.
Therefore, the resulting solution is not acceptable near the x = 0 nor beyond
x = 1. This is just an example, and there are other examples showing the
inefficiency of the Padé-DTM. Because of the following problems, using Padé

The first one is visible when the step size of plotting is smaller than 10−5.
Therefore, the resulting solution is not acceptable near the x = 0 nor beyond
x = 1. This is just an example, and there are other examples showing the
inefficiency of the Padé-DTM. Because of the following problems, using Padé
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Figure 6: Jump of a Padé-DTM solution.

with DTM is not recommended in general:

• Rational functions may have singularities as indicated in the case study.

• In taking the derivative, the degree of the numerator and denomina-
tor will change. This may lead to RL,M (x) → 0 at infinity without
obtaining a condition on α. As an example, as indicated in [21], for a
Blasius problem, the Padé approximation does not match the required
asymptotic behavior.

• Even the marginal condition of u at infinity satisfies, there is no guar-
antee that the resulting Padé has the same rate of convergence as the
exact solution.

3.3.2 Switching DTM

Another DTM-based method for problems with a boundary condition at
infinity was proposed in [61]. The method finds a solution consisting of two
parts; the first part is a DTM solution, and the second part is a solution of
the differential equation satisfying the marginal condition. The method has
a successful implementation, but it is case-dependent in finding the second
part of the solution.
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with DTM is not recommended in general:

• Rational functions may have singularities as indicated in the case study.
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• In taking the derivative, the degree of the numerator and denomina-
tor will change. This may lead to RL,M (x) → 0 at infinity without
obtaining a condition on α. As an example, as indicated in [21], for a
Blasius problem, the Padé approximation does not match the required
asymptotic behavior.

• Even the marginal condition of u at infinity satisfies, there is no guar-
antee that the resulting Padé has the same rate of convergence as the
exact solution.

3.3.2 Switching DTM

Another DTM-based method for problems with a boundary condition at
infinity was proposed in [61]. The method finds a solution consisting of two
parts; the first part is a DTM solution, and the second part is a solution of
the differential equation satisfying the marginal condition. The method has
a successful implementation, but it is case-dependent in finding the second
part of the solution.

3.4 Multidimensional DTM

One of the most important and practical extensions of DTM is multidimen-
sional DTM. Let us consider, for example, a two-dimensional BVP or IVP
having u(t, x) as the solution. The two-dimensional extension of DTM trans-
form u(t, x)

DT−−→ U(k, h) is defined as

U(k, h) =
1

k!h!

[
∂k+hu(t, x)

∂tkxh

]
(0,0)

, (37)

and the inverse transform is

u(t, x) =

∞∑
k=0

∞∑
h=0

U(k, h)tkxh. (38)

Substituting (37) into the equations and applying the boundary-initial con-
ditions will result in a set of algebraic equations. Then the equations are
solved for U(k, h), and the truncated inverse transform (38) gives an ap-
proximate solution. Some of the properties of the two-dimensional DTM
transform used to build the algebraic equations are listed below. Assume
that u(t, x)

DT−−→ U(k, h), that w(t, x)
DT−−→ W (k, h), and that λ is a constant

scalar.

• u(t, x) + w(t, x)
DT−−→ U(k, h) +W (k, h).
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• λu(t, x)
DT−−→ λU(k, h).

• u(x)w(x)
DT−−→

∑k
i=0

∑k
j=0 U(i, h− j)W (k − i, j).

• ∂u(t,x)
∂t

DT−−→ (k + 1)U(k + 1, h).

• ∂u(t,x)
∂x

DT−−→ (h+ 1)U(k, h+ 1).

• ∂i+ju(t,x)
∂ti∂xj

DT−−→ (k+1)(k+2) · · · (k+i)(h+1)(h+2) · · · (k+j)U(k+i, h+j).

• tixj DT−−→ δ(k − i, h− j).

Now, the two-dimensional DTM in its traditional form is applied to a prob-
lem.

Example 3. Let us consider the following IVP defined on the telegraph
equation (see [18]):

∂2u

∂x2
=

∂2u

∂t2
+ 2

∂u

∂t
+ u, (39)

u(0, x) = ex,
∂u

∂t
(0, x) = −2ex. (40)

The exact solution is u(t, x) = ex−2t.
The corresponding differential transform of (39) is as follows:

(h+ 1)(h+ 2)U(k, h+ 2) = (k + 1)(k + 2)U(k + 2, h) + 2(k + 1)U(k + 1, h)

+U(k, h). (41)

Taking differential transform from two sides of initial conditions implies that

U(0, h) =
1

h!
, (42)

U(1, h) =
−2

h!
. (43)

Now, the following recursive relation is obtained to find the coefficients:

U(k + 2, h) =
(h+ 1)(h+ 2)U(k, h+ 2)− 2(k + 1)U(k + 1, h)− U(k, h)

(k + 1)(k + 2)
.

(44)
Setting k = 0, 1, 2 in (44) and then h = 0, 1, . . . , 4 in the results, we obtain
the coefficients U(k, h) and construct an approximate solution as

u4,4(t, x) = 1 + x+ 0.5x2 + 0.1667x3 + 0.0417x4

−2t− 2tx− tx2 − 0.3333tx3 − 0.0833tx4

+2t2 + 2t2x+ t2x2 + 0.3333t2x3 + 0.0833t2x4
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−1.3333t3 − 1.3333t3x− 0.6667t3x2 − 0.2222t3x3

−0.0556t3x4 + 0.6667t4 + 0.6667t4x+ 0.3333t4x2

+0.1111t4x3 + 0.0278t4x4. (45)

The absolute errors of the resulting DTM solution on an 8×8 grid are given in
Table 1. The error is small near the initial condition, and the DTM solution
approximates the exact solution. However, it grows slowly with t and x. The
error may be reduced by increasing the number of terms in (45) since the
DTM solution is convergent to the exact one in this case (see [18]).

Table 1: The absolute error of the DTM solution of Example 3

t, x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0 0.0000 0.0000 0.0000 0.0000 0.0002 0.0005 0.0012 0.0027
0.1 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004 0.0010 0.0021
0.2 0.0001 0.0002 0.0002 0.0002 0.0001 0.0001 0.0005 0.0014
0.3 0.0010 0.0011 0.0012 0.0014 0.0015 0.0015 0.0013 0.0008
0.4 0.0040 0.0045 0.0050 0.0056 0.0062 0.0068 0.0073 0.0077
0.5 0.0119 0.0133 0.0148 0.0166 0.0185 0.0205 0.0227 0.0249
0.6 0.0286 0.0320 0.0357 0.0399 0.0446 0.0497 0.0554 0.0615
0.7 0.0599 0.0669 0.0748 0.0836 0.0934 0.1043 0.1163 0.1296

3.4.1 Projected DTM

The projected DTM was introduced in [45] to reduce the computational com-
plexity and simplify the solution in the case of multidimensional DTM. In this
approach, the differential transform is applied on only one variable. There-
fore, the coefficients are not constant and are functions of the remaining
variables. For example, in Example 3, if we take the differential transform
with respect to t, then the unknown coefficients are in the form of U(h, x).
Consequently, instead of (38), the solution has simpler form as

u(t, x) =

∞∑
k=0

U(k, x)tk, (46)

which requires lower computational task. If we apply the method to Example
3, then the corresponding equation is changed to

∂2U

∂x2
(k, x) = (k + 1)(k + 2)U(k + 2, x) + 2(k + 1)U(k + 1, x) + U(k, x) (47)

with initial conditions:

U(0, x) = ex, (48)
U(1, x) = −2ex. (49)
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The coefficients are also calculated from

U(k + 2, x) =
∂2U
∂x2 (k, x)− 2(k + 1)U(k + 1, x)− U(k, x)

(k + 1)(k + 2)
. (50)

Setting k = 0, 1, . . . and using the initial conditions, will result in U(2, x) =
2ex, U(3, x) = − 4

3e
x, U(4, x) = 1

6e
x, . . .. Then, the truncated solution up to

4 terms is
up
4(t, x) = ex − 2ext+ 2ext2 − 4

3
ext3 +

1

6
ex. (51)

From a computational viewpoint, calculating each coefficient in (44) requires
13 elementary operations, while in (44), nine operations are required. On the
other hand, the number of terms in u4,4 is 4 times than in up

4. Therefore, in
this case, the projected DTM has lower complexity of order 5.78 with respect
to the traditional DTM. However, it should be noted that when estimating the
solution at a mesh on (t, x), the computation of ex terms has more complexity
than the power of x but is more accurate.

3.4.2 Reduced DTM

Another approach for simplifying and reducing the computational cost of
multidimensional DTM is the reduced DTM proposed in [53]. This modifi-
cation benefits from a separation of variables. The solution u(t, x) in two-
dimensional, for example, is written as

u(t, x) = f(t)g(x). (52)

Then, one-dimensional DTM is applied, and the corresponding differential
transform is obtained similar to the projected DTM.

4 Advantages and disadvantages of DTM

In the previous section, the implementation of DTM on a set of different
problems was expressed. Based on the results of these examples and other
references, the DTM has advantages and disadvantages as a semi-analytical
method for solving initial and boundary value problems. In this section, we
mention some of these advantages and disadvantages.

4.1 Advantages of DTM

The advantages of DTM may be encountered as follows:
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• The solution has a closed form as a series. This enables us to use it
quickly for more analysis, such as calculating derivatives, for example.

• DTM usually results in high-accuracy solutions in the domain of con-
vergence.

• Low computational complexity in solving the transformed equations for
linear systems.

• The method does not require discretization; therefore, the results are
not affected by this type of error.

• Based on the literature review, the method is flexible to be adopted
with various kinds of dynamical systems and boundary conditions.

4.2 Disadvantages of DTM

When using DTM, we have to care about the restrictions of the method.
Some of the disadvantages of this method that restricts its application are
listed below:

• The implementation of the method for nonlinear systems may lead to
complex forms of the algebraic system of equations that restrict the
implementation of the method to linear systems. There are, however,
some approaches, such as the polynomial expansion of nonlinear terms
or using Adomian decomposition. Such tricks may reduce the degree
of nonlinearity, however, they add additional errors and increase com-
putational complexity.

• The domain of convergence is usually small, and the results are valid
close to x = 0. The multi-step DTM resolves this problem relatively.
However, as inferred from Figure 5, the multi-step solution itself leads
to accumulated errors that show the limited use of the method in short
ranges.

• Documented efforts to extend DTM to infinite horizon problems, such
as Padé approximation and switching DTM, do not guarantee valid and
general solutions.

5 Concluding remarks

The method of differential transform was described and reviewed in this pa-
per. Progress in the implementation, application, and improvements of DTM
was expressed. The method gives an analytical solution that has advantages
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in comparison with the numerical methods for boundary/initial value prob-
lems. However, detailed investigations showed that the method has conver-
gence restrictions. Indeed, when using DTM, it is important to note that the
solution is accurate in an interval close to the initial conditions.
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