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Abstract

The focus of this article is on the study of discrete optimal control prob-
lems (DOCPs) governed by time-varying systems, including time-varying
delays in control and state variables. DOCPs arise naturally in many multi-
stage control and inventory problems where time enters discretely in a nat-
ural fashion. Here, the Euler–Lagrange formulation (which are two-point
boundary values with time-varying multi-delays) is employed as an effi-
cient technique to solve DOCPs with time-varying multi-delays. The main
feature of the procedure is converting the complex version of the discrete-
time optimal control problem into a simple form of differential equations.
Since the main problem is in discrete form, then the Euler–Lagrange equa-
tion changes to an algebraic system with initial and final conditions. The
graphic representation of numerical simulation results shows that the pro-
posed method can effectively and reliably solve DOCPs with time-varying
multi-delays.
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1 Introduction

It is well known that discrete calculus is an important tool for describing
natural phenomenas, which is expanded from classic calculus [18, 3, 7, 13].
By employing discrete calculus in optimal control problem (OCP), also well-
known as discrete optimal control problem (DOCP), one can uniquely dis-
cover how to model natural phenomena. Discrete differential equations gov-
ern the dynamics of a dynamical system in a DOCP are one of the newest
exciting mathematical challenges [16, 21, 22, 12].

The primary difference between continuous and discrete-time systems
arises from the necessity to convert analog signals to digital values, as well
as the time required for a computer system to calculate and execute the
corrective action to the output.

A discrete time-control study on COVID-19 to address the quarantine
and vital environmental loads has been explored in [2]. Mehraeen et al. [14]
proposed an approach to obtain the optimal solutions based on the Hamilton–
Jacobi–Isaacs equation for the discrete-time nonlinear system by using neu-
ral networks. In [11], the authors proposed an improved stability analysis
method called a delay-mode-based functional method by weakening a con-
dition in the Lyapunov–Krasovskii functional method. Adaptive dynamic
programming as an effective intelligent control method has played an im-
portant role in seeking solutions for optimal control. Approximate dynamic
programming techniques are used to solve the value function, and hence the
optimal control policy, in discrete-time nonlinear OCPs having continuous
state and action spaces; see([1, 5]). The adaptive dynamic programming algo-
rithm was introduced in [20] for solving infinite-horizon undiscounted OCPs
in discrete-time systems.

Discrete-time OCPs occur in many multi-stage control and scheduling
problems, as may be expected. Originally, continuous-time OCPs can also be
discretized suitably and subsequently formalized as discrete-time OCPs. Al-
though due to the expansion of mathematical methods for solving continuous-
time OCPs, this is not currently necessary. There are efficient methods for
discrete-time OCPs in the literature.

To solve combined discrete-time OCPs and optimal parameter selection
problems concerned with general constraints, a computational method was in-
troduced in [4]. The DOCP for discrete-time linear system control constraint
was investigated in [23], in which the control input is a one-dimensional vari-
able whose range is contained in a bounded closed interval. Li, Teo, and
Duan [10] considered a class of DDTOCP that contains nonlinear inequal-
ity constraints on both the state and control. In [19], authors discussed a
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delay optimal tracking control for discrete-time systems with quadratic per-
formance indexes when they are affected by persisting disturbances.

This paper presents a novel approach to solving DOCP, including time-
varying delays. A general formula of the structure for DOCP with time-
varying delays can be considered as follows:

J(u(·)) =
kf−1∑
k=k0

F (xk, uk, k), (1)

subject to time-varying delay in a dynamic system

xk+1 = G(xk, xk−τk , uk, uk−ωk
, k), k0 ≤ k ≤ kf , (2)

with initial conditions:

xk = ϕk, k0 − τk0
≤ k ≤ k0,

uk = Θk, k0 − ωk0
≤ k ≤ k0, (3)

where x(·) is the state variable vector, u(·) is the control variable vector, k
represents the time, F and G are given functionals, k0 and kf are fixed, ϕk
and Θk are specific functions, τk ≥ 0 is delay function for state variable, and
ωk ≥ 0 is delay function for control variable.

Whenever the associated dynamic system of DOCP depends on prior in-
formation at a particular time, it can be considered that it is the DOCP with
time-varying delays. A realistic distributed assumption, instead of a tradi-
tional point-wise assumption, creates interesting cases of delays [17]. Discrete
derivatives are essential for explaining physical phenomena with memories,
as previous information about predators and even prey can have an impact
on birth rates, rather than the current model of predator-prey relationships
and hereditary traits; thus, DOCP with time-varying delays is applied to all
physical processes with realistic distribution assumptions and experiences [6].
As it can be seen, the problem satisfying (1)–(3) includes the delay system.
A delay system is a specific form of partial differential equation with infi-
nite dimensions. Therefore, these types of mathematical problems are very
important in engendering and physical sciences.

Generally, time-delays systems can be found in control systems, lasers,
traffic models, metal cutting, transmission lines, epidemiology, cell cycle,
protein, production population dynamics, and neuroscience. Therefore, it is
important to propose a beneficial method for solving time-delays systems.
Also, solving optimal control problems is complicated in normal mode, espe-
cially in non-linear modes. As a result, they become much more complicated
in modes whose systems have time delays. So it is very valuable to work on
such issues.

As a review of this paper, the framework of this paper is organized as
follows:
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Section 2 includes the proposed technique for solving DOCP with time-
varying delays in state and control variables. Finally, Section 3 contains a
number of numerical examples that demonstrate the model’s effectiveness.
We conclude in the last section.

2 Main results

There are several kinds of variational problems in calculus [9, 8]. Here, we
propose the two-boundary value problem based on classical Euler–Lagrange
equations to solve DOCP with time-varying delay. Therefore, we review
some necessary definitions and theoretical concepts to derive our efficient
technique.

Definition 1. Suppose that xk (respectively, xk+1) takes on variations δxk
(respectively, δxk+1) from their optimal values x̄k (respectively, x̄k+1) satis-
fying

xk = x̄k + δxk, xk+1 = x̄k+1 + δxk+1. (4)

Now with these variations, the performance index (1) becomes

Ĵ = J(x̄ko
, ko) =

kf−1∑
k=k0

F (x̄k, x̄k+1, k)

J = J(xko , ko) =

kf−1∑
k=k0

F (x̄k + δxk, x̄k+1 + δxk+1, k). (5)

Definition 2. The first variation δJ is the first order approximation of the
increment ∆J = J − Ĵ . So, applying the Taylor series expansion of (5), we
obtain

δJ =

kf−1∑
k=k0

∂F (x̄k, x̄k+1, k)

∂x̄k
δxk +

∂F (x̄k, x̄k+1, k)

∂x̄k+1
δxk+1. (6)

Theorem 1. For xk to be a contender for an optimum, the first variation
of J must be zero on xk, that is, δJ(xk, δxk) = 0 for all admissible values of
δxk. This is a necessary condition. As a sufficient condition for minimum,
we have the second variation δ2J > 0, and for maximum, δ2J < 0.

Proof. The researchers can consider the proof in detail in (see [8, p. 37]).

Lemma 1. Suppose that gk is a function in which the domain and range are
each a discrete set of values. If gk is a discrete function satisfying
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kf∑
k=k0

gkδxk = 0, (7)

where the function δxk is discrete in the interval [k0, kf ], then gk = 0 for
every k ∈ [k0, kf ].

Proof. Let gk0 ̸= 0 for some k0. Assume that δxs = 0 if s ̸= k0 and δxk0 = 1.
Then δ is a discrete function. In addition,

∑
k δxkgk = gk0 = 0, which is a

contradiction.

Definition 3 (Gateaux derivative). Suppose thatX and Y are locally convex
topological vector spaces, U ⊂ X is open, and f : X → Y . The Gateaux
differential of f at u ∈ U in the direction ψ ∈ X, denoted by df(u;ψ), is
defined as

df(u;ψ) = lim
k→0

f(u+ kψ)− f(u)

k
=

d

dk
f(u+ kψ)

∣∣
k=0

. (8)

If the limit (8) exists for every ψ ∈ X, then the function f is called Gateaux
differentiable at u [15].

This paper investigates a structured strategy for finding the necessary
optimality condition for the problem (1)–(3). It means that the DOCP with
time-varying delays is analyzed in order to find the optimal control u(·) with
the minimum performance index (1). Therefore, we investigate the necessary
optimally condition of the DOCP with time-varying delays as follows.

Theorem 2 (Necessary conditions for DOCP with time-varying delays).
Suppose that the DOCP defined by (1)–(3) with k0, xk0

, and kf is fixed.
Also, suppose that X is a locally convex topological vector spaces, and that
U ⊂ X is an open subset. In addition, assume that the following regularity
conditions are satisfied:

R1. xk, xk−τk ∈ X;

R2. uk, uk−ωk
∈ U ;

R3. τk : N −→ N and ωk : N −→ N are natural-valued functions, and
τ(·), ω(·) ≥ 0 ;

R4. k0 ∈ Z, kf ∈ Z, Θ : Z −→ Z, and ϕ : Z −→ Z are known;

R5. J is Gateaux differentiable at uk;

R6. F and G are locally convex topological vector spaces.

Then any solution u(·) ∈ U must satisfy the following conditions:

N1. The state dynamics, for k0 ≤ k ≤ kf :

xk+1 = G
(
xk, xk−τk , uk, uk−ωk

, k
)
, k0 ≤ k ≤ kf . (9)
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N2. The adjoint dynamics:
∂F

∂xk
− λk + λTk+1

∂G

∂xk
+ λTk+1ψk = 0, k > τk,

∂F

∂xk
− λk + λTk+1

∂G

∂xk
= 0, O.W.,

(10)

where

ψk =
∂G

∂xk−τk

,

F = F (xk, uk, k),

G = G
(
xk, xk−τk , uk, uk−ωk

, k
)
.

N3. The optimal control dynamics:
∂F

∂uk
+ λTk+1

∂G

∂uk
+ λTk+1ηk = 0 , k > ωk,

∂F

∂uk
+ λTk+1

∂G

∂uk
= 0, O.W.,

(11)

where ηk =
∂G

∂uk−ωk

.

N4. The Boundary conditions:

xk = ϕk, k ≤ k0, (12)
uk = Θk, k ≤ k0, (13)
∂L

(
xk−1, xk−τk−1−1, xk, uk−1, uk−ωk−1−1, λk

)
∂xk

∣∣
k=kf

= 0. (14)

Proof. The required condition for the DOCP with time-varying delays is
found by utilizing the variational method. Suppose that

J̄(u(·)) =
kf−1∑
k=k0

F (xk, uk, k) + λTk+1

(
G(xk, xk−τk , uk, uk−ωk

, k)− xk+1

)
,

(15)

where λ(·) is the Lagrange multiplier. Let δxk, δuk, δxk−τk , δuk−ωk
, and

δλk be the variation of xk, uk, xk−τk , uk−ωk
, and λk, respectively. We then

define a family of curves as follows:
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xϵk = xk + ϵδxk,

xϵk+1 = xk+1 + ϵδxk+1,

xϵk−τk
= xk−τk + ϵδxk−τk ,

uϵk = uk + ϵδuk,

uϵk−ωk
= uk−ωk

+ ϵδuk−ωk
,

λϵk+1 = λk+1 + ϵδλk+1.

(16)

Let

L(k) = L
(
xk, xk+1, xk−τk , uk, uk−ωk

, k
)

= F (xk, uk, k) + λTk+1

(
G(xk, xk−τk , uk, uk−ωk

, k)− xk+1

)
,

(17)

and

Lϵ(k) = L(xϵk, x
ϵ
k+1, x

ϵ
k−τk

, uϵk, u
ϵ
k−ωk

, k)

= F (xϵk, u
ϵ
k, k) + (λϵk+1)

T
(
G(xϵk, x

ϵ
k−τk

, uϵk, u
ϵ
k−ωk

, k)− xϵk+1

)
.

(18)

Also note that according to Definition 3, we get

δJ̄(uk; δuk) = lim
ϵ→0

J(uk + ϵδuk)− J(uk)

ϵ

=

kf∑
k=k0

lim
ϵ→0

Lϵ(k)− L(k)

ϵ
=

kf∑
k0

d

dϵ
Lϵ(k) |ϵ=0 . (19)

The variational of functional J̄(u(·)) is given as

δJ̄(u(·)) =
kf−1∑
k=k0

d

dϵ
Lϵ(k) |ϵ=0=

kf−1∑
k=k0

[∂Lϵ(k)

∂xϵk

dxϵk
dϵ

+
∂Lϵ(k)

∂xϵk+1

dxϵk+1

dϵ

+
∂Lϵ(k)

∂xϵk−τk

dxϵk−τk

dϵ
+
∂Lϵ(k)

∂uϵk

duϵk
dϵ

+
∂Lϵ(k)

∂uϵk−ωk

duϵk−ωk

dϵ
+
∂Lϵ(k)

∂λϵk+1

dλϵk+1

dϵ

]
|ϵ=0 .

(20)

Also, according to (16), we have

dxϵk
dϵ

= δxk,
dxϵk+1

dϵ
= δxk+1,

duϵk
dϵ

= δuk,
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dλϵk+1

dϵ
= δλk+1,

dxϵk−τk

dϵ
= δxk−τk ,

duϵk−ωk

dϵ
= δuk−ωk

. (21)

Therefore,

δJ̄(u(·)) =
kf−1∑
k=k0

[∂L(k)
∂xk

δxk +
∂L(k)

∂xk+1
δxk+1 +

∂L(k)

∂xk−τk

δxk−τk

+
∂L(k)

∂uk
δuk +

∂L(k)

∂uk−ωk

δuk−ωk
+
∂L(k)

∂λk+1
δλk+1

]
. (22)

Also, we get from (17) that

∂L(k)

∂xk
=
∂F (xk, uk, k)

∂xk
+ λTk+1

∂G(xk, xk−τk , uk, uk−ωk
, k)

∂xk
,

∂L(k)

∂xk−τk

= λTk+1

∂G(xk, xk−τk , uk, uk−ωk
, k)

∂xk−τk

,

∂L(k)

∂uk
=
∂F (xk, uk, k)

∂uk
+ λTk+1

∂G(xk, xk−τk , uk, uk−ωk
, k)

∂uk
,

∂L(k)

∂uk−ωk

= λTk+1

∂G(xk, xk−τk , uk, uk−ωk
, k)

∂uk−ωk

,

∂L(k)

∂λk+1
= G(xk, xk−τk , uk, uk−ωk

, k)− xk+1,

∂L(k)

∂xk+1
= −λk+1. (23)

Also, we can rearrange the term, including xk+1 in (22), as follows:

kf−1∑
k=k0

∂L(xk, xk−τk , xk+1, uk, uk−ωk
, λk+1)

∂xk+1
δxk+1

=
∂L

(
xkf−1, xkf−τk−1−1, xkf

, ukf−1, ukf−ωk−1−1, λkf

)
∂xkf

δxkf

−
∂L

(
xk0−1, xk0−τk−1−1, xk0

, uk0−1, uk0−ωk−1−1, λk0

)
∂xk0

δxk0

+

kf−1∑
k=k0

∂L
(
xk−1, xk−τk−1−1, xk, uk−1, uk−ωk−1−1, λk

)
∂xk

δxk

= [
∂L(xk−1, xk−τk−1−1, xk, uk−1, uk−ωk−1−1, λk)

∂xk
δxk] |

k=kf

k=k0

+

kf−1∑
k=k0

∂L
(
xk−1, xk−τk−1−1, xk, uk−1, uk−ωk−1−1, λk

)
∂xk

δxk. (24)
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We then conclude the first variation of J̄(u(·)) from equations (22)–(24) as

δJ̄(u(·)) =
[∂L(xk−1, xk−τk−1−1, xk, uk−1, uk−ωk−1−1, λk

)
∂xk

δxk

]
|k=kf

k=k0

+

kf−1∑
k=k0

(∂L(k)

∂xk
δxk +

∂L
(
xk−1, xk−τk−1−1, xk, uk−1, uk−ωk−1−1, λk

)
∂xk

δxk

+
∂L(k)

∂xk−τk

δxk−τk +
∂L(k)

∂uk
δuk +

∂L(k)

∂uk−ωk

δuk−ωk
+

∂L(k)

∂λk+1
δλk+1

)
. (25)

Therefore, the first variation is obtained as follows:

δJ̄(u(·)) =
[∂L(xk−1, xk−τk−1−1, xk, uk−1, uk−ωk−1−1, λk

)
∂xk

δxk

]
|k=kf

k=k0

+

kf−1∑
k=k0

[( ∂F

∂xk
− λk

)
δxk +

∂F

∂uk
δuk

+ δλk+1

(
G(xk, xk−τk , uk, uk−ωk

, k)− xk+1

)
+ λT

k+1

(
∂G

∂xk
δxk +

∂G

∂uk
δuk +

∂G

∂xk−τk

δxk−τk +
∂G

∂uk−ωk

δuk−ωk

)]
. (26)

Let

ψk =
∂G

∂xk−τk

, ηk =
∂G

∂uk−ωk

. (27)

Since xk is specified function for k ≤ k0, and τk : N −→ N, then

δxki−τki
= 0, for all ki ∈ [k0, kf − 1] and ki − τki

≤ 0; (28)

otherwise,

λTki+1ψki
= 0, ki − τki

> 0. (29)

Similar to equations (28) and (29), we have

δuki−ωki
= 0, for all ki ∈ [k0, kf − 1] and ki − ωki ≤ 0; (30)

otherwise,

λTki+1ηki
= 0, ki − ωki

> 0. (31)

Equation (26) can be rewritten as follows:

δJ̄(u(·)) =
[∂L(xk−1, xk−τk−1−1, xk, uk−1, uk−ωk−1−1, λk

)
∂xk

δxk

]
|k=kf

k=k0

+

kf−1∑
k=k0

[( ∂F
∂xk

− λk + λTk+1

∂G

∂xk

)
δxk +

( ∂F
∂uk

+ λTk+1

∂G

∂uk

)
δuk
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+ δλk+1

(
G(xk, xk−τk , uk, uk−ωk

, k)− xk+1

)
+ λTk+1ψkδxk−τk + λTk+1ηkδuk−ωk

]
. (32)

In (32), the coefficients δλk, δxk, and δuk must be zero in order to gain
the minimization of J̄(u(·)) and J(u(·)). Also, Euler–Lagrange equations are
derived from (29) and (31) as follows:

xk+1 = G
(
xk, xk−τk , uk, uk−ωk

, k
)
, k0 ≤ k ≤ kf , (33)


∂F

∂xk
− λk + λTk+1

∂G

∂xk
+ λTk+1ψk = 0, k − τk > 0,

∂F

∂xk
− λk + λTk+1

∂G

∂xk
= 0, O.W.,

(34)


∂F

∂uk
+ λTk+1

∂G

∂uk
+ λTk+1ηk = 0, k − ωk > 0,

∂F

∂uk
+ λTk+1

∂G

∂uk
= 0, O.W.,

(35)

with the following conditions:

xk = ϕk, k0 − τk0
≤ k ≤ k0, (36)

uk = Θk, k0 − ωk0
≤ k ≤ k0, (37)

∂L
(
xk−1, xk−τk−1−1, xk, uk−1, uk−ωk−1−1, λk

)
∂xk

|k=kf
= 0. (38)

3 Numerical examples

Some of the proposed features, including the efficiency and applicability of the
technique, are discussed in this section with numerical examples. Our first
example uses a non-autonomous DOCP with a time-varying state variable
to implement the suggested method. In the second example, we also present
the results of solving an autonomous DOCP with constant delays for state
and control variables by the introduced method, indicating that we can solve
optimal control problems with delays efficiently by this method.

Example 1. Consider the following cost functional:
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J =

14∑
k=0

(
x2k + u2k

)
, (39)

subject to non-autonomous recursive equation with time-varying delays

xk+1 = Akxk +A1kxk−τk +Bkuk, 0 ≤ k ≤ 14, (40)

and the following condition

xk = 1, k ≤ 0, (41)

where τk is the delay function satisfying τk > 0 for 0 ≤ k ≤ 14, and Ak = k,
A1k = 1, and Bk = 1. The approach presented in this article has been applied
to solve the DOCP with time-varying delays (39)–(41). The numerical results
of this example are shown when τk = 3 − k2. The Lagrange function L is
defined as follows:

L(k) =L
(
xk, xk+1, xk−τk , uk, k

)
=x2k + u2k + λk+1(xk + kxk−3+k2 + uk − xk+1). (42)

Therefore, the necessary conditions for the problem (39)–(41) are obtained
as follows:


xk+1 = xk + kxk−τk + uk, 0 ≤ k ≤ 14,{
2xk − λk + λk+1k + λk+1 = 0, k − 3 + k2 ≤ 0,
2xk − λk + λk+1k = 0, O.W.,

2uk + λk+1 = 0, 0 ≤ k ≤ 14.

(43)

Additionally, the following conditions contribute to obtain the solution:

xk = 1, k ≤ 0, (44)
λ15 = 0. (45)

The numerical results of state and control variables of Example 1 are
shown in Figure 1 when τk = 3 − k2. Also, we show the convergence
curve of the performance index function to illustrate the performance of the
proposed method, in Figure 2.
Example 2. Consider the following linear multi-delays time invariant prob-
lem to minimize the following functional:

J(u) =
1

2

100∑
k=0

(x2k +
1

2
u2k), (46)

subject to
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(a) State variable xk

(b) Control variable uk

Figure 1: Approximation of state and control variable of Example 1.

Figure 2: The convergence of performance index function of Example 1.
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xk = −xk + xk−τ + uk − 1

2
uk−ω, 0 ≤ k ≤ 100, (47)

and the following condition

xk = 1, k ≤ 0, (48)
uk = 0, k ≤ 0. (49)

Note that in this example,

τ = 6, ω = 8.

The Lagrange function is defined as follows:

L(k) =L
(
xk, xk+1, xk−τk , uk, uk−ωk

, k
)

=
1

2
x2k +

1

4
u2k + λk+1(−xk + xk−6 + uk − 1

2
uk−8 − xk+1). (50)

The following equations give the optimal solution:
xk+1 = −xk + xk−6 + uk − 1

2
uk−8 0 ≤ k ≤ 100,{

xk − λk − λk+1 + λk+1 = 0, k − 6 ≤ 0,
xk − λk − λk+1 = 0, O.W.,{
1
2uk + λk+1 − 1

2λk+1 = 0, k − 8 ≤ 0,
1
2uk + λk+1 = 0, O.W.,

(51)

with the boundary conditions:

xk = 1, k ≤ 0, (52)
uk = 0, k ≤ 0, (53)
λ100 = 0. (54)

The analytic solution to this problem is not available. In Figure 3, the state
and control variables of problem (46)–(48) are depicted. To demonstrate
the performance of the proposed method, we show the convergence curve of
the performance index function in Figure 4.

Example 3. Consider the following two-Dimensional nonlinear time-delays
autonomous problem to minimize the following functional:

J(u1(·), u2(·)) =
kf−1∑
k=0

(x21(k) + x22(k) + u21(k) + u22(k)), (55)

subject to

x1(k + 1) = x22(k − 2)− 0.2u1(k), 0 ≤ k ≤ kf − 1, (56)
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(a) State variable xk

(b) Control variable uk

Figure 3: Approximation of state and control variable of Example 2

Figure 4: Convergence of performance index function of Example 2.
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x2(k + 1) = x21(k − 2)− 0.2u2(k), 0 ≤ k ≤ kf − 1, (57)

and the following conditions

x1(k) = 1, −2 ≤ k ≤ 0, (58)
x2(k) = −1, −2 ≤ k ≤ 0. (59)

The following equations give the optimal solution:

L(k) =L
(
xk, xk+1, xk−τk , uk, k

)
=x21(k) + x22(k) + u21(k) + u22(k) + λ1(k + 1)(x22(k − 2)− 0.2u1(k))

+ λ2(k + 1)(x21(k − 2)− 0.2u2(k))− λ1(k + 1)x1(k + 1)

− λ2(k + 1)x2(k + 1), (60)

From equation (34)–(38), we get
∂F

∂x1(k)
− λ1(k) + λT1 (k + 1)

∂G

∂x1(k)
= 0, k − 2 ≤ 0,

∂F

∂x2(k)
− λ2(k) + λT2 (k + 1)

∂G

∂x2(k)
= 0, 0 < k − 2,

(61)

 2x1(k)− λ1(k) + λ1(k + 1)(2x2(k − 2)) = 0, k − 2 ≤ 0,

2x1(k)− λ1(k) = 0, 0 < k − 2,
(62)

 2x2(k)− λ2(k) + λ2(k + 1)(2x1(k − 2)) = 0, k − 2 ≤ 0,

2x2(k)− λ2(k) = 0, 0 < k − 2,
(63)

 2u1(k)− 0.2λ1(k + 1) = 0, k − 2 ≤ 0,

2u2(k)− 0.2λ2(k + 1) = 0, 0 < k − 2,
(64)

x1(k + 1) = x22(k − 2)− 0.2u1(k),

x2(k + 1) = x21(k − 2)− 0.2u1(k),
(65)

with the boundary conditions:

x1(k) = 1, −2 ≤ k ≤ 0, (66)
x2(k) = −1, −2 ≤ k ≤ 0. (67)
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(a) State variable x1(k)

(b) State variable x2(k)

Figure 5: Approximation of state variable of Example 3

The analytic solution to this problem is not available. In Figure 5, the state
variable of the problem (55)–(58) is depicted. Similar to the previous ex-
amples, we show the convergence curve of the performance index function in
Figure 7. Also, the control variable is illustrated in Figure 6.

4 Conclusion

By introducing a new Lagrange multiplier, the original DOCP with time-
varying delays problem has been transformed into DOCP problems without
time-delay terms to avoid solving the DOCP problem with time-delay terms.
In this regard, we utilized the discrete method to derive the new Euler–
Lagrange delay formula with a two-point boundary to solve DOCP with
time-varying delays. It is important to give a way to solve DOCP with time-
varying delays, according to its application. In this technique, we utilized
the variation method to construct the Euler–Lagrange formula with a two-
point boundary in order to solve DOCP with time-varying delays, which has
not been done before. Moreover, two illustrations were supplied to demon-
strate how the technique could be used. The performance index influenced
the DOCP problem of discrete time-delay systems, and also an approximate

IJNAO, Vol. 12, No. 3 (Special Issue), 2022, pp 719–738



An efficient design for solving discrete optimal control ... 735

(a) Control variable u1(k)

(b) Control variable u2(k)

Figure 6: Approximation of control variable of Example 3

Figure 7: Convergence of performance index function of Example 3.
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regulator was proposed. The simulation results showed that it is simple to
implement and robust.
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