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Abstract

A linearly implicit difference scheme for the space fractional coupled
nonlinear Schrödinger equation is proposed. The resulting coefficient ma-
trix of the discretized linear system consists of the sum of a complex scaled
identity and a symmetric positive definite, diagonal-plus-Toeplitz, matrix.
An efficient block Gauss–Seidel over-relaxation (BGSOR) method has been
established to solve the discretized linear system. It is worth noting that the
proposed method solves the linear equations without the need for any sys-
tem solution, which is beneficial for reducing computational cost and mem-
ory requirements. Theoretical analysis implies that the BGSOR method is
convergent under a suitable condition. Moreover, an appropriate approach
to compute the optimal parameter in the BGSOR method is exploited. Fi-
nally, the theoretical analysis is validated by some numerical experiments.
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1 Introduction

The Schrödinger equation is a crucial equation in quantum mechanics, a
science that studies submicroscopic phenomena. It can arise from the Brow-
nian path integral. In [6], the path integral method to the Lévy-α process
was generalized, and the space fractional equations were derived.

Consider the space fractional coupled nonlinear Schrödinger (CNLS)
equations{

ıut + ξ(−∆)
α
2 u + η

(
|u|2 + θ|v|2

)
u = 0,

ıvt + ξ(−∆)
α
2 v + η

(
|v|2 + θ|u|2

)
v = 0,

a1 ≤ x ≤ a2, 0 < t < T.

(1)
Given the conditions of the initial boundary value as follows:

u(x, 0) =u0(x), v(x, 0) = v0(x), a1 ≤ x ≤ a2,

v(a1, t) =u(a2, t) = 0, v(a1, t) = v(a2, t) = 0, 0 ≤ t ≤ T,

where ı is the imaginary unit, ξ > 0, η > 0, θ ≥ 0 are some constants,
and 1 < α < 2. In [5], the fractional Laplacian was designated as

(−∆)
α
2 u(x, t) = H −1 (|ϕ|αH (u(x, t))) ,

in which H stands for the Fourier transform applied to the spatial variable x.
Assuming that −∞Dα

xu(x, t) and xD
α
+∞u(x, t) are the left and right Riemann–

Liouville fractional derivatives of order α ∈ R+ given by

−∞Dα
xu(x, t) =

1

Γ(n− α)

∂n

∂xn

∫ x

−∞
(x− µ)n−1−αu(µ, t)dµ,

xD
α
+∞u(x, t) =

1

Γ(n− α)

∂n

∂xn

∫ +∞

x

(µ− x)n−1−αu(µ, t)dµ,

respectively, the Riesz fractional derivative can be calculated as

∂α

∂|x|α
u(x, t) = −(−∆)

α
2 u(x, t) = − 1

2 cos πα
2

[
−∞Dα

xu(x, t) + xD
α
+∞u(x, t)

]
.

In general, analyzing and understanding the behavior of the exact solu-
tions of the space fractional CNLS equations is so challenging. In recent years,
some numerical methods have been proposed to solve the CNLS equations.
The difference method [12, 13, 11], the Crank–Nickelson scheme [1], and the
collocation method [2] have been presented to solve the CNLS equations.

The discretization of the CNLS equations leads to the solution of the com-
plex symmetric linear systems. The coefficient matrix consists of the sum of
the symmetric positive definite, diagonal-plus-Toeplitz, matrix and the com-
plex identity scaled matrix. Recently, Dai and Wu [4] developed a suited 2×2
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linear system and employed the block Gauss–Seidel (BGS) iteration scheme
to solve the resulting linear systems. Then they analyzed the convergence
of the BGS scheme for the corresponding 2×2 linear system. In this work,
we establish a fast block Gauss–Seidel over-relaxation (BGSOR) scheme for
solving the two-by-two linear system that arises from the discretization of
CNLS equations. Notably, the new method allows the corresponding sys-
tems to be solved without the need to compute the inverse of the coefficient
matrices. Moreover, it should be pointed out that the BGS method can be
regarded as a special case of the new method when the relaxation parameter
is set to be one.

The arrangement of this work is as follows. In Section 2, the model
problem will be studied, and a linearly implicit difference technique will be
presented. Application, convergence theory, and finding the optimal param-
eter for the BGSOR method are proposed in Section 3. Section 4 is devoted
to giving some numerical examinations. In Section 5, we finally made some
conclusions.

2 Model problem and a linearly implicit difference
scheme

The domain Ω = (a1, a2)×(0, T ) is divided into a uniform grid of mesh points
(xj , tk), where

xj = a1 + jh, h =
a2 − a1
m+ 1

, 0 ≤ j ≤ m+ 1,

and
tk = kτ, τ =

T

n
, 0 ≤ k ≤ n.

At grid points, the values of functions u(x, t), v(x, t) are, respectively, denoted
by ukj = u(xj , tk), vkj = v(xj , tk), and U k

j ,V k
j are the approximate solutions

of (1).
The following equation gives a discrete approximation to ∂α

∂|x|α u(x, t) [10]:

∂α

∂|x|α
u(xj , tk) = −Ψα

hα

[ ∞∑
l=0

w̃
(α)
k u(xj−l+1, tk)+

∞∑
l=0

w̃
(α)
k u(xj+l−1, tk)

]
+O(h2),

(2)
where Ψα = 1

2 cos(πα
2 ) and {w̃α

k } is defined as follows:

w̃
(α)
0 =

α

2
g
(α)
0 , w̃

(α)
l =

α

2
g
(α)
l +

(
1− α

2

)
g
(α)
l−1, l ≥ 1,

g
(α)
0 = 1, g

(α)
l =

(
1− α+ 1

l

)
g
(α)
l−1, l = 1, 2, . . . .
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Ortigueira [7] proposed the following fractional central difference operator:

∆α
hu(x) =

∞∑
l=−∞

ĝ
(α)
l u(x− lh),

where
ĝ
(α)
l =

(−1)kΓ(α+ 1)

Γ(α2 − l + 1)Γ(α2 + l + 1)
.

As stated in [7], the coefficient {ĝ(α)l } satisfies∣∣∣∣2 sin(x

2

)∣∣∣∣2 =

∞∑
l=−∞

ĝ
(α)
l eılx, x ∈ R.

When α > −1, the recursive relations for {ĝ(α)l } are as follows:

ĝ
(α)
0 =

Γ(α+ 1)

Γ2(α/2 + 1)
, ĝ

(α)
l =

(
1− α+ 1

α/2 + l

)
ĝ
(α)
l−1, l ≥ 1;

ĝ
(α)
−l = ĝ

(α)
l , l ≥ 1.

Lemma 1. [10] Assume that u(x) ∈ C5(R) and that its all derivatives of
order up to 5 belong to L1(R). Then, it holds

−∆α
hu(x)

hα
=

∂αu(x)

∂|x|α
+O(h2). (3)

From Lemma 1, it follows that

(−∆)
α
2 u(xj , tk) =

∆α
hu(x)

hα
+O(h2) =

1

hα

M∑
l=1

ĝ
(α)
j−l(xj , tk) +O(h2).

Now, we consider the following numerical scheme for solving (1) [12]:

ı
U k+1

j − U k−1
j

2τ
+

γ

hα

m∑
l=1

ĝ
(α)
j−l

(
U k+1

l + U k−1
l

2

)
+ ρ

(
|U k

j |2 + β|V k
j |2

)
+

U k+1
l + U k−1

l

2
= 0,

ı
V k+1
j − V k−1

j

2τ
+

γ

hα

m∑
l=1

ĝ
(α)
j−l

(
V k+1
l + V k−1

l

2

)
+ ρ

(
|V k

j |2 + β|U k
j |2

)
+

V k+1
l + V k−1

l

2
= 0,

(4)
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where 1 ≤ j ≤ m, 1 ≤ k ≤ n − 1. Another scheme should be provided for
the numerical solution at k = 1. We consider the following scheme for this
purpose (see [3]):

ı
U 1

j − U 0
j

τ
+

γ

hα

m∑
l=1

ĝ
(α)
j−lU

(1)
l + ρ

(
|U 0

j |2 + β|V 0
j |2

)
U 1

j = 0,

ı
V 1
j − V 0

j

τ
+

γ

hα

m∑
l=1

ĝ
(α)
j−lV

1
l + ρ

(
|V 0

j |2 + β|U 0
j |2

)
V

(1)
j = 0,

ı
U 1

j − U 0
j

τ
+

γ

hα

m∑
l=1

ĝ
(α)
j−l

(
U 1

l + U 0
l

2

)

+ ρ

(
3

2
|U 1

j |2 −
1

2
|U 0

j |2 + β

(
3

2
|V (1)

j |2 −
1

2
|V 0

j |2
))

U 1
j + U 0

j

2
= 0,

ı
V 1
j − V 0

j

τ
+

γ

hα

m∑
l=1

ĝ
(α)
j−l

(
V 1
l + V 0

l

2

)

+ ρ

(
3

2
|V 1

j |2 −
1

2
|V 0

j |2 + β

(
3

2
|U 1

j |2 −
1

2
|U 0

j |2
))

V 1
j + V 0

j

2
= 0.

The structure of the first and second difference equations in (4) is the same.
Set

U k+1 =[U k+1
1 , . . . ,U k+1

m ]T , bk+1 = [bk+1
1 , . . . , bk+1

m ]T ,

µ =
ξτ

hα
, dk+1

j = ητ
(
|U k

j |2 + β|V k
j |2

)
, Dk+1 = diag(dk+1

1 , . . . , dk+1
m ).

So, at each time step, we need to solve the following systems of linear equa-
tions:

Ak+1U k+1 = bk+1, 1 ≤ k ≤ n− 1,

Bk+1V k+1 = ck+1, 1 ≤ k ≤ n− 1,
(5)

where Ak+1 = T +Dk+1 + ıI and bk+1 is as follows:

bk+1 =



ıU k−1
1 − µ

m∑
l=1

ĝ
(α)
1−lU

k−1
l − dk+1

1 U k−1
1

ıU k−1
2 − µ

m∑
l=1

ĝ
(α)
2−lU

k−1
l − dk+1

2 U k−1
2

...

ıU k−1
m−1 − µ

m∑
l=1

ĝ
(α)
m−1−lU

k−1
l − dk+1

m−1U
k−1
m−1

ıU k−1
m − µ

m∑
l=1

ĝ
(α)
m−lU

k−1
l − dk+1

m U k−1
m


.

Moreover, T is the Toeplitz matrix, which has the following structure:
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T = µ


ĝ
(α)
0 ĝ

(α)
−1 · · · ĝ(α)2−m ĝ

(α)
1−m

ĝ
(α)
1 ĝ

(α)
0 · · · ĝ(α)3−m ĝ

(α)
2−m

...
... . . . ...

...
ĝ
(α)
m−2 ĝ

(α)
m−3 · · · ĝ

(α)
0 ĝ

(α)
−1

ĝ
(α)
m−1 ĝ

(α)
m−2 · · · ĝ

(α)
1 ĝ

(α)
0

 . (6)

Also, it should be noted that Bk+1 and ck+1 can be obtained by changing
the roles of U and V in Ak+1 and bk+1.

3 The BGSOR iteration method

To establish the BGSOR iteration method, we need to give some preliminar-
ies. Let us first consider the iterative solution of the linear equation

AU = b, (7)

in which A ∈ Cℓ×ℓ is a nonsingular complex symmetric matrix as follows:

A = T +D + ıI,

where T is the symmetric positive definite (SPD) and Toeplitz matrix des-
ignated in (6), D = diag(d1, d2, . . . , dℓ) with di ≥ 0, i = 1, 2, . . . , ℓ, is the
diagonal matrix, U, b ∈ Cℓ. Let U = x + ıy and b = f + ıg be complex
vectors, where y, z, p, q ∈ Rℓ. So, the system can be rewritten as a particular
form, namely,

A x ≡
(
−I Q
Q I

)(
y
x

)
=

(
f
g

)
≡ P, (8)

where Q = D + T. We are now in a position to design a new method for
solving (8).

To introduce the BGSOR iteration method, we consider the following
decomposition for the coefficient matrix (8):

A = (ωD − E )− (E T − (1− ω)D) =: M − N , (9)

where
D =

(
−I 0
0 I

)
, E =

(
0 0

−Q 0

)
,

and ω is a positive parameter, which is known as the relaxation parameter.
Using the decomposition (9), the BGSOR iteration method is stated as

M z(k+1) = N z(k) + P, k = 0, 1, 2, . . . ,
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where M and N are defined as (9), and z(k) = (y(k);x(k)).Note that y(k) and
x(k) are two M -vectors that stand for the iterations. Also, z(0) is an arbitrary
initial guess. Thereupon, the iterations take the following procedure:{

y(k+1) = 1
ω

(
(ω − 1)y(k) +Qx(k) − f

)
,

x(k+1) = 1
ω

(
(ω − 1)x(k) + g −Qy(k+1)

)
.

(10)

As can be seen, there is not any system solution in each iteration, and only
two matrix-vector multiplication are needed. This can be very important
because the new scheme requires insignificant computational efforts and just
contains the matrix-vector multiplications. Furthermore, if ω = 1, then the
iteration scheme (10) reduces to{

y(k+1) = Qx(k) − f,

x(k+1) = g −Qy(k+1),
(11)

which is presented in [4] and known as the BGS iteration method. Therefore,
the BGS iteration method is a special case of the BGSOR iteration method.

Next, we investigate the convergence of the BGSOR method for solving
(8), and then we obtain the optimal value of the relaxation parameter ω. In
the following, we recall a result that will be useful later.

Lemma 2. [14] Suppose that the quadratic equation x2 − px+ q = 0, where
p and q are real numbers. Both roots of the equation are less than one in
modulus if and only if |q| < 1 and |p| < 1 + q.

Theorem 1. Consider A = D + T + ıI ∈ Rℓ×ℓ as a matrix, where D and
T are diagonal and Toeplitz SPD matrices, respectively. The necessary and
sufficient condition for convergence of the BGSOR iteration method to the
solution of (8) for any initial guess, is

ω >
1 + µmax(Q)

2
,

where µmax(Q) is the largest eigenvalue of Q.

Proof. Let λ be an eigenvalue of the iteration matrix G = M−1N , and let
x = [u;v] be the corresponding eigenvector. Without loss of generality, let
λ ̸= 0. Then

(D − ωE )−1(E T − (1− αD))x = λx,

equivalently,

(1− ω)u−Qv =− λωu, (12)
(ω − 1)v =λ(Qu+ ωv). (13)

We can derive from (12) and the positive definiteness of Q that
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v = ((λ− 1)ω + 1)Q−1u. (14)

Substituting (14) into (13), gives

−λQ2u = ((λ− 1)ω + 1)2u. (15)

This shows that if µ is an eigenvalue of Q, then

λµ2 =− ((λ− 1)ω + 1)
2 (16)

=− (λ2ω2 + 2ω(1− ω)λ+ (ω − 1)2). (17)

From (17), we get

λ2 −
(
2ω2 − 2ω − µ2

ω2

)
λ+ (

ω − 1

ω
)2 = 0. (18)

Now it follows from Lemma 2 that |λ| < 1 if and only if

|ω − 1| < ω,

|2ω2 − 2ω − µ2|7 < 2ω2 − 2ω + 1.

It is straightforward to see that |ω − 1| < ω is equivalent to ω > 1
2 . By some

easy manipulations, we can observe, whenever

(2ω − 1)2 > µ2, (19)

the second inequality holds. The inequality (19) is ensured, if

|2ω − 1| > µ or |2ω − 1| < −µ,

equivalently,
ω <

1− µ

2
or ω >

1 + µ

2
. (20)

Evidently, the first inequality of (20) cannot be true. On the other hand,
holding the second inequality of (20) ensures ω > 1

2 , and then it completes
the proof.

In the following, we would like to find the optimal value of the relaxation
parameter ω, denoted by ω∗. To do so, ω∗ should be computed to minimize
the spectral radius of the iteration matrix of the BGSOR method, that is,

ρ (Gω∗) = arg min
ω>

1+µmax(Q)
2

ρ (Gω) .

To compute the optimal value of w, we state and prove the next theorem.

Theorem 2. Assume that the hypothesis of Theorem 1 are met. Then the
optimal value of the relaxation parameter and the corresponding optimal

IJNAO, Vol. 12, No. 3 (Special Issue), 2022, pp 704–718
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convergence factor in the BGSOR iteration method are as follows:

ω∗ =
1

2

(
1 +

√
1 + ρ2(Q)

)
, (21)

and
ρ (Gω∗) = 1− 1

ω∗ =

(
ρ(Q)

1 +
√

1 + ρ2(Q)

)2

.

Proof. If λ is an eigenvalue of the iteration matrix Gω, then λ < 0 or λ ∈
C \ R, according to (16). First, we consider the case λ < 0. So, there exists
an eigenvalue µ of Q such that (18) holds true. The discriminant of this
quadratic equation is

∆ =

(
2ω2 − 2ω − µ2

ω2

)2

− 4

(
ω − 1

ω

)2

,

and the roots of (18) are as follows:

λ1,2(ω) =
2ω2 − 2ω − µ2

2ω2
±

√
∆

2
.

From (16), we get
(λ− 1)ω + 1 = ±µ

√
−λ. (22)

Set

fω(λ) =(λ− 1)ω + 1 = ωλ+ 1− ω,

g(λ) =± µ
√
−λ.

Clearly, the function fω passes through the point (1, 1), that is, fω(1) = 1
and the slope of fω(λ) is ω. Figure 1 displays the points of intersections of
the functions fω(λ) and g(λ) for an arbitrary value of ω. This figure shows
that by increasing ω, the maximum of absolute values of the abscissas of the
points of intersection of the functions fω(λ) and g(λ), that is, max{λ1, λ2},
decrease, while fω(λ) gets tangent to g(λ). In the tangent case, we have
λ1 = λ2, and it indicates that ∆ = 0. From ∆ = 0, it is straightforward to
verify that µ = 0 or 4ω2−4ω−µ2 = 0. The case µ = 0 is impossible, because
of the positive definiteness of Q. Thus, 4ω2 − 4ω − µ2 = 0. This quadratic
equation has two roots, as follows:

ω± =
1

2

(
1±

√
1 + µ2

)
.

Due to the condition ω > 1+µmax(Q)
2 , ω− is not acceptable. So, we consider

ω+ =
1

2

(
1 +

√
1 + µ2

)
,

IJNAO, Vol. 12, No. 3 (Special Issue), 2022, pp 704–718
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and in this case, we have

λ1 = λ2 = λ+ =
1

ω+
− 1.

Now suppose that ω > ω+. In this case, the roots of the quadratic equation
(18) are complex and conjugate, which are as follows:

λ1,2(ω) =
−2ω2 + 2ω + µ2

2ω2
± ı

√
∆′

2
,

where

∆′ = 4

(
ω − 1

ω

)2

−
(
2ω2 − 2ω − µ2

ω2

)2

.

Then
|λ1,2| = 1− 1

ω
.

By recalling that ω > ω+ and having in mind that w+ > 1, we have

1− 1

ω+
< 1− 1

ω
,

and this shows that ω+ is the best choice for ω. On the other hand, the curve
g(λ) = ±ρ(Q)

√
−λ serves an upper bound for each curve as ±µ

√
−λ, where

0 ≤ µ ≤ ρ(Q). Summarizing the above results, we see that

ρ (Gω∗) = min
ω

max
ω> 1+µmax

2

|1− 1

ω
| = 1− 1

ω∗ =

(
ρ(Q)

1 +
√

1 + ρ2(Q)

)2

,

where ω∗ was considered as in (21).

Remark 1. In Theorem 2, for computing ω∗, we need to compute ρ(q). One
may use a few iterations of the power method to compute λmax(Q). On the
other hand, because of positive definiteness of Q, we have

ρ(Q) = λmax(Q) = ∥Q∥2.

So, we can compute ∥Q∥2 instead of ρ(Q). In practice, the normest command
of Matlab can be used to compute an estimation of ∥Q∥2.

4 Numerical experiments

This section is devoted to numerical experiments to evaluate the effectiveness
of the BGSOR iteration scheme for solving linear systems (8). The numerical
results of the proposed method are compared with those of the GMRES [8, 9]

IJNAO, Vol. 12, No. 3 (Special Issue), 2022, pp 704–718
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λ

(1, 1)

λ1

••
λ2

g
fω

Figure 1: The graph of the functions fω(λ) and g(λ).

performed for each test, and then the average of CPU times and iterations
are reported (The average of the iteration numbers were rounded). For the
BGSOR method, the optimal parameter is computed according to the rule
(21). The numerical results were carried out under Matlab-R2017 on a
laptop running Windows 10 and an Intel (R) Core(TM) i5-8265U CPU @
1.60 GHz 8 GB.

Example 1. Let θ = 0. The system (1) is then decoupled and becomes

ıut + (−∆)
α
2 u + 2|u|2u = 0,

when the initial value

u(x, 0) = sech(x) · exp(2ıx),

is applied. In this example, the original problem was truncated in [−20, 20].
Set u(−20, t) = u(20, t) = 0. For this problem, we choose the parameters
ξ = 1.3 and η = 1.2.

We set m = 800, 1600, 3200, 6400 and examine two values of α, α =
1.3, 1.6. When α = 1.3, we set n = 4m; otherwise, we choose n = 6m. The
optimal values of the relaxation parameter in the BGSOR method for α = 1.3
are given in Table 1, and the ones for α = 1.6 are given in Table 3.

In Tables 2 and 4, we have listed the numerical results at t = 2. From
these tables, we observe that the BGSOR method is superior to the examined
methods in terms of both the iterations and the elapsed CPU times.

Example 2. For the following coupled system with θ ̸= 0:

11

Figure 1: The graph of the functions fω(λ) and g(λ).

and the BGS methods. In all the test problems, we use the restart version
of GMRES with a restarting number 10. The initial guess is assumed to be
a random vector, and iterations are terminated when

Res =
∥rk∥2
∥r0∥2

< 10−9,

where rk = P − A z(k) is the residual at the kth iteration or if the maximum
number of iterations maxit = 1000 is exceeded. The terms “IT” and “CPU”
in the tables refer to the total number of iterations and the elapsed CPU time
in seconds for convergence, respectively. We comment that five runs were
performed for each test, and then the average of CPU times and iterations
are reported (The average of the iteration numbers were rounded). For the
BGSOR method, the optimal parameter is computed according to the rule
(21). The numerical results were carried out under Matlab-R2017 on a
laptop running Windows 10 and an Intel (R) Core(TM) i5-8265U CPU @
1.60 GHz 8 GB.

Example 1. Let θ = 0. The system (1) is then decoupled and becomes

ıut + (−∆)
α
2 u + 2|u|2u = 0,

when the initial value

u(x, 0) = sech(x) · exp(2ıx),

is applied. In this example, the original problem was truncated in [−20, 20].
Set u(−20, t) = u(20, t) = 0. For this problem, we choose the parameters
ξ = 1.3 and η = 1.2.
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Table 1: The optimal parameters ω∗ for BGSOR method with α = 1.3 and n = 4m at
t = 2 for Example 1.

ℓ 800 1600 3200 6400
ω∗ 1.002 1.004 1.006 1.009

We set m = 800, 1600, 3200, 6400 and examine two values of α, α =
1.3, 1.6. When α = 1.3, we set n = 4m; otherwise, we choose n = 6m. The
optimal values of the relaxation parameter in the BGSOR method for α = 1.3
are given in Table 1, and the ones for α = 1.6 are given in Table 3.

In Tables 2 and 4, we have listed the numerical results at t = 2. From
these tables, we observe that the BGSOR method is superior to the examined
methods in terms of both the iterations and the elapsed CPU times.

Table 2: Numerical results with α = 1.3 and n = 4m at t = 2 for Example 1.

Method ℓ 800 1600 3200 6400

BGSOR IT 5 5 5 5
CPU 0.016 0.051 0.171 0.955

BGS IT 5 6 6 7
CPU 0.018 0.072 0.228 1.705

GMRES(10) IT 6 7 7 7
CPU 0.080 0.112 0.352 3.610

Example 2. For the following coupled system with θ ̸= 0:

{
ıut + (−∆)

α
2 u + 2

(
|u|2 + |v|2

)
u = 0,

ıvt + (−∆)
α
2 v + 2

(
|v|2 + |v|2

)
v = 0,

− 20 ≤ x ≤ 20, 0 < t ≤ 2.

(23)
We will use{
u(x, 0) = sech(x+D0) · exp(ıv0x), v(x, 0) = sech(x−D0) · exp(−ıv0x),

u(−20, 0) = u(20, 0) = 0, v(−20, 0) = v(20, 0) = 0,

(24)
as the initial conditions. In this case, we choose the parameters D0 = 1,
v0 = 2, ξ = 1.4, and η = 1.2.

The discretization of the coupled system of (23) leads to the solution
of the linear systems of equations of the form (5). We assume that these
coefficient matrices are A and B. These matrices have the same structure.
Tables 5 and 7 show the optimal values of the relaxation parameter of A and
B in the BGSOR method for different values of α and m.
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Table 3: The optimal parameters ω∗ for the BGSOR method with α = 1.6 and n = 6m

at t = 2 for Example 1.

ℓ 800 1600 3200 6400
ω∗ 1.010 1.022 1.050 1.108

Table 4: Numerical results with α = 1.6 and n = 6m at t = 2 for Example 1.

Method ℓ 800 1600 3200 6400

BGSOR IT 6 7 8 10
CPU 0.018 0.068 0.311 2.015

BGS IT 7 9 14 28
CPU 0.022 0.093 0.571 4.462

GMRES(10) IT 8 9 10 13
CPU 0.112 0.185 0.235 6.941

In Tables 6 and 8, we report the results for the BGSOR, BGS, and GM-
RES(10) iterative methods at t = 2. These results clearly show that the
BGSOR method leads to a faster overall convergence time than the other ex-
amined methods. Besides, the BGSOR method gets less iteration numbers.

Table 5: The optimal parameters ω∗ of A and B for the BGSOR method with α = 1.3

and n = 4m at t = 2 for Example 2.

ℓ 800 1600 3200 6400
ω∗(A) 1.002 1.004 1.006 1.008
ω∗(B) 1.002 1.004 1.006 1.008

Table 6: Numerical results with α = 1.3 and n = 4m at t = 2 for Example 2.

Method ℓ 800 1600 3200 6400
A B A B A B A B

BGSOR IT 5 5 5 5 5 5 5 5
CPU 0.013 0.010 0.052 0.023 0.173 0.145 0.938 0.841

BGS IT 5 5 6 6 6 6 7 7
CPU 0.020 0.014 0.069 0.064 0.213 0.228 1.641 1.145

GMRES(10) IT 6 6 7 7 7 7 8 8
CPU 0.064 0.017 0.093 0.049 0.155 0.139 2.812 1.377

5 Conclusion

In this paper, the BGSOR scheme has been presented to solve the com-
plex symmetric linear systems deriving from the discretization of the space
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Table 7: The optimal parameters ω∗ of A and B for the BGSOR method with α = 1.6

and n = 6m at t = 2 for Example 2.

ℓ 800 1600 3200 6400
ω∗(A) 1.010 1.022 1.050 1.122
ω∗(B) 1.010 1.022 1.050 1.122

Table 8: Numerical results with α = 1.6 and n = 6m at t = 2 for Example 2.

Method ℓ 800 1600 3200 6400
A B A B A B A B

BGSOR IT 6 6 7 7 9 9 10 10
CPU 0.021 0.017 0.071 0.069 0.346 0.248 1.941 2.003

BGS IT 7 7 10 10 15 15 35 35
CPU 0.025 0.020 0.106 0.112 0.607 0.592 6.832 5.483

GMRES(10) IT 8 8 9 9 11 11 13 13
CPU 0.088 0.061 0.093 0.082 0.448 0.412 3.376 3.251

fractional CNLS equation. We have analyzed the convergence theory of the
method, and we have shown that the method is convergent under a suitable
condition. The optimal value of the relaxation parameter and the rate of
convergence factor for the BGSOR method were also provided. Our results
have verified that the BGSOR method performs better than some existing
methods.
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