# Numerical method for solving fractional Sturm–Liouville eigenvalue problems of order two using Genocchi polynomials

Document Type : Research Article

Authors

Department of Mathematics, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

Abstract

A new numerical scheme based on Genocchi polynomials is constructed to solve fractional Sturm–Liouville problems of order two in which the fractional derivative is considered in the Caputo sense. First, the differen-tial equation with boundary conditions is converted into the corresponding integral equation form. Next, the fractional integration and derivation op-erational matrices for Genocchi polynomials, are introduced and applied for approximating the eigenvalues of the problem. Then, the proposed polynomials are applied to approximate the corresponding eigenfunctions. Finally, some examples are presented to illustrate the eﬀiciency and accu-racy of the numerical method. The results show that the proposed method is better than some other approximations involving orthogonal bases.

Keywords

Main Subjects

#### References

[1] Abbasbandy, S. and Shirzadi, A. Homotopy analysis method for multiplesolutions of the fractional Sturm–Liouville problems, Numer. Algorithms 54 (4) (2010) 521–532.
[2] Agarwal, R., Benchohra, M. and Hamani, S. A survey on existence re-sults for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math. 109(3) (2010) 973–1033.
[3] Akbarfam, A.J. and Mingarelli, A. Duality for an indefinite inverse Sturm–Liouville problem, J. Math. Anal. Appl. 312(2) (2005) 435–463.
[4] Al-Mdallal, Q. An eﬀicient method for solving fractional Sturm–Liouville problems, Chaos Solitons Fractals 40(1) (2009) 183–189.
[5] Al-Mdallal, Q. On the numerical solution of fractional Sturm–Liouville problems, Int. J. Comput. Math. 87(12) (2010)  837–2845.
[6] Al-Refai, M. Basic results on nonlinear eigenvalue problems of fractional order, Electron. J. Differential Equations 2012, No. 191, 12 pp.
[7] Antunes, P. and Ferreira, R.A. An augmented-RBF method for solving fractional Sturm-Liouville eigenvalue problems, SIAM J. Sci. Comput. 37(1) (2017) A515–A535.
[8] Asl, M. and Javidi, M. An improved pc scheme for nonlinear fractional differential equations: Error and stability analysis, J. Comput. Appl. Math. 324 (2017) 101–117.
[9] Atkinson, F.V. and Mingarelli, A.B. Multiparameter eigenvalue prob-lems: Sturm-Liouville theory, CRC Press, 2010.
[10] Bas, E. and Metin, F. Spectral analysis for fractional hydrogen atom equation, Adv. Pure Appl. Math. 5(13) (2015) 767.
[11] Blaszczyk, T. and Ciesielski, M. Numerical solution of fractional Sturm–Liouville equation in integral form, Fract. Calc. Appl. Anal. 17(2) (2014) 307–320.
[12] Dehghan, M. and Mingarelli, A. Fractional Sturm–Liouville eigenvalue problems, I. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RAC-SAM 114(2) (2020) Paper No. 46, 15 pp.
[13] El-Sayed, A. and Gaafar, F. M. Existence and uniqueness of solution for Sturm–Liouville fractional differential equation with multi-point bound-ary condition via Caputo derivative, Adv. Difference Equ. 2019(1) (2019) 1–17.
[14] Fix, G. and Roof, J. Least squares finite-element solution of a fractional order two-point boundary value problem, Comput. Math. Appl. 48(7-8) (2004) 1017–1033.
[15] Hani, R.M. Existence and uniqueness of the solution for fractional sturm–liouville boundary value problem, Coll. Basic Educ. Res. J. 11(2) (2011) 698–710.
[16] Isah, A. and Phang, C. Operational matrix based on Genocchi polyno-mials for solution of delay differential equations, Ain Shams Eng. J. 9(4) (2018) 2123–2128.
[17] Isah, A., Phang, C. and Phang, P. Collocation method based on Genocchi operational matrix for solving generalized fractional pantograph equa-tions, Int. J. Differ. Equ. 2017, Art. ID 2097317, 10 pp.
[18] Jin, B., Lazarov, R., Pasciak, J. and Rundell, W. A finite element method for the fractional Sturm–Liouville problem, arXiv preprint arXiv:1307.5114 (2013).
[19] Jin, B. and Rundell, W. An inverse Sturm–Liouville problem with a fractional derivative, J. Comput. Phys. 231(14) (2012) 4954–4966.
[20] Kexue, L. and Jigen, P. Laplace transform and fractional differential equations, Appl. Math. Lett. 24(12) (2011) 2019–2023.
[21] Klimek, M. and Blasik, M. Regular Sturm–Liouville problem with Riemann–Liouville derivatives of order in (1, 2): discrete spectrum, solutions and applications, in: Advances in Modelling and Control of Non-Integer-Order Systems (2015) 25–36, Springer, Cham.
[22] Luchko, Y. Initial–boundary-value problems for the one-dimensional time-fractional diffusion equation, Fract. Calc. Appl. Anal. 15(1) (2012) 141–160.
[23] Luo, W., Huang, T., Wu, G. and Gu, X. Quadratic spline collocation method for the time fractional subdiffusion equation, Appl. Math. Com-put. 276 (2016) 252–265.
[24] Luo, W., Li, C., Huang, T., Gu, X. and Wu, G. A high-order accu-rate numerical scheme for the Caputo derivative with applications to
fractional diffusion problems, Numer. Funct. Anal. Optim. 39(5) (2018) 600–622.
[25] Metzler, R. and Klafter, J. Boundary value problems for fractional dif-fusion equations, Physica A 278 (1-2) (2000) 107–125.
[26] Metzler, R. and Nonnenmacher, T. Space-and time-fractional diffusion and wave equations, fractional Fokker–Planck equations, and physical motivation, Coll. Basic Educ. Res. J. 284 (1-2) (2002) 67–90.
[27] Mirzaei, H. Computing the eigenvalues of fourth order Sturm–Liouville problems with lie group method, Iranian Journal of Numerical Analysis and Optimization 7(1) (2017) 1–12.
[28] Phang, C., Ismail, N.F., Isah, A., Loh, J.R. A new eﬀicient numerical scheme for solving fractional optimal control problems via a Genocchi operational matrix of integration, J. Vib. Control 24(14) (2018) 3036–3048.
[29] Podlubny, I. Fractional differential equations, Academic Press, San Diego, Calif, USA, 1999.
[30] Rossikhin, Y. and Shitikova, M. Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results, Appl. Mech. Rev. 63 (1) (2010) 010801.
[31] Sadabad, M. K. and Akbarfam, A.J. An eﬀicient numerical method for estimating eigenvalues and eigenfunctions of fractional Sturm–Liouville
problems, Math. Comput. Simulation 185 (2021) 547–569.
[32] Tohidi, E., Bhrawy, A. and Erfani, K. A collocation method based on
Bernoulli operational matrix for numerical solution of generalized pan-
tograph equation, Appl. Math. Model. 37(6) (2013) 4283–4294.
[33] Zayernouri, M. and Karniadakis, G. Fractional Sturm–Liouville eigen-
problems: theory and numerical approximation, J. Comput. Phys. (2013)
495–517.
[34] Zhang, S. Existence of solution for a boundary value problem of fractional
order, Acta Math. Sci. 26(2) (2006) 220–228.