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On a class of Bézier-like model for
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Abstract

A class of Bernstein-like basis functions, equipped with a shape param-
eter, is presented. Employing the introduced basis functions, the corre-
sponding curve and surface in rectangular patches are defined based on
some control points. It is verified that the new curve and surface have
most properties of the classical Bézier curves and surfaces. The shape
parameter helps to adjust the shape of the curve and surface while the
control points are fixed. We prove that the proposed Bézier-like curves
can preserve monotonicity and that Bézier-like surfaces can preserve axial
monotonicity. Moreover, the presented curves and surfaces preserve bound
constraints implied by the original data.
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1 Introduction

In computer-aided geometric design (CAGD) and computer graphics, curves
are often constructed by the following relation:
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C(t) =

n∑
i=0

Fi(t)Pi, t ∈ [a, b] ⊆ R, n ∈ N, (1)

where the real functions {Fi} are known as blending functions, {Pi} ⊆ Rs

are control points (s ≥ 2), and the polyline constructed by control points is
called the control polygon. One of the most important blending functions
are the Bernstein polynomials, which in turn lead to well-known classical
Bézier curves. They have a simple structure and are widely used in many
engineering and technology fields.

In a classical Bézier curve, once the control points are fixed, the shape
of the curve cannot be changed. This is a drawback that reduces the shape
adjustment and therefore limits their applicability. In order to overcome this
deficiency, many researchers have tried to construct basis functions equipped
with shape parameter(s) to create new curves whose structures and properties
are similar to the Bézier curves, besides they also have the shape adjustment
property [6, 13, 16, 17, 19, 21, 22, 23, 30]

In curves with shape parameter(s), by changing the parameter(s), the
curve either approaches to the control polygon [17, 18, 19], or moves away
from it [20, 31]. Another difference between parameter based curves origi-
nates from their construction, some basis functions are defined by a recur-
sive formula [23, 22, 5, 20, 32], while others are based on a general formula
[17, 19, 16, 18, 24, 8].

Here, we propose a new family of parameter based blending functions
by using square roots of polynomials. Thus we call them sq-basis functions.
The new blending functions are generated from three initial basis functions
employing a recursive relation. This is a procedure that could be traced back
in the literature [5, 22, 23, 32]. The corresponding Bézier-like curves, which in
turn are referred to sq-curves, are in common with the classical Bézier curves
in many features such as geometric invariance, endpoint interpolation, formal
symmetry, and convex hull property. The sq-basis functions are equipped
with one shape parameter, which can adjust the shape of the curve, and they
would either move closer to or away from the control polygon. In the sq-
curves with three control points, by altering the shape parameter, one would
see a family of curves traveling from the control polygon to the straight line
joining the first and last control point. In comparison to previously defined
blending functions with the same structure, sq-curves show a higher rate of
change by employing just one shape parameter, and this could be considered
as an advantage. The construction could be extended to surfaces [11, 14],
which share the most common features of Bézier surfaces.

Once we have a suitable model for data approximation, one can apply it
in a shape-preserving approximation. Shape-preserving approximation is de-
fined to be a method of constructing a curve (surface), which also preserves
the shape implied by the data. It is known as an essential curve/surface
design technique in CAD/CAM and geometric design. Convexity, mono-
tonicity, positivity, and boundedness are the most important shape features,
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which have extensively been studied in literature [1, 2, 3, 25, 27, 28, 29]. The
proposed Bézier-like curves and surfaces prove to be a promising approxima-
tion tool that preserves the monotonicity and the boundedness implied by
the data set.

The present paper is outlined as follows. In Section 2, the new blending
functions are defined and their properties are studied. The corresponding
curves and surfaces are defined in Section 3. Section 4 studies the shape-
preserving properties of the new curves and surfaces.

2 New blending functions

The classical Bernstein functions have a number of important features that
makes them a suitable basis for constructing control point based curves. Non-
negativity, partition of unity, symmetry in some sense, and their end point
values are among the most cited properties of classical Bernstein functions.

Here we address a general representation for a class of blending functions
that have similar properties to Bernstein polynomials. We present a special
case that uses the square root of quadratic (sq) polynomials.

Definition 1. Based on a real valued shape parameter ν, the sq-starting
basis functions are defined as follows:

b2,0(t) =
1

2
− t+ φ(t),

b2,1(t) = 1− 2φ(t), (2)

b2,2(t) = t− 1

2
+ φ(t),

where 0 ≤ t ≤ 1, 0 < ν ≤ 1, and

φ(t) =

√
(1− ν) (t2 − t) +

1

4
.

We generate the sq-basis functions of order n (n ≥ 3) with the recursion
relation of the classical Bernstein basis functions [9] as follows:

bn,i(t) = (1− t)bn−1,i(t) + tbn−1,i−1(t), t ∈ [0, 1], (3)

where i = 0, 1, 2, . . . , n. For k = −1 or k > n, we set bn,k(t) = 0.
The sq-basis functions of order n = 3 can be expressed as

b3,0(t) = t2 − 3

2
t+

1

2
+ (1− t)φ(t),

b3,1(t) = −t2 − 1

2
t+ 1 + (−2 + 3t)φ(t), (4)

IJNAO, Vol. 12, No. 2, pp 449–466



452 Nouri and Saeidian

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
n=2

=0.01
=0.1
=0.3
=0.6
=0.8
=1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
n=3

=0.01
=0.1
=0.3
=0.6
=0.8
=1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
n=4

=0.01
=0.1
=0.3
=0.6
=0.8
=1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
n=5

=0.01
=0.1
=0.3
=0.6
=0.8
=1

Figure 1: The sq-basis functions with different values of ν.

b3,2(t) = −t2 +
5

2
t− 1

2
+ (1− 3t)φ(t),

b3,3(t) = t2 − 1

2
t+ tφ(t).

Figure 1 shows the sq-basis functions generated with n = 2, 3, 4, 5 and differ-
ent values of ν.

Theorem 1. The sq-basis functions generated by (2) and (3) have the fol-
lowing properties:

(a) Nonnegativity: bn,i(t) ≥ 0 for i = 0, 1, 2, . . . , n.

(b) Partition of unity (Normalization):
∑n

i=0 bn,i(t) = 1.

(c) Symmetry: bn,i(t) = bn,n−i(1− t) for i = 0, 1, 2, . . . , n.

(d) End-point values:

bn,i(0) =

{
1, i = 0,

0, i ̸= 0,
bn,i(1) =

{
1, i = n,

0, i ̸= n,
(5)
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b′n,i(0) =


−n+ ν, i = 0,

n− 2ν, i = 1,

ν, i = 2,

0, o.w.,

b′n,i(1) =


n− ν, i = n,

2ν − n, i = n− 1,

−ν, i = n− 2,

0, o.w.

(6)

Proof. Mathematical induction is used to prove this theorem.
(a) Nonnegativity is obvious from (2) and (3).

(b) From (2), we obtain
∑2

i=0 b2,i(t) = 1. Now suppose that the equality is
true for m. Then according to recurrence relation(3) and the inductive
hypothesis, we obtain

m+1∑
i=0

bm+1,i(t) = (1− t)

m+1∑
i=0

bm,i(t) + t

m+1∑
i=0

bm,i−1(t) = 1− t+ t = 1.

(c) The sq-starting basis functions are symmetrical. Assume that the sq-
basis functions of order m are symmetrical. Then from this inductive
hypothesis and recurrence relation (3), one has

bm+1,i(1− t) = (1− (1− t))bm,i(1− t) + (1− t)bm,i−1(1− t)

= tbm,m−i(t) + (1− t)bm,m−i+1(t) = bm+1,m−i+1(t).

(d) From (2), we have

b′2,0(t) = −1 + φ′(t),

b′2,1(t) = −2φ′(t), (7)
b′2,2(t) = 1 + φ′(t),

where
φ′(t) =

(1− ν) (2t− 1)

2
√

(1− ν) (t2 − t) + 1
4

.

By a simple deduction from (2) and (7), we conclude that the results
in (5) and (6) hold for n = 2.
Suppose that the properties at the endpoints hold for the sq-basis func-
tions of order m. Then

bm+1,i(0) = bm,i(0) =

{
1 i = 0,

0, i ̸= 0,

bm+1,i(1) = bm,i(1) =

{
1 i = m,

0, i ̸= m,
(8)

which can be obtained by the inductive hypothesis and (3).
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From (3), we have

b′m+1,i(0) = −bm,i(0) + b′m,i(0) + bm,i−1(0), (9)
b′m+1,i(1) = −bm,i(1) + bm,i−1(1) + b′m,i−1(1). (10)

From (8) and the inductive hypothesis and by using relation (9), the
following results are obtained:

(i) For i = 0, b′m+1,0(0) = −bm,0(0) + b′m,0(0) = −1 − (−m+ ν) =
− (m+ 1) + ν,

(ii) For i = 1, b′m+1,1(0) = −bm,1(0)+b′m,1(0)+bm,0(0) = (m+ 1)−2ν,

(iii) For i = 2, b′m+1,2(0) = −bm,2(0)+b′m,2(0)+bm,1(0) = 0+ν+0 = ν,

(iv) For i ̸= 0, 1, 2, b′m+1,i(0) = 0.

Similarly, from (10), the following results are deduced:

(i) For i = m+ 1, b′m+1,m+1(1) = (m+ 1)− ν,

(ii) For i = m, b′m+1,m(1) = − (m+ 1) + 2ν,

(iii) For i = m− 1, b′m+1,m−1(1) = −ν,

(iv) For i ̸= m− 1,m,m+ 1, b′m+1,i(1) = 0.

3 sq-curves and sq-surfaces

The sq-basis functions can be considered as blending functions to construct
Bézier-like curves. Here we present the sq-curves and also extend the idea to
surfaces.
Definition 2. Given control points {Pi}ni=0 ⊆ R2, for 0 ≤ t ≤ 1, 0 < ν ≤ 1,

rn(t) =

n∑
i=0

bn,i(t)Pi, (11)

is called a sq-curve, where {bn,i(t)}ni=0 (n ≥ 3) are the sq-basis functions
defined in (2) and (3).

From Theorem 1, the sq-curve introduced in (11) has the following prop-
erties:
(a) Geometric property at the endpoints: From the properties at the end-

points of the sq-basis functions, we obtain

rn(0) = P0, rn(1) = Pn,

r′n(0) = (ν) (P2 − 2P1 + P0) + n (P1 − P0) ,

r′n(1) = (−ν) (Pn − 2Pn−1 + Pn−2) + n (Pn − Pn−1) .
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Figure 2: sq-curve with different values of ν.

(b) Symmetry: The symmetry property of the sq-basis functions leads us
to

rn(t;P0, P1, . . . , Pn) =

n∑
i=0

bn,i(t)Pi =

n∑
i=0

bn,n−i(1− t)Pi

=

n∑
j=0

bn,j(1− t)Pn−j = rn(1− t;Pn, Pn−1, . . . , P0).

(c) Geometric invariance: As rn(t) is an affine combination of the control
points, so the shape of the sq-curve is independent of the choice of
coordinate system.

(d) Convex hull property: Because of the nonnegativity and normalization
properties of the sq-basis functions, one concludes that the sq-curve
must be inside the convex hull of its control polygon.

Figure 2 shows two specific curves generated by sq-curves, in which the
control points are fixed and values of ν are set to ν = 0.01, 0.2, 0.4, 0.6, 0.8, 1,
respectively, from outside to inside. One can see that the sq-curves are to
approach the control polygon as the shape parameter decreases.

3.1 Comparison with existing basis functions

The construction of a suitable set of blending function has attracted a great
deal of interest among scientists. The main goal of most papers in this filed
is to construct parameter based blending functions, which by altering this
parameter(s), one can make most changes in the corresponding parametric
curve (1). Some works focus on a specific application, and others studied
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the structure and construction strategies. Here, we aim to emphasize on
advantages of the sq-basis functions. As the sq-basis functions are generated
recursively, we compare them with those who have a recursion formula.

Figure 3 represents a visual comparison. Figure 3(a) shows the sq-curves;
Figure 3(b) represents the curves constructed in [32]; and the curves proposed
in [23] are depicted in Figures 3(c) and 3(d), for different values of shape
parameters. Compared to [32], the rate of change in sq-curves is greater than
changing the corresponding shape parameter. The curves generated in [23]
show a good rate of change for different values of shape parameters, but this
is achieved by employing two separate parameters. In the sq-curves, this
much of flexibility is gained by altering just one shape parameter.

In [20], no curve can be constructed for three control points because the
starting basis functions have four members. Authors in [5, 6, 22, 23] employed
three starting basis functions, but several shape parameters were used to
make further changes to the curves. However, in the case of sq-curves, the
same changes are gained with just one parameter. In some works [31, 15, 4],
only four [15, 4] or five [31] bases were presented, and curves with fewer
control points cannot be represented by these basis functions. For more
control points, the continuity conditions are checked.

Generally, among the Bézier-like curves, which aim to present curves that
move from the convex combination of the first and last control points to the
control polygon by altering shape parameter, the sq-curves serve as a good
choice and compete well with the other bases.

3.2 sq-surface

The corresponding sq-surfaces can be constructed by a tensor product ap-
proach. Given control points {Pi}ni=0 ⊆ R3, the surface represented by

S (s, t) =

m∑
i=0

n∑
j=0

Pi,jbm,i (s) bn,j (t) , 0 ≤ s, t ≤ 1, (12)

is called a sq-surface, in which bm,i(s) and bn,j(t) are the sq-basis functions.
Figure 4 shows that different surfaces can be obtained by altering the

shape parameter when the control net is fixed.
From the properties of the sq-basis functions, it is easy to verify the

following properties of the corresponding sq-surfaces:

(a) Interpolation at the corner points: S (s, t) passes through corner points
P0,0, Pm,0, P0,n, and Pm,n. In fact, we have S (0, 0) = P0,0, S (1, 0) =
Pm,0, S (0, 1) = P0,n, and S (1, 1) = Pm,n.

(b) Nonnegativity: It is obvious that bm,i (s) bn,j (t) is nonnegative for all
m,n, i, j and s, t ∈ [0, 1].
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(a) sq-curves (b) Curves constructed in [32]

(c) ν = −1, µ = −1,−0.6,−0.2, 0.2, 0.6, 1 (d) ν = 1, µ = −1,−0.6,−0.2, 0.2, 0.6, 1

Figure 3: Comparison of sq-curves with curves proposed in [32] and [23]

Figure 4: Shape of sq-surfaces with different shape parameters.
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(c) Partition of unity:
m∑
i=0

n∑
j=0

bm,i (s) bn,j (t) =

m∑
i=0

bm,i (s)

n∑
j=0

bn,j (t) = 1, 0 ≤ s, t ≤ 1.

Proof of this is due to the partition of unity of the sq-basis functions.

(d) Convex hull property: The surface lies in the convex hull of its control
points, since S (s, t) is the linear combination of its control points with
positive coefficients that sums to 1 (partition of unity).

(e) Affine invariance: This means that the surface defined by control points
that are an affine transformation of all control points is the same surface
that is obtained by applying the same transformation to the surface’s
equation. As S (s, t) is an affine combination of the control points, so
the shape of the sq-surfaces is independent of the choice of coordinate
system.

(f) Boundaries of surface: The four surface boundaries are exactly the four
sq-curves defined by the boundary edges of the surface as follows:

S (0, t) =

n∑
j=0

P0,jbn,j (t) , S (1, t) =

n∑
j=0

Pm,jbn,j (t) ,

S (s, 1) =

m∑
i=0

Pi,nbm,i (s) , S (s, 0) =

m∑
i=0

Pi,0bm,i (s) .

4 Shape-preserving approximation by sq-curves and
sq-surfaces

The sq-curves preserve monotonicity and the sq-surfaces are axially mono-
tonicity preserving. The newly defined models preserve boundedness in both
two-dimensional and three-dimensional data. Here we state these facts in a
detailed discussion.

4.1 Monotonicity preservation of sq-curves

Here, we present a proof of the monotonicity preservation of the sq-basis
functions and sq-curves.

Definition 3. A system of functions (g0, . . . , gn) is monotonicity preserving
if for any λ0 ≤ λ1 ≤ · · · ≤ λn in R, the function

∑n
i=0 λigi is increasing.
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The following result, which characterizes monotonicity preserving sys-
tems, appears in [7, Proposition 2.3].
Proposition 1. Let (g0, . . . , gn) be a system of functions defined on an
interval [a, b]. Let vi :=

∑n
j=i gj for i ∈ {0, 1, . . . , n}. Then (g0, . . . , gn)

is monotonicity preserving if and only if v0 is a constant function and the
functions vi are increasing for i = 1, . . . , n.

We obtain the following result using the previous proposition.
Proposition 2. The sq-basis functions (bn,0, bn,1, . . . , bn,n) defined by (2)
and (3) are monotonicity preserving.
Proof. Let us consider sq-basis functions (2) with n = 2. Using Proposition
1, (b2,0, b2,1, b2,2) is monotonicity preserving if v0 is a constant function and
the functions v1 and v2 are increasing. Moreover,

v0 =

2∑
j=0

b2,j(t) = 1

and

v1 =

2∑
j=1

b2,j(t) = b2,1(t) + b2,2(t) =
1

2
+ t− φ(t) ⇒ v′1(t) = 1− φ′(t).

The function φ(t) is a convex function in the interval [0, 1], so the decreasing
function −φ′(t) takes its minimum at t = 1. Thus we have v′1(1) = ν, so
v′1(t) ≥ 0 for all t ∈ [0, 1]. Therefore the function v1(t) is increasing. We
have

v2 =

2∑
j=2

b2,j(t) = b2,2(t) = t− 1

2
+ φ(t) ⇒ v′2(t) = 1 + φ′(t).

Again, employing the convexity of φ(t), one observes that the increasing
function φ′(t) takes its minimum at t = 0. Since v′2(0) = ν results in v′2(t) ≥
0, for all t ∈ [0, 1], so we can conclude that v2(t) is an increasing function.

Suppose that the sq-basis functions (bn−1,0, bn−1,1, . . . , bn−1,n−1) is mono-
tonicity preserving. Then using Proposition 1, (bn,0, bn,1, . . . , bn,n) is mono-
tonicity preserving if v0 is a constant function and the functions vi are in-
creasing for i = 1, . . . , n.

We have

v0 =

n∑
j=0

bn,j(t) = 1

and
vi =

n∑
j=i

bn,j(t) ⇒ v′i(t) =

n∑
j=i

b′n,j(t). (13)
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By combining formulas (3) and (13), we have

v′i(t) = −
n∑

j=i

bn−1,j(t) + (1− t)

n∑
j=i

b′n−1,j(t) +

n∑
j=i

bn−1,j−1(t) + t

n∑
j=i

b′n−1,j−1(t)

= bn−1,n +

−
n−1∑
j=i

bn−1,j(t) +

n−1∑
j=i

bn−1,j(t)

+ bn−1,i−1(t)

+(1− t)

n∑
j=i

b′n−1,j(t) + t

n∑
j=i

b′n−1,j−1(t)

= bn−1,i−1(t) + (1− t)

n−1∑
j=i

b′n−1,j(t) + t

n−1∑
j=i−1

b′n−1,j(t). (14)

Since (bn−1,0, bn−1,1, . . . , bn−1,n−1) is monotonicity preserving, we deduce

n−1∑
j=i

b′n−1,j(t) ≥ 0,

n−1∑
j=i−1

b′n−1,j(t) ≥ 0. (15)

Now, from (14) and (15), for t ∈ [0, 1], it is obvious that v′i(t) ≥ 0.

The sq-curve is a curve in R2 plane, so we need the following statement
to assure the monotonicity preservation of sq-curves. The proof is straight-
forward.

Proposition 3. Let (g0, . . . , gn) be a system of functions that is monotonic-
ity preserving. If {Pi}ni=0 ⊆ R2 is the monotone data, then the function∑n

i=0 Pigi is increasing.

4.2 Monotonicity preservation of sq-surfaces

The sq-surfaces (12), defined on rectangular patches, are axially monotonicity-
preserving. To verify this assertion, we state our reasoning based on some
known results from the literature.

Given two strictly increasing sequences of abscissas α = (α0, α1, . . . , αm)

and β = (β0, β1, . . . , βn) and control points
{( αi

βj
cij

)}j=0,...,n

i=0,...,m
, we define the

control net p : [α0, αm]× [β0, βn] → R to be the unique function that satisfies
the interpolation conditions p (αj , βj) = cij , for all i = 0, 1, . . . ,m, and j =
0, 1, . . . , n, and is bilinear on each rectangle Rij = [αi, αi+1]× [βj , βj+1].

A bivariate function g is increasing in a direction d = (d1, d2) ∈ R2, if
g (x+ λd1, y + λd2) ⩾ g (x, y) , λ > 0. In particular, the control net p can be
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increasing in a direction d. This case has been characterized by Floater and
Peña [10] in the following way.

Lemma 1. The control net p is increasing in the direction d = (d1, d2) ∈ R2

if and only if for i = 0, 1, . . . ,m− 1 and j = 0, 1, . . . , n− 1,

d1∆1ci,j+l + d2∆2ci+k,j ≥ 0, k, l ∈ {0, 1} ,

where∆1cij := (ci+1,j − ci,j) / (αi+1 − αi) and∆2cij := (ci,j+1 − ci,j) / (βj+1 − βj).

Given a sequence (cij)
0≤j≤n
0≤i≤m, we have Λ1cij : ci+1,j − ci,j for i =

0, 1, . . . ,m − 1 and j = 0, 1, . . . , n − 1 and Λ2cij : ci,j+1 − ci,j for i =
0, 1, . . . ,m− 1 and j = 0, 1, . . . , n− 1.

Remark 1. As a consequence of Lemma 1, we have that the control net p is
increasing in theX-axis direction d = (1, 0) if and only if for i = 0, 1, . . . ,m−1
and j = 0, 1, . . . , n−1, Λ1cij ≥ 0. Analogously, the control net p is increasing
in the Y -axis direction d = (0, 1) if and only if for i = 0, 1, . . . ,m − 1 and
j = 0, 1, . . . , n− 1, Λ2cij ≥ 0.

Theorem 2. If the control net p is increasing in the X-axis direction d =
(1, 0) or in the Y -axis direction d = (0, 1), then so is sq-surface S (s, t).

Proof. Suppose that the control net p is increasing in the X-axis direction
d = (1, 0). Then for i = 0, 1, . . . ,m − 1 and j = 0, 1, . . . , n − 1, we have
Λ1cij ≥ 0. We show that, in this case, S (s, t) is increasing in the direction
d = (1, 0). Therefore,

S (s, t) =

m∑
i=0

n∑
j=0

αi

βj

cij

 bm,i (s) bn,j (t) , 0 ≤ s, t ≤ 1.

The surface S (s, t) in the direction d = (1, 0) for specified y = γ is a curve
that is obtained from the collision of the plane y = γ and the surface S (s, t),
so

m∑
i=0

n∑
j=0

βjbm,i (s) bn,j (t) = γ ⇒
m∑
i=0

bm,i (s)

n∑
j=0

βjbn,j (t) = γ

⇒
n∑

j=0

βjbn,j (t) = γ.

Therefore t is fixed and the curve on plane y = γ is as follows:

n∑
j=0

bn,j (t)

[
m∑
i=0

(
αi

cij

)
bm,i (s)

]
, 0 ≤ s ≤ 1. (16)
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Now from Proposition 3, one observes that
∑m

i=0

(
αi

cij

)
bm,i (s) is increas-

ing for any j, which lead us to the conclusion that the curve (16) would be
increasing. Because the value of γ was arbitrary, the surface S (s, t) is in-
creasing in the direction d = (1, 0). One can prove the desired result in the
direction d = (0, 1), in a similar way.

Example 1. The set of data presented in Table 1 is generated from the
function

F (x, y) = ln(x2 + y2). (17)

We have
{( xi

yj

F (xi,yj)

)}j=0,...,6

i=0,...,6
as a data set in a three-dimensional space.

These provide us 49 control points. By these control points, we have a
control net p, which is increasing in the X-axis direction d = (1, 0) and in
the Y -axis direction d = (0, 1). Figure 5 is the visual model of monotone
surfaces in the X-axis direction and in the Y -axis direction that are obtained
by control points and (12) with different values of free parameter ν. The
error rate of monotone surfaces has been reported.

Table 1: Data generated from the function F (x, y) = ln(x2 + y2)
y x

20 40 60 80 100 200 300
20 6.6846 7.6009 8.2940 8.8247 9.2496 10.6066 11.4120
40 7.6009 8.0709 8.5564 8.9872 9.3588 10.6359 11.4252
60 8.2940 8.5564 8.8818 9.2103 9.5178 10.6828 11.4468
80 8.8247 8.9872 9.2103 9.4572 9.7050 10.7451 11.4763
100 9.2496 9.3588 9.5178 9.7050 9.9035 10.8198 11.5129
200 10.6066 10.6359 10.6828 10.7451 10.8198 11.2898 11.7753
300 11.4120 11.4252 11.4468 11.4763 11.5129 11.7753 12.1007

4.3 Bound preservation of the sq-model

Suppose that we have a discrete data that is generated from a bounded
phenomenon, either in a two-dimensional space or in dimension three. When
we attempt to visualize the data using approximation methods, it is natural
to expect the approximation to adhere to the boundedness [26, 25]. The sq-
curves and sq-surfaces fulfill the convex hull property, which is the powerful
feature that guarantees the bound-preserving approximation. Actually this
is a feature that is in common for all Bézier-like model with convex hull
property. When we approximate a data with a Bézier-like model, the curve
or surface lies in the convex hull of the control points. If we set the data to
be the control points, then the curve (surface) would be entirely inside the
control polygon (control net), which guarantees the boundedness.
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Figure 5: Axial monotonicity-preserving approximation with different shape
parameters and the error functions
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5 Conclusion

We presented Bézier-like parametric curves and surfaces through introducing
a new class of blending functions with one shape parameter. These curves and
surfaces, in addition to covering many properties of classical Bézier models,
can be adjusted in a shape by altering the shape parameter when the control
points are fixed. It is been verified that the newly defined sq-models can
be successfully used for monotonicity-preserving approximation. The bound
preservation property of the sq-models has also been reviewed.

Note that the introduction of shape parameter not only brings an ad-
vantage to the shape modification of the Bézier-like curves but also provides
an optimized parameter for the shape optimization design of the Bézier-like
ones. Hence, the research on how to utilize the SDABWO [12] to solve the
model of curve shape optimization, which takes the shape parameter as the
optimization variables, could be addressed in future works.
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