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This study aims to present an accelerated derivative-free method for solv-
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1 Introduction

Scientists are interested in nonlinear problems because most engineering, bi-
ology, mathematics, physics, and other science problems are naturally non-
linear. The standard nonlinear equation system is represented by

F (x) = 0, (1)

where F : Rn → Rn is a nonlinear map. The space Rn denotes the n-
dimensional real space, ∥ · ∥ is the Euclidean norm, and Fk = F (xk) is used
throughout this paper. Further applications of problem (1) can be found
in chemical equilibrium systems [16] and signal and image processing [25].
The Chandrasekhar H-equation that arises in the theory of radioactive heat
transfer is a nonlinear integral equation that can be discretized into non-
linear equations [20]. Iterative methods for solving these problems include
the Newton and quasi-Newton methods [4, 21, 26, 14], Levenberg–Marquardt
methods [15, 13, 12], matrix-free methods [17, 1, 8], and tensor methods [2].
Typically, the iterative formula for solving these methods is given by

xk+1 = xk + αkdk, k = 0, 1, . . . , (2)

where xk+1 represents a current iterate, xk is the previous iterate, αk is a step
length, and dk is the search direction can be calculated by solving system of
linear equations as follows:

Fk + F ′
kdk = 0, (3)

where F ′
k is the Jacobian matrix of Fk at xk. One of the most important

requirements of the line search is to reduce the function values sufficiently
[9, 11], as shown below:

∥Fk+1∥ ≤ ∥Fk∥. (4)

Irrespective of how appealing the Newton and quasi-Newton approaches
are, the Jacobian matrix or its approximation can be calculated at each
iteration, making them unsuitable for solving large-scale problems. Due to
the drawbacks of these methods, the double direction technique has been
proposed [6], with the following iterate:

xk+1 = xk + αkdk + α2
kbk, (5)

where dk and bk are search directions, respectively.

Suppose that f is a merit function defined by

f(x) =
1

2
∥F (x)∥2. (6)
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Then problem (1) is analogous to the unconstrained optimization problem
described below:

min f(x), x ∈ Rn, (7)

where f : Rn → R, and condition (4) is equivalent to

f(xk + αkdk) ≤ f(xk). (8)

The iterative method generating the sequence {xk} that satisfies (4) is called
the norm descent method [9]. If dk is a descent direction of f at xk, then con-
dition (8) holds for all αk > 0 small enough. The Newton method (NM) with
line search is norm descent. Nonetheless, dk might not be a descent direction
of f at xk for quasi-Newton methods, even if the approximation of the Ja-
cobian matrix Bk is positive definite and symmetric. Li and Fukushima [14]
proposed an approximately norm-descent line search approach. However, the
proposed method is not norm descent, but they established a global conver-
gence theorem under the assumption that Jacobian is uniformly nonsingular.

The concept of the double direction approach was suggested by Duranović-
Miličić [6] by using a multi-step iterative scheme and curve search to generate
new iterates. However, in [7], another double direction algorithm was also
presented to minimize nondifferentiable functions. Motivated by the work
presented in [7], Petrović and Stanimirović [19] suggested a double direc-
tion model for solving unconstrained optimization problems. They used the
acceleration parameter γk to approximate the Hessian matrix, that is,

▽2f(xk) ≈ γkI, (9)

where I is the identity matrix, and the sequence of iterates {xk} is gener-
ated using (5). The attractive feature of the scheme in [19] is that the two
directions presented in their work are derivative-free. Therefore, it enables
their method to solve large-scale problems. However, the literature is infre-
quent to study derivative-free double direction methods for solving nonlinear
equations. Based upon the idea presented in [19], Halilu and Waziri used
the scheme in (5) to propose a method for solving a system of nonlinear
equations using a double direction approach. They used the acceleration
parameter γk > 0 in their work to approximate the Jacobian matrix, that is,

F ′
k ≈ γkI, (10)

where I is an identity matrix and the acceleration parameter is derived as

γk+1 =
yTk yk

(αk + α2
kγk)y

T
k dk

. (11)

The method’s global convergent is proved by assuming that the Jacobian of
F is positive definite and bounded. The double direction scheme is justified
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by the fact that scheme (5) contains two corrections. If one of the iterative
corrections fails, then the system will be corrected by the second.

The implementation of double direction is additionally enhanced by
Petrović [18], where the double step length scheme for the unconstrained
optimization problem is presented as

xk+1 = xk + αkdk + βkbk, (12)

where αk and βk are two different step lengths. The numerical results indi-
cated the approach is quite effective compared to the double direction method
in [19]. The authors in [8] incorporated the concept in (12) and transformed
the double step length method for solving (1) to improve the numerical re-
sults and global convergence properties of the double direction scheme. The
numerical results exhibited that the method in [8] is more reasonable than
the method in [10] because it converges faster. Furthermore, the method
[8] is globally converged using the line search proposed in [14]. Motivated
by the work in [8], Halilu and Waziri [11] presented an inexact double step
length method for solving (1). The attractive feature of this method is that
it has a double step length and a single direction that satisfies the decent
properties independent of line search. Despite the good convergence prop-
erties of the method in [10], its numerical performance is defined as weaker.
Therefore, motivated by this reason, we aim to develop a globally converged
derivative-free method with a line search to solve a system of nonlinear equa-
tions without calculating the Jacobian matrix.

Table 1: Authors’ contribution table
Author’s Name Derivative-free Matrix-free Double Direction Global Convergence Application

Duranović-Miličić [6] ✓ ✓ ✓ ✓
Halilu and Waziri [10] ✓ ✓ ✓ ✓
Duranovic-Milicic [7] ✓ ✓ ✓ ✓

Musa, Waziri, and Halilu [17] ✓ ✓
Abdullahi, Waziri, and Halilu [1] ✓ ✓ ✓ ✓
Petrović and Stanimirović [19] ✓ ✓ ✓ ✓

Kanzow et al. [12] ✓ ✓
Halilu and Waziri [11] ✓ ✓ ✓ ✓ ✓

Yuan and Lu [26] ✓ ✓
Waziri et al. [23] ✓ ✓ ✓

Halilu and Waziri [8] ✓ ✓ ✓ ✓
Li and Fukushima [14] ✓ ✓
Halilu and Waziri [9] ✓ ✓ ✓ ✓

petrović [18] ✓ ✓ ✓ ✓
This article ✓ ✓ ✓ ✓ ✓

The research gap between the existing method and this article is described
in Table 1 above. The table clearly shows that only the proposed method
is derivative-free, matrix-free, double direction method, globally convergent,
and can be applied to solve discretized Chandrasekhar’s integral equation
among the listed articles.

We now describe how the paper is structured. The proposed method’s
algorithm will be presented in section 2. Section 3 illustrates the convergence
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results. Section 4 contains a list of numerical experiments and applications
of the proposed method to Chandrasekhar’s integral equation, which arises
in radiative heat transfer. Section 5 concludes the paper.

2 Main result

In this section, we present the algorithm of our method. We suggest that the
dk and bk in (5) are defined as follows:

dk = −γ−1
k Fk (13)

and
bk = −Fk, (14)

where γk > 0 is an acceleration parameter. By substituting (13) and (14)
into (5), we obtain

xk+1 = xk − (αk + α2
kγk)γ

−1
k Fk. (15)

The acceleration parameter can be obtained using Taylor’s series expansion
below:

Fk+1 ≈ Fk + F ′(ψ)(xk+1 − xk). (16)

By multiplying (16) through by θk, we have

θkFk+1 ≈ θkFk + θkF
′(ψ)(αk + α2

kγk)dk, (17)

where θk > 0 and ψ satisfies the conditions ψ ∈ [xk, xk+1] and

ψ = xk + ζ(xk+1 − xk), 0 ≤ ζ ≤ 1. (18)

Taking ζ = 1 in (18), obtain ψ = xk+1.
We like to make Jacobian approximations via

θkF
′(ψ) ≈ γk+1I. (19)

Using (17) and (19), it is easy to confirm that

γk+1sk = θkyk, (20)

where sk = (αk + α2
kγk)dk, yk = Fk+1 − Fk, and θk =

sTk sk
yTk sk

(see [24]).

The proposed acceleration parameter is defined by multiplying yTk on both
sides of (20)

γk+1 =
∥sk∥2∥yk∥2

(αk + α2
kγk)

2(yTk dk)
2
. (21)
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Our proposed scheme is given by equation (22) below based on (13) and (15):

xk+1 = xk + (αk + α2
kγk)dk. (22)

Algorithm 1 Modification of the double direction approach (MDFDD)
Input: Given x0, γ0 = 1, ϵ = 10−5, ϕ1 > 0, ϕ2 > 0, and r ∈ (0, 1), set k = 0.
Step 1: Compute Fk.
Step 2: If ∥Fk∥ ≤ ϵ, then stop; otherwise, proceed to Step 3.
Step 3: Calculate search direction dk = −γ−1

k Fk.
Step 4: Set xk+1 = xk + (αk + α2

kγk)dk, where αk = rak with ak being the
smallest nonnegative integer a such that

f(xk +(αk +α
2
kγk)dk)− f(xk) ≤ −ϕ1∥αkFk∥2−ϕ2∥αkdk∥2+ τkf(xk). (23)

Let {τk} be a given positive sequence such that
∞∑
k=0

τk < τ <∞. (24)

Step 5: Compute Fk+1.

Step 6: Determine γk+1 =
∥sk∥2∥yk∥2

(αk + α2
kγk)

2(yTk dk)
2
.

Step 7: Consider k = k + 1 and go to Step 2.

3 Convergence Analysis

We present how the proposed Algorithm 2 (MDFDD) converges globally in
this section. Let us start by defining the level set

Ω = {x|∥F (x)∥ ≤ ∥F (x0)∥}. (25)

However, we require the following assumptions:

Assumption 1. However, we state the following assumptions:

1. There exists x∗ ∈ Rn such that F (x∗) = 0.

2. F is continuously differentiable in some neighborhood say Q of x∗ con-
taining Ω.

3. The Jacobian of F is bounded and positive definite on Q. That is, there
exist positive constants H > h > 0 such that

∥F ′(x)∥ ≤ H for all x ∈ Q, (26)
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and
h∥d∥2 ≤ dTF ′(x)d for all x ∈ Q, d ∈ Rn. (27)

Remark 1. We make the following remark:
Assumption 1 implies that there exist constants H > h > 0 such that

h∥d∥ ≤ ∥F ′(x)d∥ ≤ H∥d∥ for all x ∈ Q, d ∈ Rn, (28)

h∥x− y∥ ≤ ∥F (x)− F (y)∥ ≤ H∥x− y∥ for all x, y ∈ Q. (29)

Since γkI approximates F ′
k along sk, the following assumption can be

made.

Assumption 2. γkI is a good approximation to F ′
k, that is,

∥(F ′
k − γkI)dk∥ ≤ ε∥Fk∥, (30)

where ε ∈ (0, 1) is a small quantity [26].

Lemma 1. Suppose that Assumption 2 holds, and let {xk} be generated by
the MDFDD algorithm. Then dk is a sufficient descent direction for f(xk)
at xk, that is,

▽f(xk)T dk < c∥Fk∥2, c > 0. (31)

Proof. From (13), we have

▽f(xk)T dk = FT
k F

′
kdk

= FT
k [(F ′

k − γkI)dk − Fk]

= FT
k (F ′

k − γkI)dk − ∥Fk∥2,
(32)

by the Cauchy–Schwarz inequality, we have

▽f(xk)T dk ≤ ∥Fk∥∥(F ′
k − γkI)dk∥ − ∥F (xk)∥2

≤ −(1− ϵ)∥F (xk)∥2.
(33)

This lemma is true for ε ∈ (0, 1).
We can conclude from Lemma 1 that the norm function f(xk) is a descent

along dk, which means that ∥Fk+1∥ ≤ ∥Fk∥ is true.

Lemma 2. Suppose that Assumption 1 holds, and let {xk} be generated by
the MDFDD algorithm. Then {xk} ⊂ Ω.

Proof. From Lemma 1, we have ∥Fk+1∥ ≤ ∥Fk∥. Furthermore, for all k,

∥Fk+1∥ ≤ ∥Fk∥ ≤ ∥Fk−1∥ ≤ · · · ≤ ∥F0∥.

This means that {xk} ⊂ Ω.
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Lemma 3 (see [26]). Suppose that Assumption 1 holds, and let {xk} be
generated by the MDFDD algorithm. Then there exists a constant m > 0
such that for all k,

yTk sk ≥ h∥sk∥2. (34)

Lemma 4. Suppose that Assumption 1 holds and that {xk} is generated by
the MDFDD algorithm. Then

lim
k→∞

∥αkdk∥ = lim
k→∞

∥sk∥ = 0 (35)

and
lim
k→∞

∥αkFk∥ = 0. (36)

Proof. By (23) for all k > 0

ϕ2∥αkdk∥2 ≤ ϕ1∥αkFk∥2 + ϕ2∥αkdk∥2

≤ ∥Fk∥2 − ∥Fk+1∥2 + τk∥Fk∥2.
(37)

By summing the above inequality, we have

ϕ2

k∑
i=0

∥αidi∥2 ≤
k∑

i=0

(
∥Fi∥2 − ∥Fi+1∥2

)
+

k∑
i=0

ηi∥Fi∥2,

= ∥F0∥2 − ∥Fk+1∥2 +
k∑

i=0

τi∥Fi∥2,

≤ ∥F0∥2 + ∥F0∥2
k∑

i=0

τi,

≤ ∥F0∥2 + ∥F0∥2
∞∑
i=0

τi.

(38)

From the level set and the fact that {τk} satisfies (24), then the series
∞∑
i=0

∥αidi∥2 converges. This implies (35). Using the same logic as above,

but this time with ϕ1∥αkFk∥2 on the left, we obtain (36).

Lemma 5. Suppose that Assumption 1 holds, and let {xk} be generated by
the MDFDD algorithm. Then there exists a constant m1 > 0 such that for
all k > 0,

∥dk∥ ≤ B. (39)

Proof. From (13) and (21), we have
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∥dk∥ =

∥∥∥∥∥− (yTk−1sk−1)
2Fk

∥yk−1∥2∥sk−1∥2

∥∥∥∥∥
≤ ∥Fk∥∥sk−1∥2∥yk−1∥2

∥sk−1∥2∥yk−1∥2

≤ ∥F0∥.

(40)

Choosing B = ∥F0∥, we have (39).

Theorem 1. Suppose that Assumption 1 holds, and let {xk} be generated
by the MDFDD algorithm. Assume further, for all k > 0,

αk ≥ λ
|FT

k dk|
∥dk∥2

, (41)

where λ is some positive constant. Then

lim
k→∞

∥Fk∥ = 0. (42)

Proof. From Lemma 5, we have (39). Also, from (35) and the boundedness
of {∥dk∥}, we have

lim
k→∞

αk∥dk∥2 = 0. (43)

From (41) and (43), we have

lim
k→∞

|FT
k dk| = 0. (44)

Also, from (13), we have

FT
k dk = −γ−1

k ∥Fk∥2, (45)

∥Fk∥2 = ∥ − FT
k dkγk∥

≤ |FT
k dk||γk|.

(46)

Since

γ−1
k =

(yTk−1sk−1)
2

∥yk−1∥2∥sk−1∥2
≥ h2∥sk−1∥4

∥yk−1∥2∥sk−1∥2
≥ h2∥sk−1∥2

H2∥sk−1∥2
=

h2

H2
,

then
|γ−1

k | ≥ h2

H2
.

Therefore from (46), we have

∥Fk∥2 ≤ |FT
k dk|

(
H2

h2

)
. (47)
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As a result,

0 ≤ ∥Fk∥2 ≤ |FT
k dk|

(
H2

h2

)
−→ 0. (48)

Hence,
lim
k→∞

∥Fk∥ = 0. (49)

4 Numerical experiments

The first part of this section provides numerical results to demonstrate the
efficacy of the proposed method by comparing it with existing methods.

• IDFDD: Algorithm 1 proposed in [10].

• IDSL: Algorithm 1 proposed in [11].

The MDFDD method is used in the second part to solve the problem of
Chandrasekhar’s integral equation in radiative heat transfer. The computer
codes used were written in MATLAB 9.4.0 (R2018a) and ran on a computer
with a 1.80 GHz CPU processor and 8 GB RAM.

4.1 Experiment of some nonlinear systems of equations

In the experiments, we implemented the three algorithms using the same
line search (23), with ϕ1 = ϕ2 = 10−4, r = 0.2, and τk =

1

(k + 1)2
. The

iteration is set to stop for the three methods if ∥Fk∥ ≤ 10−5 or when the
number of iterations overreaches 1000, but there is no xk meeting the stopping
criterion. The numerical effects of the three methods are shown in Tables 3–9,
where “ITRN,” “CTM(S),” and “IP” represent the total number of iterations,
CPU time (in seconds), and initial points, respectively. In addition, ∥Fk∥
represents the residual value at the stopping point. The symbol “-” indicates
failure due to a memory requirement or when some iterations exceed 1000.
We tested the three methods on the current seven test problems, each with a
different set of initial points and dimensions (n values). The experiment was
carried out with the dimensions 100, 1,000, 2,000, 10,000, 50,000, and 100,000
to demonstrate the comprehensive numerical experiments of the MDFDD,
IDFDD, and IDSL methods. Table 2 contains the starting points for the test
problems.

The experiments made use of the following test problems:
Problem 1 [8]
F1 = x1 − ecos(

x1+x2
n+1 ),
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Table 2: Initial points used in test problems

INITIAL POINTS (IP) VALUES
IP1

(
1
2 ,

1
2 , . . . ,

1
2

)T
IP2

(
1
5 ,

1
5 , . . . ,

1
5

)T
IP3

(
3
2 ,

3
2 , . . . ,

3
2

)T
IP4

(
2
5 ,

2
5 , . . . ,

2
5

)T
IP5

(
0, 12 ,

2
3 , . . . , 1−

1
n

)T
IP6

(
1
4 ,

−1
4 , . . . ,

(−1)n

4

)T

IP7
(
1, 12 ,

1
3 , . . . ,

1
n

)T .

Fi = xi − e
cos

(
xi−1+xi+xi+1

n+1

)
,

Fn = xn − e
cos

(
xn−1+xn

n+1

)
, i = 2, 3, . . . , n− 1.

Problem 2 [11]
Fi(x) = xi(1 + xixn−2xn−1xn)− 2 + (1− x2i ), i = 1, 2, . . . , n.

Problem 3 [24]
Fi(x) = xi − xi

(
sinxi − 11

50

)
+ 2, i = 1, 2, . . . , n.

Problem 4 [10]
F1(x) = (x21 + x22)x1 − 1,
Fi(x) = (x2i−1 + 2x2i + x2i+1)xi − 1,
Fn(x) = (x2n−1 + x2n)xn, i = 2, 3, . . . , n− 1.

Problem 5 [10]
Fi(x) = 2xi − sin |xi|, i = 1, 2, . . . , n.

Problem 6 [11]
F (x) = Ax+ b1,

where A =



2 −1
−1 2 −1

. . . . . . . . .
. . . . . . −1

−1 2

, and b1 = (ex1 − 1, . . . , exn − 1)T .

Problem 7 [8]

IJNAO, Vol. 12, No. 2, pp 426–448



Modification of the double direction approach for solving systems of ... 437

F (x) = Bx+ b2,

where B =



2 −1
0 2 −1
. . . . . . . . .

. . . . . . −1
−1 2

, and b2 = (sinx1 − 1, . . . , sinxn − 1)T .

Table 3: Numerical outcomes of MDFDD, IDFDD, and IDSL methods for
problem 1

MDFDD IDFDD IDSL
Dimension IP ITRN CTM(S) ∥Fk∥ ITRN CTM(S) ∥Fk∥ ITRN CTM(S) ∥Fk∥

100 IP1 6 0.009 7.44E-06 60 0.031 8.35E-06 41 0.015 9.86E-06
IP2 11 0.020 2.67E-06 60 0.023 9.48E-06 42 0.013 7.83E-06
IP3 6 0.013 9.57E-06 58 0.022 7.93E-06 40 0.022 7.72E-06
IP4 7 0.009 7.55E-06 60 0.020 8.73E-06 42 0.015 7.21E-06
IP5 7 0.023 7.17E-06 59 0.023 8.78E-06 41 0.014 7.88E-06
IP6 8 0.024 7.36E-06 61 0.018 8.49E-06 42 0.026 9.23E-06
IP7 10 0.027 6.68E-06 61 0.019 7.64E-06 42 0.023 8.3E-06

1,000 IP1 3 0.005 4.35E-07 96 0.057 8.59E-06 45 0.031 7.51E-06
IP2 3 0.005 5.13E-07 96 0.077 9.76E-06 45 0.051 8.52E-06
IP3 3 0.007 2.09E-07 94 0.056 8.17E-06 43 0.029 8.41E-06
IP4 3 0.005 4.6E-07 96 0.058 8.98E-06 45 0.057 7.84E-06
IP5 3 0.009 3.17E-07 95 0.057 8.8E-06 44 0.035 8.34E-06
IP6 3 0.007 6.38E-07 97 0.058 8.74E-06 46 0.055 7.03E-06
IP7 3 0.011 5.66E-07 97 0.092 7.98E-06 45 0.051 9.17E-06

10,000 IP1 3 0.017 1.38E-10 111 0.486 9.05E-06 48 0.239 8.14E-06
IP2 3 0.035 1.63E-10 112 0.492 7.81E-06 48 0.206 9.24E-06
IP3 3 0.022 6.64E-11 109 0.477 8.6E-06 46 0.266 9.13E-06
IP4 3 0.034 1.46E-10 111 0.485 9.45E-06 48 0.182 8.51E-06
IP5 3 0.037 1E-10 110 0.483 9.23E-06 47 0.232 9.01E-06
IP6 3 0.021 2.03E-10 112 0.500 9.2E-06 49 0.182 7.63E-06
IP7 3 0.034 1.8E-10 112 0.490 8.42E-06 48 0.206 9.97E-06

50,000 IP1 3 0.103 4.96E-13 114 1.948 8.88E-06 50 0.752 8.92E-06
IP2 3 0.087 5.96E-13 115 1.985 7.66E-06 51 0.778 7.09E-06
IP3 2 0.072 8.87E-06 112 1.910 8.44E-06 48 0.718 1E-05
IP4 3 0.113 4.96E-13 114 1.949 9.28E-06 50 0.748 9.32E-06
IP5 3 0.101 2.99E-13 113 1.934 9.05E-06 49 0.903 9.87E-06
IP6 3 0.093 6.95E-13 115 1.978 9.03E-06 51 0.752 8.36E-06
IP7 3 0.079 5.96E-13 115 1.933 8.27E-06 51 0.760 7.65E-06

100,000 IP1 2 0.082 6.57E-06 115 4.097 9.54E-06 51 1.465 8.83E-06
IP2 2 0.116 7.75E-06 116 4.347 8.23E-06 52 1.534 7.02E-06
IP3 2 0.104 3.14E-06 113 3.826 9.07E-06 49 1.392 9.9E-06
IP4 2 0.108 6.95E-06 115 3.872 9.97E-06 51 1.497 9.23E-06
IP5 2 0.104 4.76E-06 114 3.852 9.73E-06 50 1.473 9.77E-06
IP6 2 0.095 9.65E-06 116 3.923 9.71E-06 52 1.536 8.27E-06
IP7 2 0.099 8.57E-06 116 3.827 8.89E-06 52 1.537 7.57E-06

From Tables 3–9, we can observe that the three methods are trying
to solve (1). However, the improvement and effectiveness of the proposed
method are pretty straightforward. The tables indicated that modifying
the IDFDD method in the proposed scheme is a good improvement. The
MDFDD method remarkably outperforms the IDFDD and IDSL methods
for nearly all the problems assessed since it has the least number of iter-
ations, which are far below the number of iterations for the IDFDD and
IDSL methods. Moreover, the proposed method has less CPU time than the
IDFDD method. However, the MDFDD method has a higher CPU time than
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Table 4: Numerical outcomes of MDFDD, IDFDD, and IDSL methods for
problem 2

MDFDD IDFDD IDSL
Dimension IP ITRN CTM(S) ∥Fk∥ ITRN CTM(S) ∥Fk∥ ITRN CTM(S) ∥Fk∥

100 IP1 13 0.026 6.15E-06 26 0.022 7.35E-06 37 0.010 8.96E-06
IP2 20 0.036 9.95E-06 19 0.014 9.06E-06 28 0.012 9.49E-06
IP3 15 0.043 5.55E-06 30 0.022 7.09E-06 43 0.021 7.75E-06
IP4 18 0.018 4.46E-06 27 0.018 9.54E-06 33 0.017 8.71E-06
IP5 20 0.024 6.27E-06 64 0.041 9.19E-06 34 0.009 8.09E-06
IP6 11 0.017 5.10E-06 30 0.023 7.61E-06 38 0.012 9.29E-06
IP7 23 0.043 6.62E-06 39 0.024 6.34E-06 43 0.021 9.82E-06

1,000 IP1 19 0.062 2.86E-07 28 0.020 9.52E-06 40 0.013 9.72E-06
IP2 17 0.040 7.93E-06 22 0.025 7.51E-06 32 0.025 7.21E-06
IP3 20 0.072 5.27E-06 32 0.032 9.18E-06 46 0.028 8.4E-06
IP4 16 0.050 6.52E-06 30 0.024 7.91E-06 36 0.027 9.45E-06
IP5 18 0.062 8.70E-06 71 0.054 7.79E-06 34 0.027 7.27E-06
IP6 12 0.045 5.73E-06 32 0.020 9.85E-06 42 0.039 7.06E-06
IP7 24 0.065 6.80E-06 43 0.018 5.72E-06 43 0.032 9.51E-06

10,000 IP1 33 0.300 5.24E-06 31 0.174 7.89E-06 44 0.153 7.38E-06
IP2 41 0.345 3.48E-06 24 0.143 9.72E-06 35 0.131 7.82E-06
IP3 14 0.208 7.43E-06 35 0.129 7.61E-06 49 0.185 9.11E-06
IP4 35 0.269 3.35E-06 33 0.174 6.55E-06 40 0.101 7.17E-06
IP5 17 0.220 6.73E-06 70 0.209 8.45E-06 33 0.119 9.98E-06
IP6 14 0.207 4.16E-07 35 0.119 8.17E-06 45 0.141 7.65E-06
IP7 29 0.350 5.4E-06 44 0.157 8E-06 46 0.137 7.38E-06

50,000 IP1 37 0.719 2.83E-06 33 0.443 7.23E-06 46 0.389 8.08E-06
IP2 45 0.792 2.38E-07 26 0.339 8.91E-06 37 0.334 8.57E-06
IP3 16 0.594 2.96E-06 37 0.461 6.97E-06 51 0.472 9.99E-06
IP4 43 1.100 9.23E-07 34 0.433 9.38E-06 42 0.408 7.86E-06
IP5 14 0.629 4.38E-06 73 0.825 8.01E-06 33 0.281 9.93E-06
IP6 14 0.515 8.34E-06 37 0.556 7.48E-06 47 0.435 8.39E-06
IP7 32 1.103 8.78E-06 45 0.527 8.09E-06 48 0.447 7.49E-06

100,000 IP1 36 1.114 8.69E-06 34 0.759 6.54E-06 47 0.786 8E-06
IP2 50 1.775 8.2E-07 27 0.645 8.06E-06 38 0.650 8.48E-06
IP3 11 0.595 7.05E-07 37 0.865 9.86E-06 52 0.873 9.89E-06
IP4 42 1.368 5.53E-06 35 0.760 8.49E-06 43 0.697 7.78E-06
IP5 17 1.597 6.23E-06 72 1.480 8.15E-06 33 0.578 9.92E-06
IP6 21 1.756 3.55E-06 38 0.833 6.77E-06 48 0.775 8.3E-06
IP7 34 2.416 6.9E-06 46 1.029 9.52E-06 49 0.823 7.3E-06
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Table 5: Numerical outcomes of MDFDD, IDFDD, and IDSL methods for
problem 3

MDFDD IDFDD IDSL
Dimension IP ITRN CTM(S) ∥Fk∥ ITRN CTM(S) ∥Fk∥ ITRN CTM(S) ∥Fk∥

100 IP1 16 0.034 8.52E-06 32 0.012 9.96E-06 37 0.010 8.32E-06
IP2 12 0.033 9.99E-06 31 0.023 8.84E-06 26 0.015 7.7E-06
IP3 20 0.044 2.25E-06 35 0.021 6.42E-06 41 0.008 8.47E-06
IP4 17 0.021 1.76E-06 32 0.025 8.45E-06 36 0.017 7.56E-06
IP5 20 0.045 6.07E-06 34 0.012 6.95E-06 40 0.020 7.81E-06
IP6 10 0.023 1.06E-06 28 0.016 7.37E-06 35 0.017 8.38E-06
IP7 17 0.030 7.24E-06 31 0.023 7E-06 35 0.007 8.61E-06

1,000 IP1 22 0.071 6.32E-06 35 0.047 8.26E-06 40 0.015 9.02E-06
IP2 15 0.039 4.47E-06 34 0.048 7.33E-06 29 0.012 8.35E-06
IP3 26 0.074 2.66E-07 37 0.044 8.32E-06 44 0.047 9.19E-06
IP4 24 0.038 3.26E-06 35 0.032 7.01E-06 39 0.030 8.2E-06
IP5 28 0.051 7.39E-07 36 0.049 9.28E-06 43 0.040 8.83E-06
IP6 12 0.037 3.85E-06 30 0.026 9.54E-06 38 0.033 9.09E-06
IP7 13 0.082 4.29E-06 33 0.036 7.05E-06 38 0.028 7.25E-06

10,000 IP1 26 0.295 6.95E-06 38 0.200 6.85E-06 43 0.114 9.78E-06
IP2 24 0.345 1.95E-06 36 0.194 9.5E-06 32 0.168 9.05E-06
IP3 37 0.506 3.4E-06 40 0.181 6.9E-06 47 0.211 9.97E-06
IP4 27 0.319 9.21E-06 37 0.178 9.09E-06 42 0.118 8.89E-06
IP5 30 0.263 9.76E-06 39 0.164 7.73E-06 46 0.166 9.64E-06
IP6 17 0.331 9.04E-06 33 0.136 7.92E-06 41 0.139 9.86E-06
IP7 21 0.256 7.66E-06 35 0.166 8.76E-06 41 0.154 7.64E-06

50,000 IP1 29 0.760 6.52E-06 39 0.506 9.81E-06 46 0.477 7.5E-06
IP2 29 0.941 7.04E-06 38 0.520 8.7E-06 34 0.334 9.92E-06
IP3 40 1.244 5.85E-06 41 0.529 9.87E-06 50 0.618 7.65E-06
IP4 28 0.823 3.9E-06 39 0.540 8.32E-06 44 0.491 9.74E-06
IP5 35 0.871 3.34E-06 41 0.540 7.08E-06 49 0.575 7.4E-06
IP6 22 0.825 6.22E-06 35 0.488 7.25E-06 44 0.433 7.56E-06
IP7 24 1.087 8.32E-06 37 0.486 7.99E-06 43 0.446 8.36E-06

100,000 IP1 36 2.601 8.24E-06 40 0.985 8.88E-06 47 0.888 7.43E-06
IP2 33 2.573 6.18E-06 39 1.132 7.88E-06 35 0.727 9.82E-06
IP3 43 2.423 9.86E-07 42 1.332 8.94E-06 51 1.080 7.57E-06
IP4 34 2.529 5.42E-06 40 0.998 7.54E-06 45 0.887 9.65E-06
IP5 42 2.712 9.63E-06 42 1.056 6.41E-06 50 0.924 7.32E-06
IP6 20 1.531 2.37E-06 36 0.904 6.56E-06 45 0.862 7.49E-06
IP7 24 1.634 5.4E-06 38 0.980 7.23E-06 44 0.825 8.27E-06
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Table 6: Numerical outcomes of MDFDD, IDFDD, and IDSL methods for
problem 4

MDFDD IDFDD IDSL
Dimension IP ITRN CTM(S) ∥Fk∥ ITRN CTM(S) ∥Fk∥ ITRN CTM(S) ∥Fk∥

100 IP1 37 0.061 9.93E-06 45 0.018 8.01E-06 45 0.011 8.46E-06
IP2 32 0.066 9.00E-06 47 0.029 8.47E-06 46 0.023 8.83E-06
IP3 36 0.053 8.51E-06 53 0.032 8.04E-06 54 0.025 9.45E-06
IP4 37 0.067 7.28E-06 47 0.030 8.34E-06 41 0.019 8.61E-06
IP5 33 0.056 8.14E-06 49 0.030 9.87E-06 51 0.026 8.19E-06
IP6 41 0.044 6.93E-06 49 0.022 9.01E-06 52 0.010 7.39E-06
IP7 26 0.029 7.11E-06 41 0.022 8.36E-06 44 0.027 9.03E-06

1,000 IP1 33 0.084 9.83E-06 46 0.036 1E-05 50 0.040 9.31E-06
IP2 32 0.090 9.25E-06 48 0.030 9.59E-06 49 0.039 7.86E-06
IP3 46 0.102 5.74E-06 53 0.043 7.68E-06 59 0.043 7.05E-06
IP4 28 0.063 7.2E-06 47 0.052 8.51E-06 47 0.017 9.56E-06
IP5 40 0.080 9.51E-06 52 0.059 9.66E-06 50 0.018 8.99E-06
IP6 37 0.101 8.49E-06 49 0.032 9.95E-06 55 0.052 7.38E-06
IP7 24 0.052 7.93E-06 43 0.032 9.41E-06 48 0.038 7.61E-06

10,000 IP1 36 0.657 9.61E-06 48 0.212 8.89E-06 53 0.189 9.81E-06
IP2 40 0.567 3.06E-06 50 0.215 9.42E-06 54 0.227 9.17E-06
IP3 58 0.594 9.09E-06 53 0.234 8.38E-06 64 0.216 9.44E-06
IP4 39 0.761 9.19E-06 50 0.235 9.73E-06 50 0.190 9.54E-06
IP5 51 0.718 7.54E-06 54 0.283 1E-05 51 0.244 8.49E-06
IP6 49 0.751 5.9E-06 54 0.254 7.38E-06 58 0.190 7.3E-06
IP7 34 0.341 9.06E-06 43 0.221 9.2E-06 48 0.165 8.37E-06

50,000 IP1 36 2.321 6.59E-06 48 0.698 9.53E-06 56 0.595 7.59E-06
IP2 39 1.581 7.05E-06 53 0.770 9.97E-06 54 0.666 8.81E-06
IP3 68 2.331 9.27E-06 55 0.810 8.88E-06 63 0.670 8.29E-06
IP4 34 1.625 5.01E-06 51 0.752 9.55E-06 51 0.537 8.47E-06
IP5 53 2.435 9.69E-06 55 0.795 8.83E-06 53 0.638 7.7E-06
IP6 48 2.340 8.73E-06 54 0.834 9.04E-06 61 0.676 9.28E-06
IP7 38 1.301 2.77E-06 44 0.655 8.59E-06 50 0.560 8.04E-06

10,0000 IP1 41 4.922 9.92E-06 49 1.467 9.82E-06 54 1.132 9.69E-06
IP2 46 4.246 9.16E-06 53 1.650 9.8E-06 59 1.311 9.21E-06
IP3 73 4.694 5.2E-06 55 1.908 9.38E-06 63 1.342 9.92E-06
IP4 46 4.739 6.53E-06 52 1.455 8.6E-06 55 1.113 9.46E-06
IP5 59 5.184 3.46E-06 56 1.598 8.14E-06 58 1.240 9.03E-06
IP6 53 3.656 9.1E-06 55 1.586 8.23E-06 61 1.309 8.11E-06
IP7 39 2.125 5.45E-06 44 1.418 9.99E-06 51 1.079 7.92E-06

IJNAO, Vol. 12, No. 2, pp 426–448



Modification of the double direction approach for solving systems of ... 441

Table 7: Numerical outcomes of MDFDD, IDFDD, and IDSL methods for
problem 5

MDFDD IDFDD IDSL
Dimension IP ITRN CTM(S) ∥Fk∥ ITRN CTM(S) ∥Fk∥ ITRN CTM(S) ∥Fk∥

100 IP1 19 0.026 2.41E-06 48 0.031 9.76E-06 37 0.023 9.63E-06
IP2 16 0.015 5.8E-06 45 0.015 8.7E-06 35 0.007 7.63E-06
IP3 16 0.037 6.63E-06 53 0.033 8.1E-06 41 0.008 7.85E-06
IP4 13 0.026 1.27E-06 48 0.036 7.74E-06 37 0.007 7.61E-06
IP5 14 0.032 2.97E-06 51 0.032 8.6E-06 39 0.012 9.66E-06
IP6 6 0.007 7.47E-07 48 0.027 7.65E-06 33 0.014 8.53E-06
IP7 12 0.029 8.6E-06 44 0.019 7.78E-06 34 0.012 7.58E-06

1,000 IP1 14 0.042 3.31E-06 53 0.035 7.83E-06 41 0.025 7.31E-06
IP2 10 0.036 5.19E-06 49 0.054 9.18E-06 38 0.019 8.27E-06
IP3 17 0.041 6.63E-06 57 0.048 8.55E-06 44 0.039 8.51E-06
IP4 19 0.040 3.13E-06 52 0.060 8.17E-06 40 0.013 8.26E-06
IP5 9 0.028 4.13E-06 55 0.057 9.45E-06 43 0.036 7.66E-06
IP6 9 0.039 2.42E-07 52 0.030 8.07E-06 36 0.018 9.25E-06
x7 11 0.052 9.45E-06 44 0.040 7.8E-06 34 0.019 7.6E-06

10,000 IP1 13 0.237 5.88E-07 57 0.215 8.26E-06 44 0.108 7.93E-06
IP2 15 0.333 6.48E-06 53 0.171 9.69E-06 41 0.112 8.97E-06
IP3 16 0.202 1.66E-06 61 0.192 9.02E-06 47 0.159 9.23E-06
IP4 13 0.150 7.8E-06 56 0.254 8.62E-06 43 0.132 8.95E-06
IP5 19 0.402 3.93E-06 60 0.225 7.63E-06 46 0.213 8.36E-06
IP6 13 0.213 3.62E-06 56 0.252 8.52E-06 40 0.093 7.02E-06
IP7 13 0.211 2.74E-07 44 0.153 7.8E-06 34 0.079 7.6E-06

50,000 IP1 10 0.618 1.34E-07 60 0.664 8.1E-06 46 0.398 8.69E-06
IP2 12 0.552 4.71E-06 56 0.604 9.51E-06 43 0.349 9.83E-06
IP3 12 0.465 5.39E-06 64 0.722 8.85E-06 50 0.422 7.08E-06
IP4 17 1.063 2.64E-06 59 0.689 8.46E-06 45 0.441 9.81E-06
IP5 17 0.961 5.8E-06 62 0.693 9.86E-06 48 0.379 9.17E-06
IP6 11 0.534 5.8E-06 59 0.655 8.36E-06 42 0.332 7.69E-06
IP7 12 0.682 1.68E-06 44 0.500 7.8E-06 34 0.287 7.6E-06

100,000 IP1 11 1.156 7.49E-06 61 1.299 8.71E-06 47 1.125 8.61E-06
IP2 9 0.684 4.11E-06 58 1.145 7.77E-06 44 0.871 9.73E-06
IP3 14 1.359 7.52E-06 65 1.336 9.51E-06 51 0.805 7.01E-06
IP4 10 1.360 7E-06 60 1.480 9.09E-06 46 0.873 9.71E-06
IP5 15 1.204 4.48E-06 64 1.405 8.05E-06 49 0.877 9.08E-06
IP6 17 1.563 1.77E-06 60 1.206 8.99E-06 43 0.699 7.62E-06
IP7 11 1.106 1.63E-06 44 1.113 7.8E-06 34 0.520 7.6E-06
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Table 8: Numerical outcomes of MDFDD, IDFDD, and IDSL methods for
problem 6

MDFDD IDFDD IDSL
Dimension IP ITRN CTM(S) ∥Fk∥ ITRN CTM(S) ∥Fk∥ ITRN CTM(S) ∥Fk∥

100 IP1 27 0.205 8.46E-06 52 0.128 9.42E-06 38 0.073 8.21E-06
IP2 20 0.195 6.73E-06 47 0.104 7.62E-06 35 0.072 8.98E-06
IP3 44 0.264 8.86E-06 60 0.132 9.66E-06 40 0.068 8.38E-06
IP4 31 0.319 7.88E-06 51 0.115 9.37E-06 37 0.068 9.22E-06
IP5 34 0.264 4.6E-06 55 0.123 9.69E-06 40 0.071 7.5E-06
IP6 24 0.239 5.94E-06 47 0.116 8.84E-06 35 0.061 9.78E-06
IP7 22 0.213 7.94E-06 45 0.106 7.77E-06 37 0.067 9.35E-06

1,000 IP1 31 2.441 9.82E-06 54 1.154 9.19E-06 41 0.664 8.53E-06
IP2 25 2.532 8.98E-06 50 1.092 9.64E-06 38 0.608 9.09E-06
IP3 59 2.687 8.13E-06 57 1.178 8.11E-06 43 0.697 8.2E-06
IP4 31 2.273 8.28E-06 53 1.135 8.6E-06 40 0.638 9.51E-06
IP5 45 2.836 8.66E-06 55 1.133 9.24E-06 43 0.680 8.2E-06
IP6 25 2.066 8.18E-06 49 1.047 7.81E-06 38 0.614 9.21E-06
IP7 22 2.083 6.55E-06 45 0.988 7.83E-06 37 0.587 9.37E-06

2,000 IP1 26 5.618 4.72E-06 56 3.854 7.96E-06 42 2.135 8.42E-06
IP2 25 6.920 9.43E-06 52 3.626 8.66E-06 39 2.011 8.95E-06
IP3 59 8.466 7.28E-06 59 4.029 9.91E-06 44 2.260 8.07E-06
IP4 27 6.605 8.86E-06 55 3.972 8.4E-06 41 2.090 9.39E-06
IP5 43 7.773 7.29E-06 60 4.223 9.13E-06 44 2.283 8.13E-06
IP6 27 7.955 6.38E-06 51 3.586 7.86E-06 39 1.978 8.99E-06
IP7 25 8.424 6.73E-06 45 3.235 7.83E-06 37 1.891 9.37E-06

Table 9: Numerical outcomes of MDFDD, IDFDD, and IDSL methods for
problem 7

MDFDD IDFDD IDSL
Dimension IP ITRN CTM(S) ∥Fk∥ ITRN CTM(S) ∥Fk∥ ITRN CTM(S) ∥Fk∥

100 IP1 17 0.226 9.74E-06 34 0.080 7.68E-06 31 0.053 9.24E-06
IP2 23 0.253 5.6E-06 41 0.099 8.19E-06 36 0.063 9.62E-06
IP3 26 0.221 8.98E-06 45 0.102 7.32E-06 40 0.067 7.41E-06
IP4 16 0.175 8.8E-06 38 0.082 7.76E-06 34 0.063 7.14E-06
IP5 22 0.174 6.76E-06 42 0.110 9.28E-06 38 0.076 7.42E-06
IP6 24 0.168 8.55E-06 44 0.100 7.63E-06 39 0.088 8.13E-06
IP7 21 0.164 5.67E-06 42 0.094 9.17E-06 38 0.073 7.26E-06

1,000 IP1 17 1.582 8.61E-06 35 0.743 8.31E-06 31 0.497 9.65E-06
IP2 24 1.553 9.77E-06 44 0.940 9.98E-06 40 0.646 7.28E-06
IP3 28 1.807 4.01E-06 48 1.012 8.61E-06 43 0.687 7.64E-06
IP4 22 1.580 7.03E-06 41 0.870 9.4E-06 37 0.592 7.62E-06
IP5 25 1.827 7.8E-06 46 1.024 8.31E-06 41 0.657 8.08E-06
IP6 25 1.422 7.42E-06 47 1.046 9.26E-06 42 0.670 8.73E-06
IP7 28 1.849 8.2E-06 46 1.069 8.51E-06 41 0.655 8.27E-06

2,000 IP1 18 5.262 7.49E-06 36 2.459 7.66E-06 32 1.656 8.08E-06
IP2 28 5.929 8.16E-06 46 3.167 7.43E-06 41 2.121 7.21E-06
IP3 31 6.115 6.11E-06 49 3.397 8.82E-06 44 2.235 7.54E-06
IP4 27 6.253 9.63E-06 42 2.907 9.64E-06 38 1.995 7.54E-06
IP5 30 7.231 5.2E-06 47 3.298 8.55E-06 42 2.194 8.01E-06
IP6 31 6.675 4.99E-06 48 3.387 9.5E-06 43 2.283 8.64E-06
IP7 25 6.070 5.32E-06 47 3.219 8.77E-06 42 2.188 8.22E-06
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the IDSL method due to the computation of double direction in the MDFDD
methods.

Figures 1–2 display the interpretation of the numerical results of each of
the three methods using Dolan and Moré [5] performance profiles. We achieve
this by plotting fraction p(τ) of problems for each method within τ of the
smallest number of iterations and CPU time. As shown in Figures 1 and
2, the curves representing the MDFDD method remain above the IDFDD
and IDSL methods in number iterations. Furthermore, it is above the curve
representing the IDFDD method for the CPU time. Therefore, the proposed
method outperforms the IDFDD and IDSL methods in fewer iterations and
is thus the most efficient method. Finally, from the results in Tables 3–9, it
is evident that the MDFDD method successfully solves problem (1).

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p(
)

MDFDD

IDSL

IDFDD

Figure 1: Performance profile with respect to the number of iterations

4.2 Application in integral equations

Chandrasekhar and Breen [3] computed H-equation as the solution of the
nonlinear integral equation that gives the complete nonlinear equations tech-
nique. The nonlinear integral equation arising in radiative heat transfer prob-
lem is given by

H(x) = 1 + c
x

2
H(x)

∫ 1

0

H(y)

x+ y
dy, (50)
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Figure 2: Performance profile with respect to the CPU time (in second)

with parameter c ∈ [0, 1] and H : [0, 1] → R is an unknown function.

Equation (50) can be written as

H(x) =

[
1− c

2

∫ 1

0

xH(y)

x+ y
dy

]
= 1. (51)

By multiplying both sides of (51) with
(
1− c

2

∫ 1

0
xH(y)
x+y dy

)−1

, we have

F (H)(x) = H(x)−
(
1− c

2

∫ 1

0

xH(y)

x+ y
dy

)−1

= 0, (52)

which is called the Chandrasekhar H-equation [23]. However, (52) can be
discretized by using the midpoint quadrature formula∫ 1

0

f(µ)dµ = h

n∑
j=1

f(µj), (53)

for µj = (j − 0.5)h, 0 ≤ j ≤ 1, and h = 1
n .

As a result, we have the following system of nonlinear equations:
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Fi(x) = xi −

1− c

2n

n∑
j=1

µixj
µi + µj

−1

i = 1, 2, . . . , n, j = 1, 2, . . . , n,

(54)

which is known as the discretized Chandrasekhar H-equation that can be
solved by using some iterative methods. If the initial point x0 = (1, 1, 1, . . . , 1)T ,
then the system in (54) has a solution for all c ∈ (0, 1). However, the hardest
part of the problem (54) is that the Jacobian is singular at c = 1. Therefore
as c approaches 1, the Jacobian approaches the singularity point. Since our
method is derivative-free, then it has the advantage to solve problem (54)
even when c approaches 1.

To highlight the performance of the MDFDD approach furthermore, we
conduct some numerical experiments by comparing it with the classical NM,
IDFDD method [10], and IDSL method [11]. The iteration is also set to
terminate when ∥xk+1 − xk∥ + ∥Fk∥ ≤ 10−5 or when the iterations exceed
1000, but no point of xk satisfying the stopping criterion. We have tried the
three methods with the starting point of x0 = (1, 1, 1, . . . , 1)T . Furthermore,
we use the dimensions (n values) 100 to 20,000 to show the performance of
each of the three methods.

Table 10: Numerical results of discretized Chandrasekhar H-equation

NM IDFDD IDSL MDFDD
Dimension ITER TIME ITER TIME ITER TIME ITER TIME

100 12 0.078 - - 38 0.029 13 0.015
500 15 0.785 - - 41 0.017 14 0.015

c=0.1 1000 15 3.056 - - 42 0.018 11 0.018
10000 20 1747 - - 45 0.150 12 0.141
20000 - - - - 46 0.219 20 0.349
100 13 0.111 - - 38 0.009 9 0.009
500 15 0.789 - - 41 0.022 17 0.029

c=0.9 1000 18 3.729 - - 42 0.026 15 0.024
10000 - - - - 45 0.231 15 0.215
20000 - - - - 46 0.216 14 0.377
100 13 0.111 - - 38 0.012 12 0.011
500 17 0.874 - - 41 0.032 17 0.020

c=0.99 1000 18 3.733 - - 42 0.019 12 0.018
10000 - - - - 45 0.123 11 0.125
20000 - - - - 46 0.218 13 0.285
100 13 0.112 - - 38 0.019 13 0.014
500 17 0.883 - - 41 0.013 16 0.018

c=0.999 1000 18 3.766 - - 42 0.025 16 0.029
10000 - - - - 45 0.130 13 0.176
20000 - - - - 46 0.318 12 0.282

The numerical results of the methods used to solve Chandrasekhar H-
equation with different values of parameter c, are shown in Table 10. The
table clearly indicates that the proposed method outperformed the NM be-
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cause the NM failed when the number of dimension increased. This is due
to the fact that as c approaches 1, the Jacobian approaches the singularity
point. Moreover, the CPU time (in second) of the NM is higher than other
methods because it solved the Jacobian matrix at each iteration. From Table
10, we can also observe that the IDFDD method has totally failed because it
has poor numerical performance, as we have made mentioned earlier in the
introduction section of this article. Although, the IDSL method solved prob-
lem (54) completely, but it has more number of iterations than the MDFDD
method. This shows that our method has effectively solved the discretized
Chandrasekhar H-equation with the least number of iterations and CPU time.

5 Conclusion

In this article, numerical comparisons were made using a set of large-scale
test problems. Furthermore, Tables 3–9 and Figures 1–2 showed that the pre-
sented method is practically quite efficient because it has fewer iterations than
the IDFDD and IDSL methods. Furthermore, we have successfully used the
proposed method to deal with experiments on the Chandrasekhar H-equation
in radiative heat transfer. The experiments were carried out and reported
in Table 10 with different c values, demonstrating a better efficiency for the
MDFDD method. The numerical results showed that the employed method
solved the discretized integral equation with fewer iterations and CPU time
than the NM, IDFDD, and IDSL methods. Future research includes apply-
ing the MDFDD scheme to solve the discretized three-dimensional nonlinear
Poisson problem.
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