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and integer matrix factorizations
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Abstract

In 1984, Abaffy, Broyden, and Spediacto (ABS) introduced a class of the
so-called ABS algorithms to solve systems of real linear equations. Later,
the scaled ABS algorithm, the extended ABS algorithm, the block ABS
algorithm, and the integer ABS algorithm were introduced leading to var-
ious well-known matrix factorizations. Here, we present a generalization
of ABS algorithms containing all matrix factorizations such as triangular,
WZ, and ZW . We present the octant interlocking factorization and show
that the generalized ABS algorithm is more general to produce the octant
interlocking factorization.
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1 Introduction

The basic ABS class of algorithms was first introduced by Abaffy, Broyden,
and Spedicato [1] for solving linear systems of equations. Let R and Rm×n

denote the set of real numbers and the set of m×n real matrices, respectively.
Consider the system of linear equations
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Ax = b, x ∈ Rn, A ∈ Rm×n, b ∈ Rm, m ≤ n, (1)

where rank(A) is arbitrary. With A = [a1, . . . , am]T , the system is equiva-
lently written as

aTi x = bi, i = 1, . . . ,m. (2)

An ABS algorithm generates a sequence of approximations xi such that xi+1

is a particular solution of the first i equations and leads to the general solution
of a linear system by computing a particular solution and a matrix with rows
producing the null space of the coefficient matrix.

An ABS method starts with an arbitrary initial vector x1 ∈ Rn and a
nonsingular matrix H1 ∈ Rn×n. Given xi , a solution of the first i − 1
equations, and Hi a matrix with rows generating the null space of the first
i − 1 rows of the coefficient matrix, an ABS algorithm computes xi+1 as a
solution of the first i equations and Hi+1, with rows generating the null space
of the first i rows of the coefficient matrix. Below, we give the class of basic
ABS algorithms for solving systems of linear equations (13).

Algorithm 1 (Basic ABS algorithm).
(1) Give x1 ∈ Rn×n, arbitrary, H1 ∈ Rn×n, arbitrary and nonsingular. Set
i = 1 and r = 0.
(2) Compute τi = aTi xi − bi and si = Hiai.
(3) If (si = 0 and τi = 0), then let xi+1 = xi,Hi+1 = Hi and go to (6)
(the ith row of A is dependent on its first i− 1 rows). If si = 0 and τi ̸= 0,
then stop (the ith equation and hence the system is incompatible).
(4) Compute the search vector pi by

pi = HT
i fi, (3)

where fi ∈ Rn is an arbitrary vector satisfying aTi H
T
i fi ̸= 0. Compute

αi =
τi

aTi pi

and
xi+1 = xi − αipi.

(5) (Update the null space generator) Update Hi by

Hi+1 = Hi −
Hiaiq

T
i Hi

qTi Hiai
, (4)

where qi ∈ Rn is an arbitrary vector satisfying sTi qi ̸= 0, and let r = r + 1.
(6) If i = m, then Stop (HT

m+1 generates the null space of A and r is its
rank) else let i = i+ 1 and go to (2).

Here, we recall some properties of ABS algorithms; for more details, see
[3]. For simplicity, we assume that A ∈ Rm×n has full row rank.
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1. The system may be incompatible, which can be detected in step (3), when
si = 0 and τi = bi − aTi xi ̸= 0.
2. Hiai ̸= 0 if and only if ai is linearly independent of a1, . . . , ai−1.
3. If a1, . . . , ai are linearly independent, then the search vectors p1, . . . , pi
are linearly independent.
4. If a1, . . . , ai are linearly independent, then with Pi = (p1, . . . , pi), the im-
plicit factorization APi = Li holds, where Li is nonsingular lower triangular.
Different choices of the parameters H1, fi, and qi lead to different matrix
factorizations.

Theorem 1 (LX factorization). Let A ∈ Rn×n be a nonsingular matrix
and let H1 = I. Then, there exits an index set k1 < k2 < · · · < kn such
that eTki

Hiai ̸= 0, for k = 1, . . . , n, and the parameter choices fi = qi = eki

are well-defined. Let [n] = {1, . . . , n}, Bi = {k1, . . . , ki}, and Ni = [n]\Bi.
Then, we have the following properties:
(1) Every kth row of Hi+1 with k ∈ Bi is a null row.
(2) The vector pi has n− i zero components; its kith component is equal to
one.
(3) For each k ∈ Ni, the kth column of Hi+1 is the unit vector ek, while for
each k ∈ Bi, the kth column of Hi+1 has zero components in the jth position,
with j ∈ Bi, implying that only i(n − i) elements need to be computed for
Hi+1.

Proof. See [17].

Corollary 1 (LU factorization). Let A ∈ Rn×n be a strongly nonsingular
matrix (that is, the determinants of all the principal submatrices are nonzero)
and let H1 ∈ Rn×n be the identity matrix. Then
(1) the sequence {Hi}, where qi =

ei
eTi Hiai

, is well-defined.
(2) the first i rows of Hi+1 are identically zero and the last n− i columns of
Hi+1 are equal to the last n− i columns of Hi.
(3) P = (p1, . . . , pn) is an upper triangular matrix.

Proof. See [3, Theorems 6.3 and 6.5].

The scaled ABS method produces a matrix factorization V TAP = L,
where L is a lower triangular matrix. Choices of the parameters H1, fi,
and qi determine particular methods within the class so that various matrix
factorizations are derived; see [1, 3, 4, 18, 16, 17, 19].

Obviously, the original system (13) is equivalent to the following scaled
system:

V TAx = V T b, (5)

where V, the scale matrix, is an arbitrary nonsingular m by m matrix. By
replacing ai with AT vi in Algorithm 1, a scaled ABS algorithm is obtained.
Chen and Zhou [5] proposed a generalization of the ABS algorithms, named
as extended ABS (EABS) class of algorithms, which differs from the ABS

IJNAO, Vol. 12, No. 2, pp 301–314



304 Golpar-Raboky and Mahdavi-Amiri

class of algorithms only in updating the Abaffian matrices Hi. The block
ABS algorithm was developed by Abaffy and Galantai [2]. Let n1, . . . , ns be
positive integer numbers such that n1 + · · ·+ ns = n. Consider a block form
of A as A = (AT

1 , . . . , A
T
s )

T , where Ai ∈ Rni×n, for i = 1, . . . , s. The Block
ABS methods may be formulated as follows:
(1) Compute Si = HiA

T
i .

(2) Determine Fi ∈ Rn×ni such that FT
i Si is nonsingular and set Pi = HT

i Fi.
(3) Update the Abaffian matrix Hi by

Hi+1 = Hi −HiA
T
i (Q

T
i HiA

T
i )

−1
QT

i Hi, (6)

where Qi ∈ Rn×ni is an arbitrary matrix such that ST
i Qi is nonsingular. Es-

maeili, Mahdavi-Amiri, and Spedicato [7] presented the integer ABS class of
algorithms for solving linear Diophantine equations, developed conditions for
the existence of an integer solution, and determined all integer solutions [6].
An extension of the integer ABS algorithm using the scaled ABS algorithms
was developed by Spedicato et al. [16]. A new class of extended integer ABS
algorithms for solving linear Diophantine systems by computing an integer
basis for the null space while controlling the growth of intermediate results
was developed by Khorramizadeh and Mahdavi-Amiri [13]. Golpar-Raboky
and Mahdavi-Amiri [10, 11, 12, 14] presented new ideas for updating the
Hi leading to the development of a new class of extended integer ABS al-
gorithms. They also showed how to compute the Smith normal form of an
integer matrix using the scaled integer ABS algorithm [10].

For the (not necessarily independent) rows of Hi+1 to be a generator of
null space of the first i rows of A, the extended integer ABS algorithms can
always be tuned to produce an integer basis for the integer null space of the
coefficient matrix; see Esmaeili, Mahdavi-Amiri, and Spedicato [6].

2 Generalized ABS class of algorithms

The central problem of linear algebra is the solution of linear system of equa-
tions. Direct methods used to solve linear systems of equations are based on
factorizations of the coefficient matrix into factors to be easy for use in solv-
ing the equations. The Gaussian elimination with the corresponding matrix
decomposition, the LU decomposition, is the most useful method for solv-
ing linear equations. The method is well-defined if and only if A is strongly
nonsingular, that is, all principal submatrices, A(1 : k, 1 : k), for all k, are
nonsingular. The parallel implicit elimination (PIE) method and the WZ
factorization for solving large systems, suitable for parallel computers, have
been introduced by Evans [15].
Definition 1. Let [n] = {1, . . . , n} and let αi ⊂ [n], for i = 1, . . . , s. We say
α = {α1, . . . , αs} is an index set of [n] if and only if αi

∩
αj = ∅, whenever

i ̸= j, and ∪s
i=1αi = [n]. We denote the cardinality of α by |α|.
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Let |αi| = ni, for i = 1, . . . , s. Then, an index set α = {α1, . . . , αs}
is a block permutation vector, when the ith block size is equal to ni and
n =

∑s
i=1 ni.

Let A ∈ Rm×n and let α and β be two index sets of [n]. Let A(:, b)
denote the m × |b| submatrix of A containing the columns specified by b
and let A(αi, βj), the (i, j)th block of A, denote the |αi| × |βj | submatrix
of A composed of the rows specified by αi and the columns specified by
βj . If αi = βj , then A(αi, βj) is a principal submatrix of A and if αi =
βj = {1, . . . , k}, 1 ≤ k ≤ min{m,n}, then A(αi, βj) is a leading principal
submatrix of A.

Definition 2. Let A ∈ Rn×n, let t = {α1, . . . , αs} and β = {β1, . . . , βs} be
two index sets of n, and let A(αi, βj), 1 ≤ i, j ≤ s, denote the (i, j)th block
of A. Then,

A(α1, β1) ⊂ · · · ⊂ A(∪s
i=1αi,∪s

j=1βj) = A (7)

is a nested submatrix sequence of A. We say A is (α, β)-block strongly
nonsingular if and only if A(∪k

i=1αi,∪k
i=1βi), for k = 1, . . . , s, are nonsingular.

Let Pα and Pβ denote the permutation matrices moving the rows and
columns of A based on the index sets α and β, respectively, and let

Aα,β = PT
α APβ . (8)

Corollary 2. Let A ∈ Rn×n. Then A is (α, β)-block strongly nonsingular if
and only if Aα,β is strongly nonsingular.

Note that Theorem 1 provides a relationship between elimination methods
and the ABS method. The search vectors pi in step (4) of Algorithm 1
are aligned sequentially. The generalized elimination method and the ABS
method do not produce the same matrix factorizations, generally. In the
next section, we present a generalization of the ABS algorithms containing
all matrix factorizations produced by the generalized elimination method such
as triangular, WZ, and ZW . The generalized ABS method is more general to
produce some new matrix factorizations such as the SO and OS factorizations
which cannot be produced by the generalized elimination method.

Let A ∈ Rn×n, let α = {α1, . . . , αs} and β = {β1, . . . , βs} be two index
sets, and let Ai ∈ R|αi|×n be such that Ai = A(αi, :).

Algorithm 2 (Generalized ABS algorithm).
Input: A ∈ Rm×n, an arbitrary nonzero vector x ∈ Rm×n, an arbitrary
nonsingular matrix H1 ∈ Rn×n, and two index sets α = {α1, . . . , αs} and
β = {β1, . . . , βs}.
For i = 1, . . . , s do
(1) Compute Si = HiA(αi, :).
(2) Determine Fi ∈ Rn×βi such that FT

i Si is nonsingular and set P (:, αi) =
HT

i Fi.
(3) Update the approximation for the solution by
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x(αi+1) = x(αi)− P (:, αi)di,

where di is the unique solution of the following nonsingular system:

A(αi, :)P (:, αi)di = ri,

and ri = A(αi, :)xi − βi.
(3) Update the Abaffian matrix Hi by

Hi+1 = Hi −HiA(αi, :)(Q
T
i HiA(αi, :))

−1
QT

i Hi, (9)

where Qi ∈ Rn×αi is an arbitrary matrix so that ST
i Qi is nonsingular.

end for.
(4) Let P = (p1, . . . , pn) and compute C = AP.

Algorithm 2 provides a null space characterization for the matrix A. From
Algorithm 2, we have Hi+1aj = 0, for j ∈ ∪i

k=1αk, where aTj is the jth row
of A. According to (8), Theorem 1 and Corollary 1, we have the following
results.

Theorem 2. Let A ∈ Rn×n, and let α = (α1, . . . , αs) and β = (β1, . . . , βs)
be two index sets. Then, A is (α, β)-block strongly nonsingular if and only
if I(:, b(i))THiA(t(i), :)T , for i = 1, . . . , s, are nonsingular.

Theorem 3. Let Qi = I(:, βi), and let Hi+1 be defined by (9). Then, the
following properties hold:
(a) The jth row of Hi+1 is zero, for j ∈ ∪i

k=1b(k).
(b) The jth column ofHi+1 is equal to the jth column ofH1, for j ̸∈ ∪i

k=1b(k).

Proof. See [3, Theorem 6.3].

Now, consider the following definition.

Definition 3. A ∈ Zn×n is a unimodular matrix if and only if |det(A)| = 1.

Note that, A is unimodular if and only if A−1 is unimodular.

Remark 1. Let A ∈ Zn×n. If A(αk, βk), for k = 1, . . . , s, are unimodular,
then Algorithm 2 produces an integer matrix factorizatin (B and C are integer
matrices).

Algorithm 2 produces a matrix factorization AP = C. Different choices
of the parameters Q, F, t and b lead to different matrix factorizations. For
αi = βi = i, Qi = Fi = ei, 1 ≤ i ≤ n, Algorithm 2 produces an LU
factorization. Next, we show how to choose the parameters in Algorithm
2 to compute the WZ and ZW factorizations. We also discuss the octant
interlocking factorization method and present two new factorizations named
as the OS and SO factorizations.
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3 Quadrant interlocking factorization

A direct method, called the WZ factorization, for solving linear systems of
equations Ax = b was introduced by Evans and Hotzopoulos [9]. Let A be
an n × n nonsingular matrix. The WZ factorization of [8] expresses A as
A = WZ, where W and Z have the following forms:

W =


• ◦ ◦ ◦ •
• • ◦ • •
• • • • •
• • ◦ • •
• ◦ ◦ ◦ •

 , Z =


• • • • •
◦ • • • ◦
◦ ◦ • ◦ ◦
◦ • • • ◦
• • • • •

 , X =


• ◦ ◦ ◦ •
◦ • ◦ • ◦
◦ ◦ • ◦ ◦
◦ • ◦ • ◦
• ◦ ◦ ◦ •

 , (10)

where the empty bullets stand for zero and the other bullets stand for possible
nonzeros.

The matrix W is called a unit W -matrix if in addition, wii = 1, for
i = 1, . . . , n, and wi,n−i+1 = 0, for i ̸= (n + 1)/2, when n is odd. The
transpose of a (unit) W -matrix is called a (unit) Z-matrix and vise versa.
Moreover, Amatrix which is both a Z- and a W -matrix is called an X-matrix.

Note that, we assume that A is nonsingular and of an even size n (without
loss of generality) and that s = n

2 .

Theorem 4. Let A is an n×n matrix and let n be even. Then A has a WZ
factorization if and only if the nested submatrices A(1 : k, n − k + 1 : n, 1 :
k, n− k + 1 : n) are invertible, for k = 1, . . . , n/2.

Proof. See proof of of [15, Theorem 2].

Now, we show how to choose the parameters of the generalized ABS al-
gorithm to compute the WZ factorization.
Consider two index sets α = {α1, . . . , αs} and β = {β1, . . . , βs} such that
αk = βk = {k, n − k + 1} and Fk = Qk = [ek, en−k+1], for k = 1, . . . , s.
Then, P is a Z-matrix, C is a W -matrix, and Algorithm 2 leads to a WZ
factorization of A.

Remark 2. Let A ∈ Zn×n. If the nested submatrices A(1 : k, n − k + 1 :
n, 1 : k, n−k+1 : n) are unimodular, for k = 1, . . . , n

2 , then A has an integer
WZ factorization.

Consider two equal index sets α = {α1, . . . , αs} and β = {β1, . . . , βs}
such that αk = βk = {s − k + 1, s + k} and Fk = Qk = [es−k+1, es+k], for
k = 1, . . . , s. Then, P is a W -matrix, C is a Z-matrix, and Algorithm 2 leads
to a WZ factorization of A.

Theorem 5. Let A ∈ Rn×n. Then A has a ZW factorization if and only if
the nested submatrices A(s − k + 1 : s + k, s − k + 1 : s + k) are invertible,
for k = 1, . . . , s.
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Remark 3. Let A ∈ Zn×n. If the nested submatrices A(s−k+1 : s+k, s−
k + 1 : s + k) are unimodular, for k = 1, . . . , s, then A has an integer ZW
factorization.

4 Octant interlocking factorization

Here, we first define octant matrices and then present the Octant Interlock-
ing Factorization (OIF). We provide the necessary and sufficient conditions
for the existence of OIF and show how to choose the parameters of the gen-
eralized ABS algorithm to compute the factorization.

Definition 4. We say A ∈ Rn×n is an octant matrix, if it has one of the
following structures:

S =


• • • • •
• • ◦ • •
• ◦ ◦ ◦ •
• • ◦ • •
• • • • •

 , O =


◦ ◦ • ◦ ◦
◦ • • • ◦
• • • • •
◦ • • • ◦
◦ ◦ • ◦ ◦

 , (11)

with the empty bullets standing for zero and the other bullets standing for
possible nonzeros. The matrices in (11) are called the S-matrix and the
O-matrix, respectively.

Definition 5. Let A ∈ Rn×n. We say that A has an octant interlocking
factorization, if A = BC such that B and C are octant matrices.

The transpose and the inverse of an S-matrix are an S-matrix and an O-
matrix, respectively, as well as the transpose and the inverse of an O-matrix
are an O-matrix and an S-matrix, respectively.

Note that, we assume that A ∈ Rn×n is nonsingular, that n is an even
number, and that s = n

2 .
Consider two index sets α = {α1, . . . , αs} and β = {β1, . . . , βs} such that
αk = {k, n − k + 1}, βk = {s − k + 1, s + k}, and Qk = Fk = [ek, en−k+1].
Then, C is an O-matrix and P is an S-matrix.

Now, let βk = {k, n − k + 1}, let αk = {s − k + 1, s + k}, and let Qk =
Fk = [es−k+1, es+k]. Then, P is an O-matrix and C is an S-matrix.

Theorem 6. Let A ∈ Rn×n. Then A has an OS factorization if and only if
the nested submatrices A(s− k+ 1 : s+ k, 1 : k, n− k+ 1 : n) are invertible,
for k = 1, . . . , s.

Remark 4. Let A ∈ Zn×n. If the nested submatrices A(s− k+1 : s+ k, 1 :
k, n− k + 1 : n), for k = 1, . . . , s, are unimodular, then A has an integer OS
factorization.
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5 Generalized ABS algorithm and matrix factorizations

An elimination method is a sequence of elementary row or column operations
to divide a matrix into parts with partial zeroing of columns or rows of the
matrix leading to a matrix factorization implicitly.

Let A ∈ Rn×n and let α = {α1, . . . , αs} and β = {β1, . . . , βs} be two in-
dex sets of n. Algorithm 2 computes a matrix factorization AP = C, with
parameter choices Qi = Fi = I(:, αi) and P (:, βi) = HT

i Fi as follows:

A(αi, :)H
T
k = 0, i = 1, . . . , k − 1,

and

C(αi, βk) = A(αi, :)P (:, βk) = A(αi, :)H
T
k I(:, αi) = 0, i = 1, . . . , k − 1.

This means that in the kth step the generalized ABS algorithm performs a
partial zeroing such that the elements of the submatrix C corresponding to
the columns specified by βk and the rows specified by αi, for i = 1, . . . , k−1,
turn to zero. Here, we set the parameters in Algorithm 2 to present the
associated matrix factorizations C = AP .

We consider different choices for α and β such that all the blocks A(αi, βj)
turn to be 1 × 1 and present the associated matrix factorizations. First, we
define two index sets. Let J = {j1, . . . , jn} with the Ji as follows:

ji =

{
i+1
2 if i is odd,

n− i
2 + 1 if i is even.

(12)

We define the index set K = {k1, . . . , kn} as follows. If n is an even number,
then define

ki =

{
n
2 − i+1

2 + 1 if i is odd,
n
2 + i

2 if i is even,
(13)

if n is an odd number, then define

ki =

{
n+1
2 − i

2 if i is even,
n+1
2 + i−1

2 if i is odd.
(14)

If αi = βi = i, then C is a lower triangular and P is an upper triangular
matrix. For αi = βi = n − i + 1, C is an upper triangular and P is a lower
triangular matrix. The different cases are noted in Figure 1

In Figure 2, we give a MATLAB code for Algorithm 2, where A ∈ Rn×n,
t = {t1, . . . , tn} and b = {b1, . . . , bn} are two index sets, and all the blocks
A(αi, βi) are 1× 1, for i = 1, . . . , n.
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Figure 1: Matrix factorizations associated with different index sets

Figure 2: MATLAB code for Algorithm 2
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6 Numerical illustrations

We give illustrations of our proposed algorithms to compute the QIF and
OIF factorizations. The algorithms were implemented usingMatlab R2020a.

Example 1. Consider the following matrix:

A =


1 1 1 1 1 1
1 2 3 4 5 6

1 3 6 10 15 21

1 4 10 20 35 56
1 5 15 35 70 126

1 6 21 56 126 252

 .

Let αk = βk = {s − k + 1, s + k}, for k = 1, 2, 3 and s = n
2 = 3. Then, the

generalized elimination algorithm, Algorithm 1, produces P as a W -matrix
and C as a Z-matrix, and we have a ZW factorization as follows:

P =


−1 0 0 0 0 0

−2 1 0 0 0 3
2 −1 1 0 2.5 −8

−1 0.3 0 1 −3 9
0.2 0 0 0 1 −4.8

0 0 0 0 0 1


and

C =


0.2 0.3 1 1 0.5 0.2
0 0.2 3 4 0.5 0

0 0 6 10 0 0

0 0 10 20 0 0
0 0.5 15 35 2.5 0

0.2 1.8 21 56 10.5 1.2

 .

Example 2. Let

A =


13.8966 15.3103 14.1873 2.3800 15.0253 10.9443
6.3420 15.9040 15.0937 9.9673 5.1019 2.7725

19.0044 3.7375 5.5205 19.1949 10.1191 2.9859

0.6889 9.7953 13.5941 6.8077 13.9815 5.1502
8.7749 8.9117 13.1020 11.7054 17.8181 16.8143

7.6312 12.9263 3.2522 4.4762 19.1858 5.0856

 .

Let αk = {s− k+1, s+ k} and βk = {k, n− k+1}, for k = 1, 2, 3 and s = 3.
By the generalized ABS algorithm, Algorithm 2, we have

P =


0 0 1 0 0 0

0 1.0000 −3.3515 −11.9955 0 0

1 −0.7279 4.0998 13.5268 −0.8931 0
0 0.0146 −0.8436 1.3279 −0.2703 1

0 0 −1.2767 −5.7630 1 0

0 0 0 1 0 0
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and

C =


14.1873 5.0185 −0.4413 −64.2317 1.7108 2.3800
15.0937 5.0633 0 0 −11.0731 9.9673

5.5205 0 0 0 0 19.1949
13.5941 0 0 0 0 6.8077

13.1020 −0.4537 0 0 2.9522 11.7054

3.2522 10.6245 −50.6286 −210.6023 15.0712 4.4762

 .

We realize that P is an O-matrix, that C is an S-matrix, and that AP = C.

7 Concluding remarks

We presented a generalized elimination approach for solving linear systems.
We established the necessary and sufficient conditions under which the pro-
posed method is applicable. We showed that different matrix factorizations
could be derived from the method such as the LU,WZ, and ZW factoriza-
tions. We also proposed the octant interlocking factorization to factorize a
nonsingular matrix into octant matrices. We presented a generalized ABS
algorithm and showed how to choose the parameters of the algorithm to com-
pute the WZ and the ZW factorizations as well as the octant interlocking
factorization of real and integer matrices.
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