Numerical approximation for inverse problem of the Ostrovsky–Burgers equation

Document Type : Research Article


School of Mathematics and Computer Science, Damghan University, Damghan 36715-364, Iran.


This article considers a nonlinear inverse problem of the Ostrovsky–Burgers equation by using noisy data. Two B-Splines with different levels, the quintic B-spline and septic B-spline, are used to study this problem. For both B-splines, the stability and convergence analysis are calculated, and results show that an excellent estimation of the unknown functions of the nonlinear inverse problem.


Main Subjects

1. Akram, G. and Siddiqi, S.S. End conditions for interpolatory septic splines, Int. J. Comput. Math. 82 (2005) 1525–1540.
2. Bhatta, D.
Use of modified Bernstein polynomials to solve KdV–Burgers equation numerically, Appl. Math. Comput. 206 (2008) 457–464.
3. Cabeza, J.M.G., Garcia, J.A.M. and Rodriguez, A.C.
A sequential algorithm of inverse heat conduction problems using singular value decomposition, Int. J. Therm. Sci. 44 (2005) 235–244.
4. Chen, G.U. and Boyd, J.P.
Analytical and numerical studies of weakly nonlocal solitary waves of the rotation-modified Korteweg–de Vries equation, Physica D 155 (2001) 201–222.
5. Chen, R. and Wu, Z.
Solving partial differential equation by using multiquadric quasi-interpolation, Appl. Math. Comput. 186 (2007) 1502–10.
6. de Boor, C.
On the convergence of odd degree spline interpolation, J. Approx. Theory 1 (1968) 452–463.
7. Esfahani, A. and Levandosky, S.
Solitary waves of the rotation-generalized Benjamin-Ono equation, Discrete Contin. Dyn. Syst. 33 (2013) 663–700.
8. Foadian, S., Pourgholi, R. and Tabasi, S.H.
Cubic B-spline method for the solution of an inverse parabolic system, Appl. Anal. 97 (2018) 438–465.
9. Galkin, V.N. and Stepanyants, Y.A.
On the existence of stationary solitary waves in a rotating field, Appl. Math. Mech. 55 (1991) 939–943.
10. Gilman, O.A., Grimshaw, R. and Stepanyants, Y.A.
Approximate and numerical solutions of the stationary Ostrovsky equation, Stud. Appl. Math. 95 (1995) 115–126
11. Grimshaw, R.
Internal solitary waves, environmental stratified flows, Kluwer Academic Publishers, Dordrecht, 2001, Ch. 1, pp. 1–29.
12. Haq, S., Siraj-Ul-Islam, and Uddin, M.
A mesh-free method for the numerical solution of the KdV-Burgers equation, Appl. Math. Model. 33(2009) 3442–3449.
13. Hall, C.A.
On error bounds for spline interpolation, J. Approx. Theory 1 (1968) 209–218.
14. Helal, M.A. and Mehanna, M.S. A comparison between two different methods for solving KdV–Burgers equation, Chaos Soliton Fract. 28(2006) 320–326.
15. Khater, A.H., Temsah, R.S. and Hassan, M.M.
A Chebyshev spectral collocation method for solving Burgers’-type equations, J. Comput. Appl. Math. 222 (2008) 333–350.
16. Mitsudera, H. and Grimshaw, R.
Effects of friction on a localized structure in a baroclinic current, J. Physical Oceanography 23 (1993) 2265–2292.
17. Obregon, M.A. and Stepanyants, Y.A.
Oblique magneto-acoustic solitons 460 in rotating plasma, Phys. Lett. A 249 (1998) 315–323.
18. Ostrovsky, L.A.
Nonlinear internal waves in a rotating ocean, Oceanologia 18 (1978) 181–191
19. Ott, E. and Sudan, R.N.
Damping of solitary waves, Phys. Fluids 13(1970) 1432–1434.
20. Rudin, W.
Principles of mathematical analysis, Third edition, International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York-Auckland-Düsseldorf, 1976.
21. Smith, G.D.
Numerical solution of partial differential equation: finite difference method, Learendom Press, Oxford 1978.
22. Wang, H. and Esfahani, A.
Well-posedness and asymptotic behavior of the dissipative Ostrovsky equation, Evol. Equ. Control Theory 8 (2019)709–735.
23. Xu, Y. and Shu, C-W.
Local discontinuous Galerkin methods for the Kuramoto Sivashinsky equations and the Ito-type coupled equations, Comput. Methods Appl. Mech. 195 (2006) 3430–3447.
24. Zhan, J.M. and Li, Y.S.
Generalized finite spectral method for 1D burgers and KdV equations, Appl. Math. Mech. (English Ed.) 27 (2006) 1635–1643.