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Two new approximations to
Caputo–Fabrizio fractional equation on

non-uniform meshes and its applications

Z. Soori and A. Aminataei∗

Abstract

We present two numerical approximations with non-uniform meshes to the
Caputo–Fabrizio derivative of order α (0 < α < 1). First, the L1 formula is
obtained by using the linear interpolation approximation for constructing
the second-order approximation. Next, the quadratic interpolation ap-
proximation is used for improving the accuracy in the temporal direction.
Besides, we discretize the spatial derivative using the compact finite differ-
ence scheme. The accuracy of the suggested schemes is not dependent on
the fractional α. The coefficients and the truncation errors are carefully
investigated for two schemes, separately. Three examples are carried out
to support the convergence orders and show the efficiency of the suggested
scheme.
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1 Introduction

In recent years, some approximations have been proposed for the fractional
derivative of order α, such as Grünwald–Letnikov, Lubich, and Caputo ap-
proximations [15, 16, 24, 28, 30, 27]. The schemes that are proposed until
now to discretize the Caputo fractional derivative have been limited to the
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accuracy of order 2−α (0 < α < 1) on uniform meshes. One disadvantage of
previously proposed methods is that when α ≈ 1, its accuracy may lead to
poor accuracy. Thus, in this point of view, the numerical solutions of high
dimensional partial fractional differential equations require a large number of
computations. Besides, from the truncation error estimate of the methods on
uniform meshes verify that the accuracy is dependent on the fractional order
α. We are able to overcome these difficulties using Caputo–Fabrizio fractional
derivative with a non-singular kernel. Afterward, we will obtain the second
and third-orders accuracy in time that is independent of the fractional order
α.

Let us consider the following time fractional diffusion and advection equa-
tions, respectively:

CF
0 Dα

t u(X, t) =
∂2u(x, t)

∂x2
+ f(x, t), x ∈ Ω, 0 ≤ t ≤ T,

CF
0 Dα

t u(X, t) =
∂u(x, t)

∂x
+ f(x, t), x ∈ Ω, 0 ≤ t ≤ T, (1)

in which CF
0 Dα

t is the αth Caputo–Fabrizio fractional derivative defined by

CF
0 Dα

t u(X, t) =
M(α)

1− α

∫ t

0

u′(X, s) exp
(
− α

t− s

1− α

)
ds, 0 < α < 1, (2)

where M(α) is a normalization function such that M(0) = M(1) = 1.
In 2015, Caputo and Fabrizio [7] suggested a new definition of fractional

derivative based on the exponential kernel. They considered two different
representations for the temporal and the spatial variables. It is important
and interesting that this approach describes the behaviour of classical vis-
coelastic materials, electromagnetic systems, thermal media, and so on. An-
other interesting property of this definition is that it opens up new avenues
in the mechanical phenomena, related to plasticity, fatigue, damage, and
electromagnetic hysteresis [7].

Recently, studies of Caputo–Fabrizio fractional derivatives have been car-
ried out by some authors. Authors of [6] investigated the existence of a
solution for two high-order fractional integro-differential equations including
the Caputo–Fabrizio derivative. Atangana and Alqahtani [4] considered a
numerical approximation of the space and time Caputo–Fabrizio fractional
derivative in connection with ground water pollution equation. In [18], the
authors presented a Crank–Nicolson finite difference scheme to solve frac-
tional Cattaneo equation by a new fractional derivative. Furthermore, they
analyzed the stability and convergence order of the scheme. The main aim of
[9] is to prove the existence and uniqueness of the flow of water within a con-
fined aquifer with Caputo–Fabrizio fractional diffusion for the spatial and the
temporal variables. In [12], the authors applied the Ritz method with known
basis functions for a type of Fokker–Planck equation with Caputo–Fabrizio
fractional derivative. In 2017, Mirza and Vieru [21] proposed the fundamen-
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tal solutions to time-fractional advection-diffusion equation without singular
kernel. They applied the Laplace transform and Fourier transforms with re-
spect to the temporal variable and the space coordinates, respectively. In
[19], the authors constructed the shifted Legendre polynomials operational
matrix in order to solve problems with left-sided Caputo–Fabrizio opera-
tor. A second-order scheme for the space fractional diffusion equation with
Caputo–Fabrizio is provided in [26]. The main aim of [10] is to solve two
problems in nonlocal quantum mechanics wherein the nonlocal shrödinger
equation has been transformed to an ordinary linear differential equation.
Other interesting papers in the field of the Caputo–Fabrizio derivative are
found in [1, 2, 3, 5, 8, 11, 13, 14, 20, 22, 23, 25, 17].

The main goal of this paper is to derive two new formulas to approxima-
tion the Caputo–Fabrizio derivative of order α (0 < α < 1). For this pur-
pose, we use the linear and the quadratic interpolation approximations on
non-uniform meshes for obtaining the second and the third orders accuracy.
Besides, we discretize the spatial derivative using the compact finite differ-
ence scheme. The advantages of the present paper are in the following two
aspects, that is, the obtained accuracy is independent of the fractional α and
gives a new high-order accuracy to the time fractional derivative in Caputo–
Fabrizio’s sense on non-uniform meshes. In this paper, much attention is
paid to the numerical aspects. To our knowledge, our interest in Caputo–
Fabrizio derivative is due to the necessity of using a model describing the
behaviour of classical viscoelastic materials, thermal media, electromagnetic
systems, and so on. In fact, the original definition of fractional derivative
appears to be particularly convenient for those mechanical phenomena, re-
lated to plasticity, fatigue, damage and with electromagnetic hysteresis. In
fact, the Caputo–Fabrizio derivative fits to describe material heterogeneities
and structures with different scales. Hence, we have focused on non-uniform
meshes.

The rest of the paper is organized as follows. In Section 2, the derivation
of the new method on any non-uniform meshes for the Caputo–Fabrizio frac-
tional derivative of order α (0 < α < 1) in both cases of the second and the
third order is developed. Three examples are given in Section 3 to support
the theoretical analysis. Finally concluding remarks are given in Section 4.

2 Derivation of new method on non-uniform meshes

2.1 The second-order approximation

In this section, we focus our attention on deriving the new fractional numer-
ical differentiation formula in details. By Caputo–Fabrizio fractional deriva-
tive, we have
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CF
0 Dα

t u(t)|t=tk =
1

1− α

∫ t

0

u′(s) exp
(
− α

t− s

1− α

)
ds

=
1

1− α

n∑
k=1

∫ tk

tk−1

u′(s) exp
(
− α

tn − s

1− α

)
ds, (3)

where 0 = t0 < t1 < . . . < tN = T . We denote the time step by τn =
tn − tn−1, 1 ≤ n ≤ N , and let τMax = max1≤l≤N τl.

To explain the process of deriving formula, we apply the linear interpola-
tion polynomial using points

(
tk−1, u(tk−1)

)
and

(
tk, u(tk)

)
for approximat-

ing u′(s) as follows:

Π1,ku(t) = u(tk) + (t− tk)
u(tk)− u(tk−1)

tk − tk−1

= u(tk−1)
tk − t

τk
+ u(tk)

t− tk−1

τk
(4)

and

(Π1,ku(t))
′ =

u(tk)− u(tk−1)

τk
. (5)

Then, the interpolation error formula is given by

u(t)−Π1,ku(t) =
u′′(ξk)

2!
(t− tk−1)(t− tk), t ∈ [tk−1, tk], ξk ∈ (tk−1, tk),

1 ≤ k ≤ n. (6)

Now, substituting (5) into (3), we obtain the L1 formula as follows:

CF
0 Dα

t u(t)|t=tk =
1

1− α

n∑
k=1

u(tk)− u(tk−1)

τk

∫ tk

tk−1

exp
(
− α

tn − s

1− α

)
ds

=
1

α

n∑
k=1

(uk − uk−1)M
n
k , (7)

where Mn
k = 1

τk

(
exp

(
− α tn−tk

1−α

)
− exp

(
− α tn−tk−1

1−α

))
.

Lemma 1. For any 1 ≤ n ≤ N , we have Mn
k > 0 and Mn

k+1 > Mn
k .

Proof. Note that −α
1−α (tn − tk) >

−α
1−α (tn − tk−1) for 0 < α < 1 and exp(x) is

a monotone increasing function. Thus one can verify that

Mn
k =

1

τk

(
exp

(
− α

tn − tk
1− α

)
− exp

(
− α

tn − tk−1

1− α

))
> 0.

From the mean value theorem for integrals, we have
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Mn
k =

1

τk

∫ tk

tk−1

exp
(
− α

tn − s

1− α

)
ds = exp

(
− α

tn − ξk
1− α

)
, ξk ∈ (tk−1, tk).

Clearly, exp
(
− α tn−s

1−α

)
is a monotone increasing function, then the second

statement of the lemma follows immediately.

Theorem 1. Suppose u(t) ∈ C2[0, T ]. For any 0 < α < 1, it holds that

|R(u(tk))| ≤
1

1− α
max

t0≤t≤tn

|u′′(t)|
8

τ2max. (8)

Proof. From (2) and (6), we get

R(u(tk)) =
1

1− α

[ n∑
k=1

∫ tk

tk−1

(u(s)−Π1,ku(s))
′ exp

(
− α

tn − s

1− α

)
ds

]

=
1

1− α

n∑
k=1

[
(u(s)−Π1,ku(s)) exp

(
− α

tn − s

1− α

)∣∣tk
tk−1︸ ︷︷ ︸

=0

−
∫ tk

tk−1

(u(s)−Π1,ku(s)) exp
(
− α

tn − s

1− α

) α

1− α
ds

]
=

−α

(1− α)2

[ n∑
k=1

∫ tk

tk−1

u′′(νk)

2
(s− tk−1)(s− tk) exp

(
− α

tn − s

1− α

)
ds

]
≤ α

(1− α)2
|u′′(ν)|

2

τ2k
4

∫ tn

t0

exp
(
− α

tn − s

1− α

)
ds︸ ︷︷ ︸

≤ 1−α
α

≤ α

(1− α)2
|u′′(ν)|

8
τ2max

1− α

α
, ν ∈ (t0, tn) νk ∈ (tk−1, tk).

This proves the desired formula.

We apply the time step over the non-uniform mesh defined as [29]

τn = (N + 1− n)µ, 1 ≤ n ≤ N, (9)

where µ = 2T
N(N+1) .

2.2 The third-order approximation

Adding an additional point
(
tk−2, u(tk−2)

)
for k ≥ 2, we obtain a quadratic

interpolation function Π2,ku(t) of u(t) as follows:
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Π2,ku(t) = Π1,ku(t) +
1

tk − tk−2

[
u(tk)− u(tk−1)

tk − tk−1
− u(tk−1)− u(tk−2)

tk−1 − tk−2

]
× (t− tk)(t− tk−1)

= Π1,ku(t) +
1

τk + τk−1

[
u(tk)− u(tk−1)

τk
− u(tk−1)− u(tk−2)

τk−1

]
× (t− tk)(t− tk−1), t ∈ [tk−1, tk],

(
Π2,ku(t)

)′
=

u(tk)− u(tk−1)

τk
+
(
2t−(tk+tk−1)

)
Atu(tk).

(10)
For simplicity in what follows, we define:

Atuk =
1

τk + τk−1

[
uk − uk−1

τk
− uk−1 − uk−2

τk−1

]
,

and

u(t)−Π2,ku(t) =
u′′′(ηk)

6
(t− tk−2)(t− tk−1)(t− tk),

t ∈ [tk−1, tk], ηk ∈ (tk−2, tk), 2 ≤ k ≤ n. (11)

We substitute (10) into (2) to obtain a new approximation of the Caputo–
Fabrizio derivative as follows:

CF
0 Dα

t u(t)|t=tn =
1

1− α

n∑
k=1

∫ tk

tk−1

u′(s) exp
(
− α

tn − s

1− α

)
ds

≈ 1

1− α

[ ∫ t1

t0

(
Π1,1u(s)

)′
exp

(
− α

tn − s

1− α

)
ds

+

n∑
k=2

∫ tk

tk−1

(
Π2,ku(s)

)′
exp

(
− α

tn − s

1− α

)
ds

]
=

1

1− α

[
u1 − u0

τ1

∫ t1

t0

exp
(
− α

tn − s

1− α

)
ds

+

n∑
k=2

∫ tk

tk−1

[uk − uk−1

τk
+Atuk(2s− (tk−1 + tk))

]
× exp

(
− α

tn − s

1− α

)
ds

]
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=
1

1− α

[ n∑
k=1

uk − uk−1

τk

∫ tk

tk−1

exp
(
− α

tn − s

1− α

)
ds

+

n∑
k=2

Atuk

∫ tk

tk−1

(2s− (tk−1 + tk)) exp
(
− α

tn − s

1− α

)
ds

]

=CF
0 Dα

t u(t)|t=tn +
1

α2

n∑
k=2

Bn
kAtuk, (12)

where

Bn
k = 2(α− 1)

[
exp

(
− α

tn − tk
1− α

)
− exp

(
− α

tn − tk−1

1− α

)]
+ ατk

[
exp

(
− α

tn − tk
1− α

)
+ exp

(
− α

tn − tk−1

1− α

)]
. (13)

Moreover, CF
0 Dα

t is the L1 method for non-uniform time grid in Section 2,
where, we define

CF
0 Dα

t u(t)|t=tn =CF
0 Dα

t u(t)|t=tn +
1

α2

n∑
k=2

Bn
kAtuk, (14)

wherein, we define a new operator Dα
t u(t), which is the new fractional nu-

merical differentiation operator for the Caputo–Fabrizio fractional derivative
CF
0 Dα.

The following lemma states the property of coefficients Bn
k .

Lemma 2. For any α (0 < α < 1), let

Bn
k = 2(α− 1)

[
exp

(
− α

tn − tk
1− α

)
− exp

(
− α

tn − tk−1

1− α

)]
+ ατk

[
exp

(
− α

tn − tk
1− α

)
+ exp

(
− α

tn − tk−1

1− α

)]
, 2 ≤ k ≤ n.

It holds that

Bn
n > Bn

n−1 > · · · > Bn
k > Bn

k−1 > · · · > Bn
2 > 0.

Proof. To prove our statement, we apply the error representation of the trape-
zoidal formula. For this purpose, we consider the function −2α exp

(
−α tn−s

1−α

)
on the interval [tk−1, tk]. Then
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Bn
k = −2α

[ ∫ tk

tk−1

exp
(
− α

tn − s

1− α

)
ds− τk

2

(
exp

(
− α

tn − tk
1− α

)
+ exp

(
− α

tn − tk−1

1− α

))]
= −2α(− 1

12
)
(
exp

(
− α

tn − s

1− α

))′′∣∣
s=ξk

=
α

6

α2

(1− α)2
exp

(
− α

tn − ξk
1− α

)
, ξk ∈ (tk−1, tk).

Since exp
(
− α tn−s

1−α

)
> 0 and α

6
α2

(1−α)2 > 0, these imply that Bn
k > 0 for

2 ≤ k ≤ n. Besides, exp
(
− α tn−s

1−α

)
is a monotone increasing function with

respect to s on [0, T ] and this completes the proof.

Theorem 2. Suppose u(t) ∈ C3[0, T ]. For any 0 < α < 1, it holds that

|R(u(tk))| ≤
[

α

(1− α)2
max

t0≤t≤t1

|u′′(t)|
8

+ max
t0≤t≤tn

|u′′′(t)|
12

α

1− α

]
τ3max. (15)

Proof. To prove this, we see from (2), (6), and (11) that

R(u(tk)) =
1

1− α

[ ∫ t1

t0

(u(s)−Π1,1u(s))
′ exp

(
− α

tn − s

1− α

)
ds

+

n∑
k=2

∫ tk

tk−1

(u(s)−Π2,ku(s))
′ exp

(
− α

tn − s

1− α

)
ds

]
=

1

1− α

[
(u(s)−Π1,1u(s)) exp

(
− α

tn − s

1− α

)∣∣t1
t0︸ ︷︷ ︸

=0

−
∫ t1

t0

(u(s)−Π1,1u(s)) exp
(
− α

tn − s

1− α

) α

1− α
ds

]
+

1

1− α

[ n∑
k=2

∫ tk

tk−1

(u(s)−Π2,ku(s))
′ exp

(
− α

tn − s

1− α

)∣∣tk
tk−1︸ ︷︷ ︸

=0

−
n∑

k=2

∫ tk

tk−1

(u(s)−Π2,ku(s))
′ exp

(
− α

tn − s

1− α

) α

1− α
ds

]
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≤ α

(1− α)2

[
|u′′(ξ1)|

2

τ2

4

∫ t1

t0

exp
(
− α

tn − s

1− α

)
ds︸ ︷︷ ︸

τ1

+
|u′′′(ν)|

6

τ2k
4
(τk−1 + τk)

∫ tn

t1

exp
(
− α

tn − s

1− α

)
ds︸ ︷︷ ︸

≤ 1−α
α

]
,

ξ1 ∈ (t0, t1), ν ∈ (t0, tn).

The second term of last inequality results by the following remark in [29]:

Remark 1. With regard to maxt0≤s≤tn |(s− tk)(s− tk−1)| = τ2
k

4 is obtained
at s = tk−1 +

τk
2 , consequently we have:

(s− tk−2)(s− tk−1)(s− tk) =
τ2k
4
(tk−1 +

τk
2

− tk−2)

=
τ2k
4
(τk−1 +

τk
2
) ≤ τ2k

4
(τk−1 + τk).

Besides, we know that τMax = max1≤l≤N τl. This proves (15).

3 Numerical applications of the examples

In the current section, the efficiency of the suggested scheme for the time
Caputo–Fabrizio fractional diffusion and advection equations are presented
on three numerical examples in one dimension. The accuracy and the stability
of the suggested scheme in the paper for different values of M and N are
tested. In order to carry out our numerical examples, we have used the Maple
18 software with a PC of 4 GHz CPU and 6 GB memory. The accuracy of
the proposed scheme is measured by the following error norm

e(N,M) = max
1≤i≤M−1

|u(xi, tN )− uN
i |.

We denote the numerical convergence orders by

Rate = log2

(
e(N/2,M)

e(N,M)

)
.

Example 1. Suppose 0 < α < 1. Let u(t) = sin(4t). The exact solution is
obtained from the definition of the Caputo–Fabrizio (2) without the variable
x. Denote e(N) = |u(tN )− uN |.



374 Soori and Aminataei

Table 1: Numerical convergence orders in temporal direction for Example 1
α N The second-order The third-order

e(N) Rate e(N) Rate
0.5 5 5.6188× 10−2 − 2.0699× 10−2 −

10 1.5043× 10−2 1.9012 2.3793× 10−3 3.2100
20 3.9207× 10−3 1.9399 2.6437× 10−4 3.1699
40 1.0028× 10−3 1.9671 3.1297× 10−5 3.0785
80 53722.× 10−4 1.9827 3.6530× 10−6 3.0989

0.9 5 3.4485× 10−3 − 5.9336× 10−2 −
10 9.3840× 10−4 1.8777 7.9779× 10−3 2.8946
20 2.4994× 10−4 1.9086 1.0192× 10−3 2.9886
40 6.4364× 10−5 1.9572 1.2836× 10−4 2.9892
80 1.6314× 10−5 1.9801 1.5964× 10−5 3.0073

From Table 1, this fact is extracted that the computational orders of our
schemes are independent of the fractional order α. This means that with
changing values α, the computational orders do not change and the orders
of convergence of these two cases the second-order and three-order schemes
should be 2 and 3, respectively.

Example 2. Consider the time fractional diffusion equation [29]
C
0Dα

t u(x, t) =
∂2u(x,t)

∂x2 + f(x, t), 0 < x < 1, 0 < t ≤ 1,

u(x, 0) = u0(x), 0 ≤ x ≤ 1,

u(0, t) = Φ(t), u(1, t) = φ(t), 0 < t ≤ 1.

(16)

The exact solution of (16) is u(x, t) = sin(πx)t2. The functions can be
obtained by substituting u(x, t) into (16).

Remark 2. For discretizing the term ∂2u(x,t)
∂x2 , we apply the fourth-order

CFD scheme as follows:

∂2u(x, t)

∂x2
|x=xi

=
δ2x

1 + h2

12 δ
2
x

u(xi, t) +O(h4).

Now, we consider the fourth-order approximation of the second derivative
of u at point xi as follows:

∂2u(x, t)

∂x2
|i,n =

δ2x
1 + h2

12 δ
2
x

un
i ,

where un
i denotes the numerical solution at (xi, tn). Then, a difference scheme

using third-order formula can be obtained as
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HCF
0 Dα

t u
n
i = δ2xu

n
i +Hfn

i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N, (17)

un
0 = Φ(tn), un

1 = φ(tn), , 1 ≤ n ≤ N, (18)

u0
i = u0(xi), 0 ≤ i ≤ M, (19)

where

δ2xv
n
i =

1

h
(δxv

n
i+ 1

2
− δxv

n
i− 1

2
).

Moreover

Hvi =

{
1
12 (vi+1 + 10vi + vi−1), 1 ≤ i ≤ M − 1,

vi, i = 0 or M.

It can be seen that

Hvi =

(
I +

h2

12
δ2x

)
vi, 1 ≤ i ≤ M − 1.

Lemma 3. (See [31]). consider the function g(x) ∈ C6[xi−1, xi+1], and let
ξ(s) = 5(1− s)3 − 3(1− s)5. Then

g′′(xi+1) + 10g′′(xi) + g′′(xi−1)

12

=
g(xi+1)− 2g(xi) + g(xi−1)

h2
+

h4

360

∫ 1

0

[
g6(xi − sh) + g6(xi + sh)

]
ξ(s)ds.

Having seen Tables 2 and 3, we observe that the third-order scheme pro-
duces better results than the second-order scheme. In the Caputo’s sense, the
accuracy of the presented method is dependent on α. In this case, the com-
putational orders for α = 0.4, 0.6 and 0.8 are 1.6, 1.4 and 1.2, respectively,
when the theoretical order is 3 − α, whereas the accuracy of the presented
method is not dependent on the fractional α. Table 4 illustrates the error
and CPU time of the third-order and the second-order schemes. Having seen
Table 4, we conclude that the third-order scheme produces more accurate
results than the second-order scheme. Besides, the third-order scheme needs
fewer temporal grid size and less CPU time for bigger N .

Figure 1 exhibits the solution curves at final time T = 1 for different
values of α = 0.1, 0.5 and 0.9 with M = N = 50 for Example 2. Figure 2
shows the comparison of the absolute errors wherein the third-order scheme
is more accurate than the second order-scheme. The plots of absolute error
and the numerical solution for α = 0.1 with M = N = 50 for Example 2 are
shown in Figure 3.
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Table 2: Numerical convergence orders in temporal direction with M = 50 for Example
2

α N The second-order The third-order
e(N,M) Rate e(N,M) Rate

0.25 5 3.6444× 10−4 − 1.9185× 10−4 −
10 9.9230× 10−5 1.8768 3.0437× 10−5 2.6561
20 2.5987× 10−5 1.8299 4.4476× 10−6 2.7747
40 6.6615× 10−6 1.9639 5.4377× 10−7 3.0320

0.5 5 1.1051× 10−3 − 5.2234× 10−4 −
10 2.9975× 10−4 1.8823 7.9398× 10−5 2.7206
20 7.8515× 10−5 1.9327 1.1188× 10−5 2.8272
40 2.0126× 10−5 1.9639 1.5315× 10−6 2.8689

0.75 5 2.6813× 10−3 − 9.2499× 10−4 −
10 7.2606× 10−4 1.8848 1.2632× 10−4 2.8724
20 1.8975× 10−4 1.9360 1.6398× 10−5 2.9455
40 4.8687× 10−5 1.9625 2.2262× 10−6 2.8809

Table 3: Numerical convergence orders in temporal direction with M = 50 for Example
2

α N The second-order The third-order
e(N,M) Rate e(N,M) Rate

0.4 5 7.4249× 10−4 − 3.7053× 10−4 −
10 2.0170× 10−4 1.8802 5.7480× 10−5 2.8434
20 5.2738× 10−5 1.9353 8.0087× 10−6 2.8434
40 1.3679× 10−5 1.9469 1.2630× 10−7 2.6647

0.6 5 1.5958× 10−3 − 6.9588× 10−4 −
10 4.3238× 10−4 1.8839 1.0289× 10−4 2.7577
20 1.1306× 10−4 1.9352 1.3961× 10−5 2.8816
40 2.8973× 10−5 1.9643 1.7908× 10−6 2.9627

0.8 5 3.1781× 10−3 − 9.4828× 10−4 −
10 8.6131× 10−4 1.8836 1.2325× 10−4 2.9437
20 2.2530× 10−4 1.9347 1.5675× 10−5 2.9751
40 5.7678× 10−5 1.9658 1.9745× 10−6 2.9889
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Table 4: The errors and CPU time (seconds) of the third-order and the second-order
schemes for Example 2

α The third-order (M = 50) The second-order (M = 50)
N e(N,M) CPU(s) N e(N,M) CPU(s)

0.7 8 9.3694× 10−4 0.03 5 8.6414× 10−4 0.09
24 1.1214× 10−4 0.06 12 7.2084× 10−5 0.1
72 1.2902× 10−5 13.10 24 9.6323× 10−6 5.75

0.8 8 1.3174× 10−3 0.06 5 9.4828× 10−4 0.09
24 1.5769× 10−4 0.09 10 1.2325× 10−4 0.1
72 1.8033× 10−5 14.30 20 1.5675× 10−5 3.86

0.9 8 1.9637× 10−3 0.07 4 1.6778× 10−3 0.07
24 2.3611× 10−4 0.09 8 1.7168× 10−4 0.09
72 2.7014× 10−5 14.53 16 1.9223× 10−5 3.05

Figure 1: The solution curves at T = 1 with M = N = 50 for Example 2
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Figure 2: Comparison of the absolute errors for the second-order (left) and the third-
order (right) schemes with M = N = 50 for Example 2

Figure 3: Plots of the absolute error (left) with M = N = 50 and the numerical solution
(right) for Example 2

Example 3. Consider the time fractional advection equation [29]
C
0Dα

t u(x, t) =
∂u(x,t)

∂x + f(x, t), 0 < x < 1, 0 < t ≤ 1,

u(x, 0) = u0(x), 0 ≤ x ≤ 1,

u(0, t) = Φ(t), u(1, t) = φ(t), 0 < t ≤ 1.

(20)

Remark 3. For discretizing the term ∂u(x,t)
∂x , we apply the fourth-order CFD

scheme [29] as follows:
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Table 5: Numerical convergence orders in temporal direction with α = 0.5 and M = 50

for Example 3
N The second-order The third-order

e(N,M) Rate e(N,M) Rate
5 1.3158× 10−3 − 5.7401× 10−3 −
10 3.4968× 10−3 1.9118 8.8998× 10−4 2.6892
20 9.0919× 10−4 1.9434 1.2614× 10−4 2.8187
40 2.3234× 10−4 1.9683 1.7195× 10−5 2.8750

∂u(x, t)

∂x
|i,n =

δx̂

1 + h2

6 δ2x
un
i .

Difference scheme using third-order formula can be obtained as

ACF
0 Dα

t u
n
i = δx̂u

n
i +Afn

i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N, (21)

un
0 = Φ(tn), un

1 = φ(tn), , 1 ≤ n ≤ N, (22)

u0
i = u0(xi), 0 ≤ i ≤ M, (23)

where

δx̂vi =
1

2h
(vi+1 − vi−1),

and

Avi =

{
1
6 (vi+1 + 4vi + vi−1), 1 ≤ i ≤ M − 1,

vi, i = 0 or M.

It can be seen that

Avi =

(
I +

h2

6
δ2x

)
vi, 1 ≤ i ≤ M − 1.

Like Remark 2 but with slight change, we consider the fourth-order ap-
proximation of the first derivative of u at point xi as follows:

∂u(x, t)

∂x
|x=xi =

δx̂

1 + h2

6 δ2x
u(xi, t) +O(h4). (24)

The exact solution of (20) is u(x, t) = sin(πx)t5. Functions can be obtained
by substituting u(x, t) into (20).
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Figure 4: The solution curves at T = 1 with M = 50, N = 40 for Example 3

Table 5 confirms that the numerical convergence orders in both the
second-order and the third-order schemes are close to theoretical results.
Having seen Table 5, we conclude that the third-order produces better re-
sults for e(N,M) than that the second-order both in error and accuracy. In
[29], the accuracy of the presented method is dependent on α. In this case,
the computational orders for α = 0.5 is 1.5 with the theoretical order of 3−α,
whereas the accuracy of our schemes is not dependent on the fractional α.
Figure 4 illustrates the plot of numerical solution and exact solution with
α = 0.5,M = 50 and N = 40 at final time T = 1 for Example 3.

4 Conclusions

In the current paper, we have obtained two new fractional numerical differen-
tiation formulas to approximate the time Caputo–Fabrizio fractional deriva-
tive of order α (0 < α < 1) on non-uniform meshes. First, the linear and
quadratic interpolation approximations are considered for the integrand u(t)
because of obtaining the new formulas. Then, a fourth-order CFD scheme
is employed for spatial discretization. This difference scheme is led to the
third-order (second-order) and the fourth-order accuracy in the temporal and
the spatial variables, respectively. Numerical results are carried out to sup-
port the convergence orders and show the efficiency of the suggested scheme.
What distinguishes this paper from our previous studies is its accuracy as-
pect because the accuracy of the suggested schemes is not dependent on the
fractional α.
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