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Numerical solution of damped forced
oscillator problem using Haar wavelets

I. Singh and S. Kumar∗

Abstract

We present here the numerical solution of damped forced oscillator prob-

lem using Haar wavelet and compare the numerical results obtained with
some well-known numerical methods such as Runge-Kutta fourth order clas-
sical and Taylor Series methods. Numerical results show that the present
Haar wavelet method gives more accurate approximations than above said

numerical methods.

Keywords: Haar wavelet method; Differential equation; Operational ma-
trix; Damped forced oscillator.

1 Introduction

During the last few decades considerable efforts have been made using
wavelet, towards the development of computational methods to solve numer-
ically linear differential equations encountered in various fields of science and
engineering. Wavelet analysis is a new branch of applied science. Wavelet
methods are applied to find the numerical solution of problems related to
science and engineering. In the last recent years, wavelet methods have been
attracted the great interest of researchers of physical and mathematical sci-
ences and many research papers were published in these fields. Recently,
many researchers have used Haar and Daubechies wavelets to find the nu-
merical solution of differential and integral equations. Before, the discovery
of Haar wavelet, Daubechies wavelets were used in many published research
papers for numerical solution of differential and integral equations.

In 1910, Alfred Haar [4] discovered a new wavelet known as Haar wavelet.
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Among all wavelet families, Haar wavelet is most simple, accurate and effi-
cient. It attracted, the interest of many researcher in the field of engineering
and science. Haar wavelet has been used in wide variety of numerical meth-
ods developed for numerical solutions of differential and integral equations.
Here, we present a survey of such methods for differential and integral equa-
tions. Chen and Hsiao [3] applied Haar wavelet method for solving lumped
and distributed-parameter systems. Hsiao [6] used wavelet approach to time-
varying functional differential equations. Razzaghi and Ordokhani [15] used
Haar functions for variational problems. Ohkita and Kobayashi [13] applied
rationalized Haar functions to solve linear differential equations. Cattani [2]
suggested use of Haar wavelet splines for numerical solution of differential
equations. Lepik [8, 9, 10, 11, 12] used Haar wavelets for solving differ-
ential and integral equations. Sunmonu [18] presented wavelet solution for
second order differential equations with maple. Hariharan and Kannan [5]
presented an overview of Haar wavelet method for solving differential and
integral equations. Kouchi et al. [7] presented numerical solution of homoge-
neous and inhomogeneous harmonic differential equation with Haar wavelet.
In [16], Quasilinearization technique and Haar wavelet operational matrix
method both are applied to find the numerical solution of fractional order
nonlinear oscillation equations. Also, Solutions of fractional order force-free
and forced Duffing-Van der Pol oscillator and higher order fractional Duffing
equation on large intervals are presented in [16].

In Section 2, we discussed damped forced oscillator. Haar wavelet method
is presented in Section 3. Function approximation is presented in Section 4.
In Section 5, we present convergence analysis of Haar wavelet method. In
Section 6, the solution by Haar wavelet method is presented. In Section
7, Runge-Kutta method for second order differential equation is presented.
Taylor-Series method is presented in Section 8. Comparison of numerical
solutions is presented in Section 9 and in Section 10, conclusion is given.

2 Damped forced oscillation

Oscillation means repeated motion of a particle or a body, when displaced
from its equilibrium position. The classifications of oscillating systems are
presented in Thomsen [19] and in Bhat Rama and Dukkipati [14]. The mech-
anism that results in dissipation of the energy of an oscillator is called damp-
ing. In mechanical oscillator, the damping may be due to (1) Viscous drag
(2) Friction and (3) Structure. An oscillator to which a continuous excitation
is provided by some external agency is called forced oscillator.

Suppose a mass M attached to the end of a spring of stiffness constant
S. One end of the spring is attached to a rigid support. Let the driven force
acting on the system be F (t). At any instant, the system will operate under
the influence of the following forces:
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(a) Restoring force, F1 = −Sx where x is the displacement of the mass from
the equilibrium position,
(b) Damping force, F2 = −rdx/dt, where r is damping constant,
(c) Driven force, F3 = F (t).
The negative sign in the first two expression implies that both the restoring
as well as damping forces opposes the displacement. By Newton second law
of motion, we have

M
d2x

dt2
= −Sx− r dx

dt
+ F (t). (1)

In this paper, we take special choice F (t) = 2(1−sint),M = 2kg, S = 1N/m,
r = 0.3Ns/m and x(0) = x′(0) = 0 as initial conditions, see Simmons [17].
The exact solution of equation (1) by using classical method is:

x(t) = e−0.075t(C1cos(0.703118t) + C2sin(0.703118t)) + 2 +
200

109
sin(t) +

60

109
cos(t). (2)

applying initial conditions, we have C1 = −278
109 and C2 = −110425000

38319931 .

3 Haar wavelet method

The Haar functions are an orthogonal family of switched rectangular wave-
forms where amplitudes can differ from one function to another. They are
defined in the interval [0, 1].

hi(t) =


1, α ≤ t < β,

−1, β ≤ t < γ,

0, otherwise.

(3)

where α = k
m , β = k+0.5

m and γ = k+1
m .

Integer m = 2j , (j = 0, 1, 2, 3, 4, .......J) indicates the level of the wavelet.
k = 0, 1, 2, 3, .....,m− 1 is the translation parameter.Maximal level of resolu-
tion is J. The index i is calculated according the formula i = m+k+1.In the
case of minimal values, m = 1, k = 0 we have i = 2. The maximal value of i
is i = 2M . where M = 2J . It is assumed that the value i = 1, corresponding
to the scaling function in [0, 1].

h1(t) =

{
1, 0 ≤ t ≤ 1,

0, otherwise.
(4)

Let us define the collocation points tl =
(l−0.5)
2M , where l = 1, 2, 3, ..., 2M

and discredits the Haar function hi(t).
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In the collocation points, the fist four Haar functions can be expressed as
follows:
h1(t) = [1, 1, 1, 1], h2(t) = [1, 1,−1,−1], h3(t) = [1,−1, 0, 0], h4(t) = [0, 0, 1,−1].

We introduce the notation:

H4(t) = [h1(t), h2(t), h3(t), h4(t)]
T =


1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1

. (5)

Here H4(t) is called Haar coefficient matrix. It is a square matrix of order 4.
The operational matrix of integration P , which is a 2M square matrix, is
defined by the relations:

Pi,1(t) =

∫ tl

0

hi(t)dt. (6)

Pi,n+1(t) =

∫ tl

0

Pi,n(t)dt, (7)

where n = 1, 2, 3, 4....

These integrals can be evaluated using equation (3) and first four of them
are given below:-

Pi,1(t) =


t− α, tϵ[α, β),

γ − t, tϵ[β, γ),

0, elsewhere,

(8)

Pi,2(t) =


1
2 (t− α)

2, tϵ[α, β),
1

4m2 − 1
2 (γ − t)

2, tϵ[β, γ),
1

4m2 , tϵ[γ, 1),

0, elsewhere,

(9)

Pi,3(t) =


1
6 (t− α)

3, tϵ[α, β),
1

4m2 (t− β)− 1
6 (γ − t)

3, tϵ[β, γ),
1

4m2 (t− β), tϵ[γ, 1),

0, elsewhere,

(10)

Pi,4(t) =


1
24 (t− α)

4, tϵ[α, β),
1

8m2 (t− β)2 − 1
24 (γ − t)

4 + 1
192m4 , tϵ[β, γ),

1
8m2 (t− β)2 + 1

192m4 , tϵ[γ, 1),

0, elsewhere.

(11)
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4 Function approximation

Any square integrable function x(t) in the interval [0, 1] can be expanded by
a Haar series of infinite terms:

x(t) =
∞∑
i=1

aihi(t), iϵ{0} ∪N (12)

where the Haar coefficients ai are determined as:

a0 =

∫ 1

0

x(t)h0(t)dt (13)

an = 2j
∫ 1

0

x(t)hi(t)dt (14)

where i = 2j + k, j≥0 and 0≤k < 2j , xϵ[0, 1] such that the following integral
square error ε is minimized:

ε =

∫ 1

0

[x(t)−
m−1∑
i=0

aihi(t)]
2dt (15)

where m = 2j and jϵ{0}∪N .
Usually the series expansion of (12) contains infinite terms for smooth

x(t). if x(t) is piecewise constant by itself or may be approximated as piece-
wise constant during each subinterval, then x(t) will be terminated at finite
m terms. This means

x(t) =
m−1∑
i=0

aihi(t) = am
Thm(t) (16)

where the coefficients am
T and the Haar function vector hm(t) are defined

as:

am
T = [a0, a1, a2, ..........., am−1]

and

hm(t) = [h0(t), h1(t), h2(t), ..........., hm−1(t)]
T .

5 Convergence analysis of Haar wavelet method

Consider a differentiable function x(t) with

|x(t)| ⩽ K0, (17)
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such that
|x′(t)| ⩽ K0, (18)

for all tε(0, 1). Where K0 > 0 is a positive constant. Haar wavelet approxi-
mation for the function x(t) is given by:

xM (t) =
2M∑
i=1

aihi(t) (19)

The square of error norm for wavelet approximation in [1] is given by:

∥x(t)− xM (t)∥ ≤ K0
2

3
.

1

(2M)2
(20)

Therefore,

∥x(t)− xM (t)∥ ≤ O(
1

M
) (21)

This means that error bound depends on level of resolution of Haar wavelets
that is, error bound is inversely proportional to level of resolution of Haar
wavelets. Therefore, when we increase the value of M , it yields the sure
convergence of Haar wavelet approximation.

6 Method of solution

Consider the damped forced oscillatory equation (1). Assume that

x′′(t) =
2M∑
i=1

aihi(t). (22)

Integrating twice with respect to t from 0 to t, we get

x′(t) = x′(0) +
2M∑
i=1

aiP1,i(t), (23)

x(t) = x(0) +
2M∑
i=1

aiP2,i(t). (24)

Apply initial conditions and substitute the values of x′′(t), x′(t) and x(t) in
(1), we get,

2M∑
i=1

ai[Mhi(t) + rP1,i(t) + SP2,i(t)] = F (t) (25)
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where r, S, F and M are same as defined in Section 2. From here, wavelet
coefficients ai are calculated and solution x(t) of equation (1) is obtained.

7 Runge-Kutta method of fourth order

Runge-Kutta method is famous numerical method for solving ordinary dif-
ferential equations. Consider the second order ordinary differential equation

d2y

dx2
= ϕ(x, y,

dy

dx
) (26)

By substituting dy
dx = z, it can reduced to two first order simultaneous differ-

ential equations

dy

dx
= z = f(x, y, z) (27)

and
dz

dx
= ϕ(x, y, z) (28)

with initial conditions y(x0) = y0 and z(x0) = z0. Starting at (x0, y0, z0)
and taking the step-sizes for x, y, z to be h, k, l respectively, the Runge-Kutta
method gives,

k1 = hf(x0, y0, z0), (29)

l1 = hϕ(x0, y0, z0), (30)

k2 = hf(x0 +
1

2
h, y0 +

1

2
k1, z0 +

1

2
l1), (31)

l2 = hϕ(x0 +
1

2
h, y0 +

1

2
k1, z0 +

1

2
l1), (32)

k3 = hf(x0 +
1

2
h, y0 +

1

2
k2, z0 +

1

2
l2), (33)

l3 = hϕ(x0 +
1

2
h, y0 +

1

2
k2, z0 +

1

2
l2), (34)

k4 = hf(x0 + h, y0 + k3, z0 + l3), (35)

l4 = hϕ(x0 + h, y0 + k3, z0 + l3). (36)

Using above relations, we have

y1 = y0 +
1

6
(k1 + 2k2 + 2k3 + k4), (37)

and
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z1 = z0 +
1

6
(l1 + 2l2 + 2l3 + l4), (38)

To compute y2 and z2, we simply replace x0, y0, z0 by x1, y1, z1 in the
above relations. Similarly by using above relations we compute x2, y2, z2,
x3, y3, z3,...........so on.

8 Taylor-series method

Consider equations (26), (27) and (28). If h be the step-size, y1 = y(x0 + h)
and z1 = z(x0 + h). Then, Taylor’s algorithm for (26) and (27) gives

y1 = y0 + hy0
′ +

h2

2!
y0

′′ +
h3

3!
y0

′′′ + ........ (39)

z1 = z0 + hz0
′ +

h2

2!
z0

′′ +
h3

3!
z0

′′′ + ........ (40)

Differentiating (26) and (27) successively, we get y′′, z′′, etc. So the values
y0

′, y0
′′, y0

′′′, ..... and z0
′, z0

′′, z0
′′′, ..... are known. Substituting these values

in above equations, we get y1, z1. Similarly, we have the algorithms

y2 = y1 + hy1
′ +

h2

2!
y1

′′ +
h3

3!
y1

′′′ + ........ (41)

z2 = z1 + hz1
′ +

h2

2!
z1

′′ +
h3

3!
z1

′′′ + ........ (42)

Since y1, z1 are known. we can calculate y1
′, y1

′′, y1
′′′, ..... and z1

′, z1
′′, z1

′′′, ......
Substituting these values in above equations, we get y2, z2. Proceeding in this
way, we can calculate the other values of y and z step by step.

9 Comparison of numerical solutions

In this section, we compare the results of the present Haar wavelet method
with two other numerical methods for the damped forced oscillatory problem.
In order to verify the efficiency of Haar wavelet method in comparison to
exact solution, Runge-kutta fourth order classical method and Taylor series
method have been selected. For the Runge-kutta method, the step-size is
1/32. For Taylor’s series method, step size is 1/32 and 7 terms are involved.
Table-1 shows the numerical results from different numerical methods. Table-
2 shows the errors arising from different numerical methods mentioned above.
Further, graph in Figure 1 shows the comparison of graphical solution with
the exact solution, obtained for J = 3 by (i) Haar wavelet method (ii) Runge-
Kutta fourth order classical method and (iii) Taylor series method.
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Table 1: Results from different numerical methods

x(l)/32 Exact solution Haar wavelet Runge-Kutta Taylor series
1 0.0004824193 0.0004707036 0.0004630874 0.0004671912
3 0.0042356457 0.0042007228 0.0040510208 0.0040991982
5 0.0114690029 0.0114111581 0.0109524412 0.0110920238
7 0.0218950125 0.0218146369 0.0208783000 0.0211608344
9 0.0352250351 0.0351226225 0.0335339697 0.0340203049
11 0.0511707741 0.0510469174 0.0486211919 0.0493861034
13 0.0694457517 0.0693011385 0.0658400073 0.0669763459
15 0.0897667509 0.0896021596 0.0848906621 0.0865130140
17 0.1118552180 0.1116715126 0.1054754806 0.1077233303
19 0.1354386196 0.1352367450 0.1273006949 0.1303410858
21 0.1602517482 0.1600327242 0.1500782254 0.1541079134
23 0.1860379714 0.1858028875 0.1732274013 0.1787745029
25 0.2125504200 0.2123004292 0.1973766160 0.2041017526
27 0.2395531092 0.2392894218 0.2213649076 0.2298618522
29 0.2668219898 0.2665458670 0.2452434581 0.2558392936
31 0.2941459241 0.2938586718 0.2687770046 0.2818318053

10 Conclusion

Here, we used three numerical methods to approximate the solutions of
damped forced oscillatory differential equation, and compared the results
with exact solution. From above results, it is concluded that Haar wavelet
method is simple, accurate and more efficient than other well known numer-
ical methods for damped forced oscillatory differential equation.
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هار موجکهای از استفاده با نوسانی میرای نیروی مساله عددی حل

شیوکومار و سینک ایندریپ

هندوستان پنجاب، آمبدکار، دکتر فناوری ملی موسسه

می ارائه هار، موجکهای از استفاده با را نوسانی میرای نیروی مساله عددی حل مقاله، این در : چکیده
رانگ-کوتای مانند مشهور، روشهای از بعضی بردن کار به از حاصل نتایج با را حاصل عددی نتایج کنیم.

کنیم. می مقایسه تیلور سری روشهای و کلاسیک چهارم مرتبه

است، گردیده ارائه مقاله این در که هار، های موجک از استفاده روش که دهند می نشان عددی نتایج
دهند. می بدست بالا، در شده ذکر های روش با مقایسه در را تری دقیق تقریبی جوابهای

نوسانی. میرای نیروی عملیاتی؛ ماتریس دیفرانسیل؛ معادلات هار؛ های موجک روش : کلیدی کلمات
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