Operational Tau method for nonlinear multi-order FDEs

Document Type : Research Article


Department of Mathematics, Sahand University of Technology, Tabriz, Iran.


This paper presents an operational formulation of the Tau method based upon orthogonal polynomials by using a reduced set of matrix operations for the numerical solution of nonlinear multi-order fractional differential equations(FDEs). The main characteristic behind the approach using this technique is that it reduces such problems to those of solving a system of non-linear algebraic equations. Some numerical examples are provided to demonstrate the validity and applicability of the method.


1. Abbasbandy, S. and Taati, A. Numerical solution of the system of nonlin-ear Volterra integro-differential equations with nonlinear differential partby the operational Tau method and error estimation, J. Comput. Appl.Math., 231 (2009) 106-113.
2. Arikoglu, A. and Ozkol, I. Solution of fractional differential equations by using differential transform method, Chaos Solitons Fractals, 34 (2007) 1473-1481.
3. Canuto, C., Hussaini, M., Quarteroni, A. and Zang, T. Spectral methodsfundamentals in single domains,Springer-Verlag, Berlin, 2006.
4. Cang, J., Tan, Y., Xu, H. and Liao, S. Series solutions of non-linear Riccatidifferential equations with fractional order, Chaos Solitons Fractals, 40 (2009) 1-9.
5. Diethelm, K. and Walz, G. Numerical solution of fractional order differ-ential equations by extrapolation, Numer. Algorithms, 16 (1997) 231-253.
6. Freilich, J. and Ortiz, E. Numerical solution of systems of ordinary differ-ential equations with the Tau method, an error analysis, Math. Comp., 39(1982) 467-479.
7. Galeone, L. and Garrappa, R. On multistep methods for differential equa-tions of fractional order, Mediterr. J. Math., 3 (2006) 565-580.
8. Ghorbani, A. Toward a new analytical method for solving nonlinear frac-tional differential equations,Comput. Methods Appl. Mech. Engrg., 197(2009) 4173-4179.
9. Ghoreishi, F. and Yazdani, S. An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence analysis, Comput. Math. Appl., 61 (2011) 30-43.
10. Ghoreishi, F. and Hadizadeh, M. Numerical computation of the Tau ap-proximation for the Volterra-Hammerstein integral equations, Numer. Algorithms,52 (2009) 541-559.
11. Gottlieb, D. and Orszag, S. Numerical analysis of spectral methods, the-ory and applications, CBMS-NSF Regional Conference Series in Applied Mathematics, 26. SIAM, Philadelphia, 1997.
12. Jafari, H. and Sei, S. Solving a system of non-linear fractional partial differential equations using homotopy analysis method, Commun. Nonlinear Sci. Numer. Simul., 14 (2009) 1962-1969.
13. Jafari, H. and Daftardar-Gejji, V. Solving a system of nonlinear frac-tional differential equations using Adomian decomposition, J. Comput.Appl. Math., 196 (2006) 644-651.
14. Kilbas, A., Srivastava, M. and Trujillo, J. Theory and applications of fractional differential equations, Elsevier, 2006.
15. Lanzos, C. Trigonometric interpolation of empirical and analytical func-tions, J. Math. Phys., 17 (1983) 123-199.
16. Lanczos, C. Introduction, tables of Chebyshev polynomials, Appl. Math. Ser. US Bur. Stand., 9, Government Printing Office Washington, 1952.
17. Lanczos, C. Applied analysis, Prentice-Hall, Englewood Cliffs, NJ, 1956.
18. Lin, R. and Liu, F. Fractional high order methods for the nonlinear frac-tional ordinary differential equation, Nonlinear Anal., 66 (2007) 856-869.
19. Mokhtary, P. and Ghoreishi, F. The L2-convergence of the legendre spec-tral Tau matrix formulation for onlinear fractional integro differential equations, Numer. lgorithms, 58 (2011) 475-496.
20. Momani, S. and Odibat, Z. Numerical comparison of methods for solving linear differential equations of fractional order, Chaos Solitons Fractals,31 (2007) 1248-1255.
21. Momani, S. and Shawagfeh, N. Decomposition method for solving frac-tional Riccati differential quations, Appl. Math. Comput., 182 (2006)1083-1092.
22. Odibat, Z. and Momani, S. Modified Homotopy perturbation method: application to quadratic Ricatti differential equation of fractional order,Chaos Solitons Fractals, 36 (2008) 167-174.
23. Onumanyi, P. and Ortiz, E. Numerical solution of stiff and singularity perturbed boundary value problems with a segmented-adaptive formulation of the Tau Method, Math. Comp., 43 (1984) 189-203.
24. Ortiz, E. and Dinh, A. An error analysis of the Tau method for a class of singularity perturbed problems for differential equations, Math. Methods Appl. Sci., 6 (1984) 457-466.
25. Ortiz, E. and Dinh, A. On the convergence of the Tau method for non-linear differential equations of icatti's type, Nonlinear Anal., 9 (1985)53-60.
26. Ortiz, E. The Tau method, SIAM J. Numer. Anal, 6 (1969) 480-492.
27. Ortiz, E. and Samara, H. An operational approach to the Tau method for the numerical solution of nonlinear differential equations, Computing, 27(1981) 15-25.
28. Ortiz, E. and Samara, H. Numerical solution of differential eigenvalue problems with an operational approach to the Tau method, Computing, 31(1983) 95-103.
29. Ortiz, E. and Samara, H. Numerical solution of partial differential equa-tions with variable coefficients with an operational approach to the Tau method, Comput. Math. Appl., 10 (1984) 5-13.
30. Podlubny, I. Fractional differential equations, Academic Press, 1999.