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A successive iterative approach for two
dimensional nonlinear

Volterra-Fredholm integral equations

A. H. Borzabadi∗ and M. Heidari

Abstract

In this paper, an iterative scheme for extracting approximate solutions
of two dimensional Volterra-Fredholm integral equations is proposed. Con-

sidering some conditions on the kernel of the integral equation obtained by
discretization of the integral equation, the convergence of the approximate
solution to the exact solution is investigated. Several examples are provided
to demonstrate the efficiency of the approach.

Keywords: Volterra-Fredholm integral equation; Iterative method; Dis-
cretization; Approximation.

1 Introduction

The integral equations provide important tools for modeling a wide range
of phenomena and processes [14], and solving many problems in engineering
and mechanics which are dependent on finding the solution of their integral
equations. They are widely used in plasma physics [10], deblurring of two
dimensional images [8, 20], solving applied boundary value problems [1] and
Laplace’s equations with boundary conditions [16]. Upon the importance
of the integral equations, different numerical methods have been developed
over the years to tackle them, such as time collocation and time discretization
methods [6, 15], trapezoidal Nystrom method [11], Adomian decomposition
method [9, 17] and successive iterative scheme [5] but few of them can be used
for solving two dimensional integral equations such as two dimensional block
pulse functions [3], finite difference inequalities [19], time-stepping methods
[7] and block-by-block method [4].
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Studies on iterative approaches play an important role to accelerate con-
vergence rate in solving any system of equations generated by discretizing
mathematical models in science and engineering problems [5]. The objective
of this study is to present an iterative approach for extracting approximate
solutions of two dimensional Volterra-Fredholm integral equations as

u(x, t) = f(x, t) +

∫ t

c

∫ b

a

k(x, t, y, z, u(y, z))dydz, (x, t) ∈ D := [a, b]× [c, d],

(1)
where f(x, t) (source function) and k(x, t, y, z, u) (kernel function) are the
given analytical functions defined on D and D × D × R, respectively. The
existence and uniqueness of the solution for equation (1) are discussed in
[12, 15]. This work can be considered as an extension of the method proposed
in [5]. Note that, the present approach is applicable to a wide class of integral
equations. The structure of the report is as follows. In Section 2 we transform
the integral equation into a discretized form. Then, in Section 3, we introduce
an successful numerical approach which is used subsequently for making up
the solution algorithm in Section 4. Section 5 demonstrates the efficiency and
advantages of the proposed algorithm whilst Section 6 concludes the paper.

2 Integral equation transformation

Let△(1) = {a = x0, x1, · · · , xn−1, xn = b},△(2) = {c = t0, t1, · · · , tm−1, tm =
d} be equidistance partitions of [a, b] and [c, d], respectively, where hx =
xi+1 − xi, i = 0, 1, · · · , n− 1 and ht = tj+1 − tj , j = 0, 1, · · · ,m− 1 are the
discretization parameters of the partitions. Now, if u∗(x, t) be an analytical
solution of (1), then for the partitions △(1),△(2) on [a, b] and [c, d], we have

u∗(xi, tj) = f(xi, tj) +

∫ tj

c

∫ b

a

k(xi, tj , y, z, u
∗(y, z))dydz, (2)

where i = 0, 1, · · · , n and j = 0, 1, · · · ,m. In (2), the integral term can be
estimated by a numerical method of integration, e.g. Newton-Cotes methods.
Therefore, by taking equidistance partitions △(1),△(2), as above with hy =
yi+1 − yi, i = 0, 1, · · · , n − 1, hz = zj+1 − zj , j = 0, 1, · · · ,m − 1, and also
the weights wi, i = 0, 1, · · · , n and w′

jr
, r = 0, 1, · · · , j, equality (2) can be

written as,

u∗i,j = fi,j +

j∑
r=0

n∑
l=0

w′
jrwlk(xi, tj , yl, zr, u

∗
l,r) +O(hνy) +O(hµz ), (3)
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where u∗i,j = u∗(xi, tj), fi,j = f(xi, tj), i = 0, 1, · · · , n, j = 0, 1, · · · ,m, and
ν, µ depends upon the employed method of Newton-Cotes for estimating the
integral in (2).

For partitions △(1),△(2), we consider a nonlinear equations system ob-
tained by neglecting the truncation error of (2), as follows,

ξi,j = fi,j +

j∑
r=0

n∑
l=0

w
′
jr

wlk(xi, tj , yl, zr, ξl,r), i = 0, 1, · · · , n, j = 0, 1, · · · ,m, (4)

and suppose that the exact solution of nonlinear system (4) are ξ∗i,j , i =
0, 1, · · · , n, j = 0, 1, · · · ,m. In the following proposition, we seek the condi-
tions of vanishing |u∗i,j − ξ∗i,j |, i = 0, 1, · · · , n, j = 0, 1, · · · ,m.

proposition 2.1.Suppose,
(i) |u∗p,q − ξ∗p,q| = max 0≤i≤n

0≤j≤m
|u∗i,j − ξ∗i,j |,

(ii) k(x, t, y, z, u(y, z)) ∈ C(D ×D × R),
(iii) ku(x, t, y, z, u(y, z)) exists on D ×D × R and γ < 1

(b−a)(d−c) , where

γ = sup
x,y∈[a,b]
t,z∈[c,d]

|ku(x, t, y, z, u(y, z))|.

Then

|u∗p,q − ξ∗p,q| ≤
|O(hνy)|+ |O(hµz )|
1− γ(b− a)(d− c)

. (5)

Proof. By (3) and (4), we have

u∗p,q − ξ∗p,q =
q∑
r=0

n∑
l=0

w′
qrwl(k(xp, tq, yl, zr, u

∗
l,r)− k(xp, tq, yl, zr, ξ∗l,r))

+O(hνy) +O(hµz ).

According to (iii)

k(xp, tq, yl, zr, u
∗
l,r)− k(xp, tq, yl, zr, ξ∗l,r) =

∂k

∂u
(xp, tq, yl, zr, η

∗
l,r)(u

∗
l,r − ξ∗l,r),

(6)
where for each l = 0, 1, · · · , n, r = 0, 1, · · · ,m, ηl,r is a real number between
u∗l,r and ξ∗l,r. Again by (iii) and (6), we conclude that

|u∗p,q − ξ∗p,q| ≤ γ
q∑
r=0

n∑
l=0

w′
qrwl|u

∗
l,r − ξ∗l,r|+ |O(hνy)|+ |O(hµz )|

≤ γ|u∗p,q − ξ∗p,q|
q∑
r=0

n∑
l=0

w′
qrwl + |O(hνy)|+ |O(hµz )|.
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Since in every Newton-Cotes formula
∑q
r=0

∑n
l=0 w

′
qrwl = (b− a)(d− c),

|u∗p,q − ξ∗p,q| ≤
|O(hνy)|+ |O(hµz )|
1− γ(b− a)(d− c)

.

Inequality (5) leads to the following corollary, corollary 2.2. |u∗p,q−ξ∗p,q|
vanishes when hy and hz tend to zero.

Now, to find the approximate solution, one needs to solve nonlinear equa-
tion (4).

3 The successive numerical approach

Iterative methods are widely used for finding approximate solution of non-
linear systems of equations [21]. Borzabadi et. al. in [5] presented a succes-
sive substitution, similar to Gauss-Seidel method for solving one dimensional
Fredholm integral equation. The nonlinear system of equations (4) has also a
structure that permits us to approximate its solution by a similar successive
iterative approach presented in [5]. Hereby we define an iterative process
which leads to the sequence of matrices {ξ(k)}. The components of the ma-
trices satisfy the iteration formula,

ξ
(k+1)
i,j = fi,j +

j∑
r=0

n∑
l=0

w′
jrwlk(xi, tj , yl, zr, ξ

(k)
l,r ), (7)

where i = 0, 1, · · · , n, j = 0, 1, · · · ,m and k = 0, 1, · · · . Though, the con-
vergence scheme can be constructed for detecting approximate solution (4).
However, we first study the conditions that guarantee the convergence of the
sequence {ξ(k)}.

theorem 3.1. Considering assumptions of Proposition 2.1, the produced
sequence {ξ(k)} from the iteration process (7) tends to the exact solution of
(4), say ξ∗, for any arbitrary initial matrix ξ(0).

Proof. By (4) and (7) we have,

ξ
(k+1)
i,j − ξ∗i,j =

j∑
r=0

n∑
l=0

w′
jrwl(k(xi, tj , yl, zr, ξ

(k)
l,r )− k(xi, tj , yl, zr, ξ

∗
l,r)),

and according to condition (iii) of Proposition 2.1,
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ξ
(k+1)
i,j − ξ∗i,j =

j∑
r=0

n∑
l=0

w′
jrwl

∂k

∂u
(xi, tj , yl, zr, η

(k)
l,r )(ξ

(k)
l,r − ξ

∗
l,r),

where η
(k)
l,r is a real number between ξ

(k)
l,r and ξ∗l,r for l = 0, 1, · · · , n and

r = 0, 1, · · · ,m. Thus one may obtain the following inequalities

|ξ(k+1)
i,j − ξ∗i,j | ≤ max

0≤i≤n
0≤j≤m

|ξ(k)i,j − ξ
∗
i,j |

j∑
r=0

n∑
l=0

w′
jrwl|

∂k

∂u
(xp, tq, yl, zr, η

(k)
l,r )|

≤ γ max
0≤i≤n
0≤j≤m

|ξ(k)i,j − ξ
∗
i,j |

m∑
r=0

n∑
l=0

w′
rwl,

where i = 0, 1, · · · , n, j = 0, 1, · · · ,m. By setting λ = γ(b − a)(d − c) we
conclude that

max
0≤i≤n
0≤j≤m

|ξ(k+1)
i,j − ξ∗i,j | ≤ λ max

1≤i≤n
1≤j≤m

|ξ(k)i,j − ξ
∗
i,j |.

By mathematical induction on k, we get

max
0≤i≤n
0≤j≤m

|ξ(k+1)
i,j − ξ∗i,j | ≤ λk max

0≤i≤n
0≤j≤m

|ξ(0)i,j − ξ
∗
i,j |,

for each k = 0, 1, · · · . Since 0 < λ < 1, then, k → +∞ implies that

max 0≤i≤n
0≤j≤m

|ξ(k+1)
i,j − ξ∗i,j | vanishes.

4 Algorithm of the approach

In this section, we propose an algorithm on the basis of the above discussions
to solve the Volterra-Fredholm integral equation (1). This algorithm is pre-
sented in two stages, the initialization and the main steps.

Initialization
Choose ϵ > 0, and equidistance partitions △(1) = {a = x0 = y0, x1 =
y1, · · · , xn−1 = yn−1, xn = yn = b} on [a, b] with the step size hx =
xi+1 − xi, i = 0, 1, · · · , n − 1, plus △(2) = {c = t0 = z0, t1 = z1, · · · , tn−1 =
zn−1, tn = zn = d} on [c, d] with the step size ht = tj+1 − tj , j =
0, 1, · · · ,m − 1 and an initial matrix ξ(0). Set k = 0 and go to the main
steps.
Main steps
Step 1. Compute ξ(k+1) by (6), and go to Step 2.
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Step 2. Compute max 0≤i≤n
0≤j≤m

|ξ(k+1)
i,j − ξ(k)i,j | and go to Step 3.

Step 3. If max 0≤i≤n
0≤j≤m

|ξ(k+1)
i,j − ξ(k)i,j | < ϵ, stop; Otherwise, set k = k + 1 and

go to step 1.

In the next section the advantages and the influence of the proposed
approach in thrilling convergence rate of the solution for the problems is
demonstrated via some examples.

5 Numerical examples

Suppose u∗(x, t) is the exact solution of Volterra-Fredholm integral equation

(1) and ξ̂i,j , i = 0, 1, · · · , n, j = 0, 1, · · · ,m is a solution obtained by applying
the given algorithm with a known ϵ > 0 and partitions △(1) and △(2). To
compare the precision of the approximate solution, the discrete error function

e(xi, tj) = |u∗(xi, tj)− ξ̂(xi, tj)|, i = 0, 1, · · · , n, j = 0, 1, · · · ,m, (8)

is established.

Example 5.1. In this example, we apply the developed method to a two
dimensional Fredholm integral equation as follows [13],

u(x, t) =
1

(1 + x+ t)2
− x

6(1 + t)
+

∫ 1

0

∫ 1

0

x

1 + t
(1 + y + z)u2(y, z)dydz.

This integral equation has analytical solution u(x, t) = 1
(1+x+t)2 on [0, 1]×

[0, 1]. We take ϵ = 10−6 and partitions with the discretization parameters
hx = 1

100 and ht = 1
100 . The initial matrix ξ(0) = 0 is considered first to

start the algorithm. In Table 1, one can see all acceptable values for error
estimation (8) which is obtained by applying the developed algorithm to the
illustrated equation.

Table 1: Error estimation for Example 5.1
x t 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.000 0.000 0.000 0.000 0.000 0.000
0.2 3.980× 10−6 3.317× 10−6 2.843× 10−6 2.488× 10−6 2.211× 10−6 1.990× 10−6

0.4 7.958× 10−6 6.631× 10−6 5.684× 10−6 4.973× 10−6 4.421× 10−6 30979× 10−6

0.6 1.193× 10−5 9.943× 10−6 8.522× 10−6 7.457× 10−6 6.629× 10−6 5.966× 10−6

0.8 1.590× 10−5 1.325× 10−5 1.136× 10−5 9.940× 10−6 8.835× 10−6 7.952× 10−6

1.0 1.987× 10−5 1.656× 10−5 1.420× 10−5 1.242× 10−5 1.104× 10−5 9.937× 10−6

Example 5.2. In this example, we apply our method for the following two
dimensional Fredholm integral equation [2],
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u(x, t) = xe−t − 1

2
t− 7

12
x+

1

3
xe−1 +

∫ 1

0

∫ 1

0

(xy + tez)u(y, z)dydz.

The analytical solution of this integral equation is u(x, t) = xe−t + t
on [0, 1] × [0, 1]. By solving this equation, we observe that the proposed
algorithm does not give rise to a convergent sequence. So, to overcome this
shortcoming, we put [0, 0.1] × [0, 0.1] in place of [0, 1] × [0, 1], where the
conditions of Theorem 3.1 hold. Then

u(x, t) = xe−t +
1799

2000
t− 43

120000
x+

9

100
te−0.1 +

1

3000
xe−1

+

∫ 0.1

0

∫ 0.1

0

(xy + tez)u(y, z)dydz.

Table 2 shows that in this region of integration, approximate solution tracks
the exact one, almost precise.

Table 2: Error estimation for Example 5.2
x t 0.0 0.02 0.04 0.06 0.08 0.1

0.0 0.000 3.598× 10−11 7.197× 10−11 1.080× 10−10 1.439× 10−10 1.799× 10−10

0.02 3.178× 10−11 6.776× 10−11 1.037× 10−10 1.397× 10−10 1.757× 10−10 2.117× 10−10

0.04 6.356× 10−11 9.954× 10−11 1.355× 10−10 1.715× 10−10 2075× 10−10 2435× 10−10

0.06 9.533× 10−11 1.313× 10−10 1.673× 10−10 2.033× 10−10 2.393× 10−10 2.752× 10−10

0.08 1.271× 10−10 1.631× 10−10 1.991× 10−10 2.351× 10−10 2.710× 10−10 3.070× 10−10

0.1 1.589× 10−10 1.949× 10−10 2.308× 10−10 2.668× 10−10 3.028× 10−10 3.388× 10−10

Example 5.3. In this example, we apply the proposed method to the fol-
lowing two dimensional Volterra integral equation [18],

u(x, t) = xsin(t)(1− x2sin2(t)

9
) +

x6

10
(
sin(2t)

2
− t)

+

∫ t

0

∫ x

0

(xy2 + cos(z))u2(y, z)dydz.

This integral equation has analytical solution u(x, t) = xsin(t) on [0, 1]×
[0, 1]. We take ϵ = 10−6 and partitions with the discretization parameters
hx = 1

100 and ht =
1

100 . The initial matrix ξ(0) = 0 is considered for starting
the algorithm. Table 3 illustrates the precision of the approximate solution
by showing the error criteria (7) corresponding to the given partition.

Table 3: Error estimation for Example 5.3
x t 0.0 0.2 0.4 0.6 0.8 1.0

0.0 3.906× 10−31 2.651× 10−33 1.716× 10−33 7.961× 10−34 2.432× 10−34 4.102× 10−35

0.2 3.227× 10−33 1.722× 10−8 8.025× 10−8 2.172× 10−7 4.268× 10−7 6.769× 10−7

0.4 4.711× 10−33 8.889× 10−8 2.616× 10−7 5.724× 10−7 1.025× 10−6 1.569× 10−6

0.6 1.199× 10−32 2.928× 10−7 7.087× 10−7 1.338× 10−6 2.213× 10−6 3.293× 10−6

0.8 5.513× 10−32 7.761× 10−7 1.742× 10−6 3.063× 10−6 4.852× 10−6 7.135× 10−6

1.0 3.906× 10−31 1.833× 10−6 4.003× 10−6 6.847× 10−6 1.067× 10−5 1.571× 10−5
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Example 5.4. In this example, we apply our method to a Volterra-Fredholm
integral equation as follows [3],

u(x, t) = x2 + xt− 1

15
xt4 − 1

16
xt5 +

∫ t

0

∫ 1

0

xty2z2u(y, z)dydz.

This integral equation has analytical solution u(x, t) = x2+xt on [0, 1]×[0, 1].
We take ϵ = 10−6 and partitions with the discretization parameters hx = 1

100

and ht = 1
100 . The initial matrix ξ(0) = 0 is considered for starting the

algorithm. Table 4 exhibits good error values by applying the developed
algorithm.

Table 4: Error estimation for Example 5.4
x t 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.000 0.000 0.000 0.000 0.000 0.000
0.2 0.000 4.063× 10−8 2.567× 10−7 9.000× 10−7 2.425× 10−6 5.598× 10−6

0.4 0.000 8.126× 10−8 5.133× 10−7 1.800× 10−6 4.850× 10−6 1.119× 10−5

0.6 0.000 1.219× 10−7 7.699× 10−7 2.700× 10−6 7.276× 10−7 1.679× 10−5

0.8 0.000 1.625× 10−7 1.027× 10−6 3.600× 10−6 9.701× 10−6 2.239× 10−5

1.0 0.000 2.031× 10−7 1.283× 10−6 4.500× 10−6 1.213× 10−5 2.799× 10−5

6 Conclusions

In this paper, an iterative approach for obtaining approximate solutions for
two dimensional Volterra-Fredholm integral equations, considering some spe-
cial conditions on the kernel, as continuous differentiability of kernel, is pro-
posed. Theorem 3.1 provides a sufficient condition for convergence of the
approach, but it is not necessary. Therefore, Examples 5.1, 5.3, and 5.4 show
that, despite the lack of conditions, convergence of the proposed method
holds for a class of two dimensional Volterra-Fredholm integral equations.
Also the changing in problem for holding conditions of Theorem 3.1 lead to
the convergence of the method, as it is described in Example 5.2. The valid-
ity and efficiency of the proposed scheme is demonstrated on the examples
included.
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