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1 Introduction

In recent years, fractional calculus, which is a generalization of the integer-
order calculus or integration of integer order to arbitrary order (real or com-
plex order), plays an important, fundamental and significant role in mathe-
matical modeling and solving the models obtained in different fields of math-
ematics, sciences, physics, finance and artificial intelligence, and engineering;
see [11, 39, 3, 10, 31, 38, 2]. Nowadays, fractional differential equations have
been applied extensively as an important and crucial tool to describe many
different types of complex mechanical, physical behaviors, sciences, engineer-
ing, anomalous diffusion, vibration, control, viscoelasticity, electrochemistry,
and others, since most of the models in different research areas and engineer-
ing applications are nonlinear and obtaining their solutions has an important
role.

In this manuscript, we consider a numerical method based on the ho-
motopy perturbation transform method (HPTM), which is a combination of
homotopy analysis method and Laplace transform scheme [29, 40] for solving
the following nonlinear time-fractional partial differential equation (FPDE)
with m− 1 < µ ≤ m:

CDγρ,µ,ω,0+u(t) + Au(t) + Nu(t) = h(t),

u(k)(0) = uk0 , k = 0, 1, 2, . . . ,m− 1, m ∈ N, (1)

where Au(t) and Nu(t) are linear and nonlinear operators applied to u(t),
respectively, and h(t) is a continuous function. Also CDγρ,µ,ω,0+ denotes the

Caputo–Prabhakar fractional derivative defined by Garra et al. (see [11])

CDγρ,µ,ω,0+u(t) =

∫ t

0

(t− τ)−µE−γρ,1−µ(ω(t− τ)ρ)u̇(τ)dτ

= E−γρ,1−µ,ω,0+
d

dt
u(t), 0 < µ ≤ 1, (2)

where E is the Prabhakar. It is obtained by modifying the Riemann–
Liouville integral operator [31] by extending its kernel with a nonsingular
three-parameter Mittag–Leffler function (ML), which is known as the Prab-
hakar function and its integral is (see [11])

(Eγ
ρ,µ,ω,0+u)(t) =

∫ t

0

(t− τ)µ−1Eγρ,µ(ω(t− τ)ρ)u(τ)dτ,

where Eγρ,µ is the Prabhakar function and its function is (see [11])

Eγρ,µ(t) =

∞∑
n=0

(
γ
)
n

n!Γ(ρn+ µ)
tn, <(ρ),<(µ) > 0, γ > 0, t ∈ C, (3)
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and
(
γ
)
n

is the Pochhammer symbol, which is formulated as [15](
γ
)
0

= 1,
(
γ
)
n

= γ(γ + 1) . . . (γ + n− 1), n ∈ N.

Most of our interest in studying ML functions is related to their importance
in fractional calculus which arise in modeling a complex susceptibility in the
response of disordered materials and heterogeneous systems [26], the response
in anomalous dielectrics of Havriliak–Negami type [12, 37], in fractional vis-
coelasticity [14], in the discussion of stochastic processes [9], in probability
theory [16], in the description of dynamical models of spherical stellar sys-
tems [1], and fractional or integral differential equations [25, 6, 5, 7, 8, 4, 18].
In this manuscript, we consider the following nonlinear time-fractional order
differential equations with initial conditions:

CDγρ,µ,ω,0+u(t) = f(t),

u(k)(0) = uk0 , k = 0, 1, 2, . . . ,m− 1, m ∈ N, (4)

and in order to solve the nonlinear FPDE (4) with m − 1 < µ ≤ m,
we apply a numerical technique based on the fractional Adams–Bashforth
method (FABM) to obtain the numerical solution of (4). The present work
aim is to compare the numerical solutions that are obtained by applying
the FABM and HPTM to solve nonlinear time-fractional order differential
equations. Several numerical-analytical methods have been applied to solve
linear and nonlinear differential equations of fractional derivatives in order
to obtain exact solutions and numerical solutions; for instance, the Her-
mite collocation method [30], optimal homotopy asymptotic method [17],
q-homotopy analysis transform technique [36], homotopy analysis Laplace
transform method [23, 24], the homotopy analysis Sumudu transform method
for solving the linear and nonlinear Fokker-Planck equations [33], and other
methods [19, 20, 28, 27, 34, 21] were suggested.

This paper is organized as follows. Some necessary definitions and mathe-
matical preliminaries of the fractional calculus are introduced in Section 2. In
Section 3, we introduce a numerical method based on the HPTM. In Section
4, the FABM for time-fractional linear and nonlinear differential equations
is introduced to obtain the numerical solution. In Section 5, the proposed
methods are applied to some nonlinear time-fractional differential equations
to verify the validity and applicability of the proposed methods. Finally, a
brief conclusion is added at the end of the manuscript.

2 Preliminaries

In this section, we study some important and basic properties of fractional
calculus theory such as Laplace transform, definitions, and lemmas, which
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are applied in the next sections.

Definition 1. [see [22, 31]] Let 0 < α ≤ 1, let f ∈ L1[a, b], and let
0 < t < b ≤ ∞. Then the left-sided and the right-sided Riemann–Liouvillel
fractional integrals and derivatives of order α are defined as follows,

Iαa+f(t) =
1

Γ(α)

∫ t

a

f(τ)(t− τ)α−1dτ,

Iαb−f(t) =
1

Γ(α)

∫ b

t

f(τ)(τ − t)α−1dτ,

Dα
a+f(t) =

1

Γ(α)

d

dt

∫ t

a

f(τ)(t− τ)−αdτ,

Dα
b−f(t) = − 1

Γ(α)

d

dt

∫ b

t

f(τ)(τ − t)−αdτ,

where Γ(·) is the Gamma function. Also, the left-sided and the right-sided
Caputo fractional derivatives of order α are given by

CDα
a+f(t) = I1−αa+

d

dt
f(t) =

1

Γ(1− α)

∫ t

a

(t− τ)−α
d

dτ
f(τ)dτ,

CDα
b−f(t) = −I1−αb−

d

dt
f(t) = − 1

Γ(1− α)

∫ b

t

(τ − t)−α d

dτ
f(τ)dτ.

Lemma 1. [4] Let ρ, µ, ω, γ ∈ C, let <(µ) > 0, and let <(ρ) > 0. Then the
Laplace transform of (2) for m− 1 < µ ≤ m is given,

L
(
CDγρ,µ,ω,0+u(t); s

)
= sµ(1− ωs−ρ)γU(s)−

m−1∑
k=0

sµ−k−1(1− ωs−ρ)γuk(0+),

(5)

where U(s) =
∫∞
0
e−stu(t)dt. Also, the Laplace transformation of the Prab-

hakar function (3) is denoted by (see [11, 15])

L
(
tµ−1Eγρ,µ(ωtρ); s

)
= s−µ(1− ωs−ρ)−γ .

Lemma 2. [22] Let ρ, µ, ω, γ ∈ C and let <(µ) > 0,<(ρ) > 0. Then,∫ t

0

(t− y)µ−1Eγρ,µ(ω(t− y)ρ)yν−1dy = Γ(ν)tµ+ν−1Eγρ,µ+ν(ωtρ). (6)

Lemma 3. [22] Let ρ, µ, ν, ω, σ, γ ∈ C and let <(µ) > 0,<(ρ) > 0,<(ν) > 0.
Then the following relation is hold for any summable function u ∈ L(a, b),
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Eγ
ρ,µ,ω,0+Eσ

ρ,ν,ω,0+u = Eγ+σ
ρ,µ+ν,ω,0+u. (7)

Also, by substituting σ = −γ in (7), the following relation is obtained,

Eγ
ρ,µ,ω,0+E−γρ,ν,ω,0+u = Iµ+ν0+ u. (8)

3 HPTM to solve the nonlinear fractional order
differential equations

In this section, we obtain a combined numerical method based on the ho-
motopy analysis method and the Laplace transform method for solving the
nonlinear FPDE in Caputo–Prabhakar fractional derivatives sense. Using
formula (5) for m = 1 and applying the Laplace transform on both sides of
equation (1), we get

L
(
CDγρ,µ,ω,0+u(t) + Au(t) + Nu(t)− h(t); s

)
= 0,

sµ(1− ωs−ρ)γU(s)− sµ−1(1− ωs−ρ)γu(0+) + L
(
Au(t) + Nu(t); s

)
= H(s),

U(s) = s−µ(1− ωs−ρ)−γH(s) +
1

s
u(0)− (s−µ(1− ωs−ρ)−γ)

×
[
L
(
Au(t) + Nu(t); s

)]
. (9)

By applying the Laplace inverse transform on (9), we obtain

u(t) =L−1
[
s−µ(1− ωs−ρ)−γH(s) +

1

s
u(0); t

]
− L−1

[
(s−µ(1− ωs−ρ)−γ)

×
[
L
(
Au(t) + Nu(t); s

)]
; t
]
. (10)

To obtain the solution of (10), we use the HPTM. Suppose that the solution
of (1) is u(t), which can be expressed as the following infinite series:

u(t) =

∞∑
n=0

pnun(t), (11)

where un(t) for n = 0, 1, 2, . . . are known functions. Also, the nonlinear term
of (1) is Nu(t), which can be presented as the following infinite series:

Nu(t) =

∞∑
n=0

pnHn(u(t)), (12)
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where Hn(u(t)) =
{

1
n!

∂n

∂pn

[
N
(∑∞

i=0 p
iui

)]
p=0

}
are polynomials of the Ado-

mian polynomials type; see [13]. Now, substituting (11) and (12) into (10),
we conclude that

∞∑
n=0

pnun(t) =H(t)− L−1
[
(s−µ(1− ωs−ρ)−γ)

×
[
L
(
A

∞∑
n=0

pnun(t) + N

∞∑
n=0

pnun(t); s
)]

; t
]
, (13)

where H(t) = L−1
[
s−µ(1− ωs−ρ)−γH(s) + 1

su(0); t
]
. By equaling the coef-

ficients on powers of p on the both sides of relation (13), we obtain the series
solution as follows:

p0 : u0(t) = H(t),

p1 : u1(t) = −L−1
[
(s−µ(1− ωs−ρ)−γ)×

[
L
(
Au0(t) + H0(u(t)); s

)]
; t
]
,

p2 : u2(t) = −L−1
[
(s−µ(1− ωs−ρ)−γ)×

[
L
(
Au1(t) + H1(u(t)); s

)]
; t
]
,

...

pn+1 : un+1(t) = −L−1
[
(s−µ(1− ωs−ρ)−γ)×

[
L
(
Aun(t) + Hn(u(t)); s

)]
; t
]
.

So, the solution of (1) by using the HPTM is obtained as follows:

u(t) = lim
p→1

lim
n→∞

n∑
k=0

pkuk(t) = lim
n→∞

n∑
k=0

uk(t).

Theorem 1. Let Sn =
∑n
k=0 uk(t) and let u(t) =

∑∞
k=0 uk(t) such that

u(t), uk(t) ∈ C
(

[0, 1]
)

and for any n = 1, 2, 3, . . ., ‖ un+1(t) ‖≤ λ ‖ un(t) ‖,
0 < λ < 1. Then the solution of (1) using the HPTM is converges.

Proof. To prove convergence, we need to show that the series Sn is a Cauchy
sequence. We have

‖ Sn+1 − Sn ‖ =‖
n+1∑
k=0

uk(t)−
n∑
k=0

uk(t) ‖

=‖ un+1(t) ‖≤ λ ‖ un(t) ‖≤ λ2 ‖ un−1(t) ‖≤ · · ·
≤ λn+1 ‖ u0(t) ‖ .

Then for any m,n ∈ N, n > m, we obtain

‖ Sn − Sm ‖
=‖ (Sn − Sn−1) + (Sn−1 − Sn−2) + (Sn−2 − Sn−3) + · · ·+ (Sm+1 − Sm) ‖
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≤‖ Sn − Sn−1 ‖ + ‖ Sn−1 − Sn−2 ‖ + ‖ Sn−2 − Sn−3 ‖ + ‖ Sm+1 − Sm ‖
≤ λn ‖ u0(t) ‖ +λn−1 ‖ u0(t) ‖ + · · ·+ λm+1 ‖ u0(t) ‖

≤ 1− λn−m

1− λ
λm+1 ‖ u0(t) ‖≤ λm+1

1− λ
‖ u0(t) ‖, 1− λn−m < 1.

As m,n → ∞ then ‖ Sn − Sm ‖→ 0, since u0(t) is bounded and 0 < λ < 1.
So the series Sn =

∑n
k=0 uk(t) is a Cauchy sequence in the Banach space and

therefore converges.

4 The Adams–Bashforth scheme to numerically solve
nonlinear fractional order differential equations

In this section, we consider the fractional differential equation (4) with initial
conditions and apply the Adams–Bashforth scheme in order to numerically
solve this equation. Using relation (8) in Lemma 3 and applying the inte-
gral transform operator Eγ

ρ,µ,ω,0+ to both sides of the fractional differential

equation (4), the solutions of this equation are obtained as follows:

Eγ
ρ,µ,ω,0+

(
CDγρ,µ,ω,0+u(t)

)
= Eγ

ρ,µ,ω,0+f(t),

Eγ
ρ,µ,ω,0+

(
E−γρ,1−µ,ω,0+

d

dt
u(t)

)
= Eγ

ρ,µ,ω,0+f(t),

u(t)− u(0) =

∫ t

0

(t− τ)µ−1Eγρ,µ(ω(t− τ)ρ)f(τ)dτ,

u(t) = u(0) +

∫ t

0

(t− τ)µ−1Eγρ,µ(ω(t− τ)ρ)f(τ)dτ. (14)

Now, we first put t = tn+1, n = 0, 1, 2, 3, . . . and then t = tn, n = 0, 1, 2, 3, . . .
in relation (14). Now we obtain

u(tn+1) = u(0) +

∫ tn+1

0

(tn+1 − τ)µ−1Eγρ,µ(ω(tn+1 − τ)ρ)f(τ)dτ, (15)

u(tn) = u(0) +

∫ tn

0

(tn − τ)µ−1Eγρ,µ(ω(tn − τ)ρ)f(τ)dτ. (16)

By subtracting two relations (15) and (16), we obtain

u(tn+1) =u(tn) +

∫ tn+1

0

(tn+1 − τ)µ−1Eγρ,µ(ω(tn+1 − τ)ρ)f(τ)dτ

−
∫ tn

0

(tn − τ)µ−1Eγρ,µ(ω(tn − τ)ρ)f(τ)dτ. (17)
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To solve (17), we approximate the function f(τ) by the Lagrange interpola-
tion as follows:

P (τ) w
τ − tn−1
tn − tn−1

f(tn) +
τ − tn

tn−1 − tn
f(tn−1),

P (τ) w
τ − tn−1

h
f(tn)− τ − tn

h
f(tn−1), (18)

tj = jh, j = 0, 1, 2, 3, . . . , h = tn − tn−1.

Thus, by substituting (18) in (17), we obtain

u(tn+1) =u(tn) (19)

+
[f(tn)

h
×
∫ tn+1

0

(tn+1 − τ)µ−1Eγρ,µ(ω(tn+1 − τ)ρ)(τ − tn−1)dτ

− f(tn−1)

h
×
∫ tn+1

0

(tn+1 − τ)µ−1Eγρ,µ(ω(tn+1 − τ)ρ)(τ − tn)dτ
]

−
[f(tn)

h
×
∫ tn

0

(tn − τ)µ−1Eγρ,µ(ω(tn − τ)ρ)(τ − tn−1)dτ

− f(tn−1)

h
×
∫ tn

0

(tn − τ)µ−1Eγρ,µ(ω(tn − τ)ρ)(τ − tn)dτ
]
,

=u(tn) +
[f(tn)

h
Aµ,1 −

f(tn−1)

h
Aµ,2

]
−
[f(tn)

h
Aµ,3 −

f(tn−1)

h
Aµ,4

]
,

(20)

where

Aµ,1 =

∫ tn+1

0

(tn+1 − τ)µ−1Eγρ,µ(ω(tn+1 − τ)ρ)(τ − tn−1)dτ, (21)

Aµ,2 =

∫ tn+1

0

(tn+1 − τ)µ−1Eγρ,µ(ω(tn+1 − τ)ρ)(τ − tn)dτ, (22)

Aµ,3 =

∫ tn

0

(tn − τ)µ−1Eγρ,µ(ω(tn − τ)ρ)(τ − tn−1)dτ, (23)

Aµ,4 =

∫ tn

0

(tn − τ)µ−1Eγρ,µ(ω(tn − τ)ρ)(τ − tn)dτ. (24)

To calculate relations (21)–(24), first we calculate the integral (21) as follows:
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Aµ,1 =

∫ tn+1

0

(tn+1 − τ)µ−1Eγρ,µ(ω(tn+1 − τ)ρ)(τ − tn−1)dτ

=

∫ tn+1

0

(tn+1 − τ)µ−1Eγρ,µ(ω(tn+1 − τ)ρ)τdτ

− tn−1
∫ tn+1

0

(tn+1 − τ)µ−1Eγρ,µ(ω(tn+1 − τ)ρ)dτ. (25)

By applying (6) in relation (25), we obtain

Aµ,1 =

∫ tn+1

0

(tn+1 − τ)µ−1Eγρ,µ(ω(tn+1 − τ)ρ)(τ − tn−1)dτ

=Γ(2)(tn+1)µ+1Eγρ,µ+2(ω(tn+1)ρ)− tn−1 × Γ(1)(tn+1)µEγρ,µ+1(ω(tn+1)ρ)

=(n+ 1)µ+1hµ+1Eγρ,µ+2(ω((n+ 1)h)ρ)

− (n− 1)h×
[
(n+ 1)µhµEγρ,µ+1(ω((n+ 1)h)ρ)

]
=(n+ 1)µhµ+1 ×

[
(n+ 1)Eγρ,µ+2(ω((n+ 1)h)ρ)

− (n− 1)Eγρ,µ+1(ω((n+ 1)h)ρ)
]
. (26)

Similarly, for the residual terms, we have

Aµ,2 =

∫ tn+1

0

(tn+1 − τ)µ−1Eγρ,µ(ω(tn+1 − τ)ρ)(τ − tn)dτ

=(n+ 1)µhµ+1

×
[
(n+ 1)Eγρ,µ+2(ω((n+ 1)h)ρ)− nEγρ,µ+1(ω((n+ 1)h)ρ)

]
, (27)

Aµ,3 =

∫ tn

0

(tn − τ)µ−1Eγρ,µ(ω(tn − τ)ρ)(τ − tn−1)dτ

= nµhµ+1 ×
[
nEγρ,µ+2(ω(nh)ρ)− (n− 1)Eγρ,µ+1(ω(nh)ρ)

]
, (28)

Aµ,4 =

∫ tn

0

(tn − τ)µ−1Eγρ,µ(ω(tn − τ)ρ)(τ − tn)dτ

= nµ+1hµ+1 ×
[
Eγρ,µ+2(ω(nh)ρ)− Eγρ,µ+1(ω(nh)ρ)

]
. (29)

Substituting relations (26)–(29) in (19), we obtain the approximation scheme
to solve numerically (4).

Theorem 2.[Convergence] Let u(t) be a solution of (4) and let f(t) be con-
tinuous and bounded that is introduced in (4). Then the numerical solution
of u(t) is given by
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u(tn+1) =u(tn) +

∫ tn+1

0

(tn+1 − τ)µ−1Eγρ,µ(ω(tn+1 − τ)ρ)[ τ − tn−1
tn − tn−1

f(tn) +
τ − tn

tn−1 − tn
f(tn−1)

]
dτ

−
∫ tn

0

(tn − τ)µ−1Eγρ,µ(ω(tn − τ)ρ)[ τ − tn−1
tn − tn−1

f(tn) +
τ − tn

tn−1 − tn
f(tn−1)

]
dτ

+ R(t, µ, n),

where R(t, µ, n) is the error function and ‖ R(t, µ, n) ‖∞< M .

Proof. Using (17) and (18), we have

u(tn+1) =u(tn) +

∫ tn+1

0

(tn+1 − τ)µ−1Eγρ,µ(ω(tn+1 − τ)ρ)f(τ)dτ

−
∫ tn

0

(tn − τ)µ−1Eγρ,µ(ω(tn − τ)ρ)f(τ)dτ

=u(tn)

+

∫ tn+1

0

(tn+1 − τ)µ−1Eγρ,µ(ω(tn+1 − τ)ρ)[ τ − tn−1
tn − tn−1

f(tn) +
τ − tn

tn−1 − tn
f(tn−1) +

f (n+1)(τ)

(n+ 1)!

n∏
i=0

(τ − ti)
]
dτ

−
∫ tn

0

(tn − τ)µ−1Eγρ,µ(ω(tn − τ)ρ)

[ τ − tn−1
tn − tn−1

f(tn) +
τ − tn

tn−1 − tn
f(tn−1) +

f (n)(τ)

(n)!

n−1∏
i=0

(τ − ti)
]
dτ

=u(tn) + L(t, µ, n) + R(t, µ, n),

where

L(t, µ, n)

=

∫ tn+1

0

(tn+1 − τ)µ−1Eγρ,µ(ω(tn+1 − τ)ρ)[ τ − tn−1
tn − tn−1

f(tn) +
τ − tn

tn−1 − tn
f(tn−1)

]
dτ

−
∫ tn

0

(tn − τ)µ−1Eγρ,µ(ω(tn − τ)ρ)[ τ − tn−1
tn − tn−1

f(tn) +
τ − tn

tn−1 − tn
f(tn−1)

]
dτ,
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R(t, µ, n)

=

∫ tn+1

0

(tn+1 − τ)µ−1Eγρ,µ(ω(tn+1 − τ)ρ)
(f (n+1)(τ)

(n+ 1)!

n∏
i=0

(τ − ti)
)
dτ

−
∫ tn

0

(tn − τ)µ−1Eγρ,µ(ω(tn − τ)ρ)
(f (n)(τ)

(n)!

n−1∏
i=0

(τ − ti)
)
dτ.

To establish convergence, we need to show that ‖ R(t, µ, n) ‖∞< M, M ∈ N.
For this, we have

‖ R(t, µ, n) ‖∞

= ‖
∫ tn+1

0

(tn+1 − τ)µ−1Eγρ,µ(ω(tn+1 − τ)ρ)
(f (n+1)(τ)

(n+ 1)!

n∏
i=0

(τ − ti)
)
dτ

−
∫ tn

0

(tn − τ)µ−1Eγρ,µ(ω(tn − τ)ρ)
(f (n)(τ)

(n)!

n−1∏
i=0

(τ − ti)
)
dτ ‖∞

< ‖
∫ tn+1

0

(tn+1 − τ)µ−1Eγρ,µ(ω(tn+1 − τ)ρ)
(f (n+1)(τ)

(n+ 1)!

n∏
i=0

(τ − ti)
)
dτ ‖∞

+ ‖
∫ tn

0

(tn − τ)µ−1Eγρ,µ(ω(tn − τ)ρ)
(f (n)(τ)

(n)!

n−1∏
i=0

(τ − ti)
)
dτ ‖∞

< max
t∈[0,tn+1]

∣∣∣f (n+1)(t)
∣∣∣

(n+ 1)!
‖

n∏
i=0

(t− ti) ‖∞∫ tn+1

0

(tn+1 − τ)µ−1Eγρ,µ(ω(tn+1 − τ)ρ)dτ

+ max
t∈[0,tn+1]

∣∣∣f (n)(t)∣∣∣
(n)!

‖
n−1∏
i=0

(t− ti) ‖∞
∫ tn

0

(tn − τ)µ−1Eγρ,µ(ω(tn − τ)ρ)dτ.

Using Lemma 2, we obtain

‖ R(t, µ, n) ‖∞ < max
t∈[0,tn+1]

∣∣∣f (n+1)(t)
∣∣∣

(n+ 1)!
‖

n∏
i=0

(t− ti) ‖∞ tµn+1E
γ
ρ,µ+1(ωtρn+1)

+ max
t∈[0,tn+1]

∣∣∣f (n)(t)∣∣∣
(n)!

‖
n−1∏
i=0

(t− ti) ‖∞ tµnE
γ
ρ,µ+1(ωtρn)
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< sup
t∈[0,tn+1]

{
max

t∈[0,tn+1]

∣∣∣f (n+1)(t)
∣∣∣

(n+ 1)!
, max
t∈[0,tn+1]

∣∣∣f (n)(t)∣∣∣
n!

}
×
[n!hn+1

4
tµn+1E

γ
ρ,µ+1(ωtρn+1) +

(n− 1)!hn

4
tµnE

γ
ρ,µ+1(ωtρn)

]
= M.

Theorem 3.[Stability condition] If

M1 n!hn

4

[ (n+ 1)tµn+1E
γ
ρ,µ+1(ωtρn+1)

h
+
tµnE

γ
ρ,µ+1(ωtρn)

h2

]
→ 0

as n→∞ and h→ 0, then, the FABM is stable.

Proof. Using (17), we have

‖ u(tn+1)− u(tn) ‖∞= ‖
∫ tn+1

0

(tn+1 − τ)µ−1Eγρ,µ(ω(tn+1 − τ)ρ)f(τ)dτ

−
∫ tn

0

(tn − τ)µ−1Eγρ,µ(ω(tn − τ)ρ)f(τ)dτ ‖∞

< ‖
∫ tn+1

0

(tn+1 − τ)µ−1Eγρ,µ(ω(tn+1 − τ)ρ)f(τ)dτ ‖∞

+ ‖
∫ tn

0

(tn − τ)µ−1Eγρ,µ(ω(tn − τ)ρ)f(τ)dτ ‖∞ .

Hence

‖u(tn+1)− u(tn) ‖∞

<‖
∫ tn+1

0

(tn+1 − τ)µ−1Eγρ,µ(ω(tn+1 − τ)ρ)
[ n∑
k=0

n∏
k=0

(τ − tk)f(tk)

(−1)kh

]
dτ ‖∞

+ ‖
∫ tn

0

(tn − τ)µ−1Eγρ,µ(ω(tn − τ)ρ)
[ n−1∑
k=0

n−1∏
k=0

(τ − tk)f(tk)

(−1)kh

]
dτ ‖∞

<‖ P(t, µ, n) ‖∞ + ‖ Rµ
n(t) ‖∞,

where ‖ P(t, µ, n) ‖∞ and ‖ Rµ
n(t) ‖∞ are calculated as follows:

‖P(t, µ, n) ‖∞

=‖
∫ tn+1

0

(tn+1 − τ)µ−1Eγρ,µ(ω(tn+1 − τ)ρ)
[ n∑
k=0

n∏
k=0

(τ − tk)f(tk)

(−1)kh

]
dτ ‖∞
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≤
n∑
k=0

‖ f(tk) ‖∞ tµn+1E
γ
ρ,µ+1(ωtρn+1)

h

n∏
k=0

∣∣∣t− tk∣∣∣
≤

n∑
k=0

‖ f(tk) ‖∞ tµn+1E
γ
ρ,µ+1(ωtρn+1)n!hn

4h

and

‖Rµ
n(t) ‖∞

=‖
∫ tn

0

(tn − τ)µ−1Eγρ,µ(ω(tn − τ)ρ)
[ n−1∑
k=0

n−1∏
k=0

(τ − tk)f(tk)

(−1)kh

]
dτ ‖∞

≤
n−1∑
k=0

‖ f(tk) ‖∞ tµnE
γ
ρ,µ+1(ωtρn)

h

n−1∏
k=0

∣∣∣t− tk∣∣∣
≤
n−1∑
k=0

‖ f(tk) ‖∞ tµnE
γ
ρ,µ+1(ωtρn)(n− 1)!hn−1

4h
.

Then

‖u(tn+1)− u(tn) ‖∞

<

n∑
k=0

‖ f(tk) ‖∞ tµn+1E
γ
ρ,µ+1(ωtρn+1)n!hn

4h

+

n−1∑
k=0

‖ f(tk) ‖∞ tµnE
γ
ρ,µ+1(ωtρn)(n− 1)!hn−1

4h

<
M1 n!hn

4

[ (n+ 1)tµn+1E
γ
ρ,µ+1(ωtρn+1)

h
+
tµnE

γ
ρ,µ+1(ωtρn)

h2

]
,

where M1 = maxt∈[0,tn+1]

∣∣∣f(t)
∣∣∣. Therefore,

M1 n!hn

4

[ (n+ 1)tµn+1E
γ
ρ,µ+1(ωtρn+1)

h
+
tµnE

γ
ρ,µ+1(ωtρn)

h2

]
→ 0

as n→∞, h→ 0 in which h = 1
n+1 is considered.

5 Illustrative examples

In this section, we compare the obtained solution with the numerical sim-
ulations of the applied methods on five test problems in order to show the
accuracy and efficiency of the proposed techniques.
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Figure 1: Comparison between numerical solution and the exact solution of Example 1

when µ = 0.95, 0.99, ρ = ω = 1.
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Figure 2: The value of absolute error of Example 1 when µ = 0.95, 0.99, ρ = ω = 1.

Example 1. We consider the following nonlinear fractional order differential
equation:
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Table 1: The exact solution, the numerical solutions, and the absolute errors
of Example 1 for different values of t when µ = 0.95, ρ = ω = 1.

t uExact(t) uHPTM (t) uFABM (t) |uExact(t)− uHPTM (t)| |uExact(t)− uFABM (t)|
0 0 0 0 0 0

0.01 0.0001 0.0011 0.0008 0.001009960804482 0.000677271813138
0.02 0.0004 0.0024 0.0017 0.002022248070965 0.001297961649675
0.03 0.0009 0.0039 0.0027 0.003027289212479 0.001857141698735
0.04 0.0015 0.0056 0.0039 0.004020110685205 0.002353085479644
0.05 0.0024 0.0074 0.0052 0.004997320737974 0.002785155766582
0.06 0.0034 0.0093 0.0065 0.005956376904834 0.003153291833384
0.07 0.0046 0.0115 0.0080 0.006895275398590 0.003457792029013
0.08 0.0059 0.0137 0.0096 0.007812388169833 0.003699199718883
0.09 0.0074 0.0161 0.0113 0.008706366104405 0.003878235523084

Table 2: The exact solution, the numerical solutions, and the absolute errors
of Example 1 for different values of t when µ = 0.99, ρ = ω = 1.

t uExact(t) uHPTM (t) uFABM (t) |uExact(t)− uHPTM (t)| |uExact(t)− uFABM (t)|
0 0 0 0 0 0

0.01 0.0001 0.0003 0.0002 0.000201585080800 0.000111408806560
0.02 0.0004 0.0008 0.0006 0.000403349846034 0.000164732892224
0.03 0.0009 0.0015 0.0010 0.000603578912785 0.000160544488950
0.04 0.0015 0.0023 0.0016 0.000801354185865 0.000099955930106
0.05 0.0024 0.0034 0.0024 0.000996039906343 0.000015740815560
0.06 0.0034 0.0046 0.0032 0.001187154171698 0.000185164079811
0.07 0.0046 0.0059 0.0042 0.001374313737802 0.000406881133539
0.08 0.0059 0.0075 0.0052 0.001557204785139 0.000679428650402
0.09 0.0074 0.0091 0.0064 0.001735565417799 0.001001324957541

CDγρ,µ,ω,0+u(t) = f(t)− u2(t),

subject to the initial condition

u(0) = 0

and

f(t) =(2t− 3t2 − t3) +
[
2t
(

1− µ+
µtµ

Γ(µ+ 2)

)
− 3t2

(
2t
(

1− µ+
2µtµ

Γ(µ+ 3)

)
+ t3

(
1− µ+

6µtµ

Γ(µ+ 4)

))]2
.

Under these conditions, the analytical solution is given by (see [41])

u(t) =
[
2t
(

1− µ+
µtµ

Γ(µ+ 2)

)
− 3t2

(
2t
(

1− µ+
2µtµ

Γ(µ+ 3)

)
+ t3

(
1− µ+

6µtµ

Γ(µ+ 4)

))]2
.
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We apply the proposed schemes in this article and solve this problem. Figure
1 shows the analytical and numerical results of Example 1 obtained by ap-
plying the HPTM and the FABM together with the exact solution. Also the
absolute error for µ = 0.95, 0.99 with several values of t is shown in Tables
1 and 2, and for µ = 0.95, 0.99 with several values of t, it is shown in Figure
2. The numerical results demonstrate that the FABM method is an efficient
algorithm.
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Figure 3: Comparison between numerical solution and the exact solution of Example 2
when µ = 0.95, 0.99, ρ = ω = 1.

Example 2. We consider the following nonlinear fractional order differential
equation:

CDγρ,µ,ω,0+u(t) = f(t)− u2(t),

subject to the initial condition

u(0) = 0

and

f(t) = (2t− 3t2 + t3)2 +
2t1−µ

Γ(2− µ)
− 6t2−µ

Γ(3− µ)
+

6t3−µ

Γ(4− µ)
.

Under these conditions, the analytical solution is given by (see [41])

u(t) = 2t− 3t2 + t3.
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Figure 4: The value of absolute error of Example 2 when µ = 0.95, 0.99, ρ = ω = 1.

0 0.5 1 1.5 2 2.5 3

t

0

5

10

u
(t

)

For the special case when =0.95

Exact

HPTM

FABM

0 0.5 1 1.5 2 2.5 3

t

0

5

10

u
(t

)

For the special case when =0.99

Exact

HPTM

FABM

Figure 5: Comparison between numerical solution and the exact solution of Example 3

when µ = 0.95, 0.99, ρ = ω = 1.

We apply the proposed schemes in this article and solve this problem. Figure
3, shows the analytical and numerical results obtained by applying the HPTM
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Figure 6: Comparison between numerical solution and the exact solution of Example 4

when µ = 0.95, 0.99, ρ = ω = 1.
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Figure 7: Comparison between numerical solution and the exact solution of Example 5
when µ = 0.95, 0.99, ρ = ω = 1.
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Figure 8: The value of absolute error of Example 5 when µ = 0.95, 0.99, ρ = ω = 1.

and the FABM together with the exact solution of Example 2. Also the
absolute error for µ = 0.95, 0.99 with several values of t is shown in Figure
4. The numerical results demonstrate that the FABM method is an efficient
algorithm.

Example 3. We consider the following equation:

CDγρ,µ,ω,0+u(t) + u(t) =
2t2−µ

Γ(3− µ)
+ t2, u(0) = 0, 0 < µ ≤ 1.

For this example, the exact solution u(t) = t2 was presented in [32]. This
example is solved by using numerical methods introduced in this article for
different values of µ, and their diagrams are shown in Figure 5.

Example 4. We consider the following equation:

CDγρ,µ,ω,0+u(t)− 1

2
u(t) =

1

2
etu(

t

2
), u(0) = 1, 0 < µ ≤ 1, 0 ≤ t ≤ 10.

The exact analytical solution of this example is u(t) = et, which was presented
in [18]. This example is solved by using numerical methods introduced in this
article for different values of µ, and their diagrams are shown in Figure 6.

Example 5. We consider the following nonlinear fractional initial value
equation:

CDγρ,µ,ω,0+u(t) + u
3
2 (t) = f(t), u(0) = 1, 0 < µ ≤ 1, 0 < t < 1,
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where

f(t) =
40320t8−µ

Γ(9− µ)
− 3

Γ(5 + µ
2 )t4−

µ
2

Γ(5− µ
2 )

+
9Γ(µ+ 1)

4
+
[3t

µ
2

2
− t4

]3
.

The exact solution of this example is u(t) = t8 − 3t4+
µ
2 + 9tµ

4 , which was
given in [35]. Diagrams of the numerical solutions for different values of µ
are shown in Figure 7. We calculated the logarithm of the absolute error for
different values of µ, and their diagrams are shown in Figure 8.

6 Conclusions

In this paper, the FABM and the HPTM were presented to study the initial
value problem of the linear and nonlinear fractional differential equations
involving the Caputo–Prabhakar fractional derivatives for numerically solving
this type of equations. In addition, the two proposed methods were compared.
Numerical examples and graphical representations were presented for testing
the validity and accuracy of suggested methods. These examples showed that
the FABM is a strong tool for obtaining the numerical solutions of linear
and nonlinear fractional differential equations. Furthermore, the stability
property of the FABM and the convergence analysis for both methods were
considered. The numerical results were stable and converged well for different
values of t for all examples.
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