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Using homotopy analysis method to
find the eigenvalues of higher order
fractional Sturm—Liouville problems
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Abstract

We utilize the homotopy analysis method to find eigenvalues of fractional
Sturm—Liouville problems. Inasmuch as very few papers have been devoted to
estimating eigenvalues of these kind of problems, this work enjoys a particular
significance in many different branches of science. The convergence of the
homotopy analysis method is also considered on the high order fractional
Sturm-Liouville problem. The numerical results acknowledge the ability of
the proposed method. Eigenvalues are computed within a couple of minutes
CPU time at core i3, 2.7 GHz PC.

AMS(2010): 35G15 , 34L16 , 65L15, 26A33, 34A08.
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1 Introduction

In this paper, the following special class of nth order fractional Sturm-—
Liouville eigenvalue problems are considered:
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> gi(@)DYy(x) + qo(@)y(x) = w(z)y(x), a <z <b, (1)
j=1
where w(z) and ¢;(z), j = 0,1,2,...,n, are integrable functions over [a, b].

The (left-sided) Caputo fractional derivative D of order a; € (j — 1, ),
7=0,1,2,...,n, is defined by

& (4)
D% y(x) = ! /0 ( y () dt.

I(j—«j) x —t)tl=i

Note that n should be an even number denoted by 2r. The separate boundary
conditions of problem (1) are as follows:

y"(a) =0, (2)
y D (b) =0, (3)

forie 8" C S:={0,1,2,...,2r — 1} in which S’ has  members. Problems
(1), (2), and (3) generally have arisen from linear fractional equations (see
[3, 4, 14, 8]).

Definition 1. The left-sided Riemann—Liouville fractional integral opera-
tor of order « is defined by

Iy = / “@— )y (b, (4)

where y € L'[0,7] and o € RT.

Some useful properties of the operator J¢ are found in [18, 19, 16]. Tt must
be mentioned that the left-sided Caputo fractional derivative (4) is originally
defined via the left-sided Riemann—Liouville fractional integral (4) [12], as
follows

Dy(z) = "y (x) = y(x), x>0,

where a € R, n = [a]+ 1 and y € L'[0, 7).

Fractional Sturm-Liouville problems (FSLP) are interesting problems
from a practical point of view. It turns out that such fractional equations have
seen many applications in science and engineering problems such as captur-
ing the dynamical behaviors of amorphous materials, for example, polymer
and porous media [15] or the superior modeling of the anomalous diffusion in
materials with memory, for instant, viscoelastic materials for which the mean
square variance grows faster (superdiffusion) or slower (subdiffusion) than in
a Gaussian process, see [9]. The interested reader may wish to examine the
great variety of works on the subject such as [1, 2, 7, 5, 6]

Therefore, many scientists resort to mathematicians to deal with this kind
of problem. The homotopy analysis method (HAM), Adomian decomposition
method (see [11, 4, 14, 20]), fractional differential transform method (see [10]),
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iterative approximation method (see [17]), and variational method (see [12])
were implemented on second-order FSLP.

To the best of our knowledge, few studies have been carried out to find the
eigenvalues of high order FSLP (sec [11]). So, we generalize the homotopy
analysis method on this particular problem. By taking polynomials as basis
functions, we approximate the homotopy series solution that satisfies initial
conditions (2). Then, by imposing boundary conditions (3) on this series
solution, a system of equations will appear for which its determinant should
be zero to have a nontrivial solution. In spite of using fewer terms to find
the eigenvalues of the problem (1), we gain more accurate results compared
with [11]. Moreover, our method is easily applied in solving an arbitrary
high-order fractional Sturm—Liouville problems. On the other hand, the con-
vergence of the series solution of the HAM for high order FSLP is proved
which demonstrates the efficiency of this proposed method.

This paper is organized as follows: In Section 2 some basic definitions
of fractional calculus are presented. The HAM is mentioned, in detail, in
Section 3. The convergence of the HAM on high order FSLP is established in
Section 4. The numerical results are presented in Section 5 to illustrate the
efficiency of the proposed method. The last section is devoted to including
discussions and conclusions.

2 Homotopy analysis method

To illustrate the basic concept of the HAM, we consider the following general
nonlinear functional operator:

Nlu(z)] = 0, (®)

where NN is a nonlinear operator, z denotes an independent variable, and u(x)
is an unknown function. For the sake of simplicity, we ignore all boundary
or initial conditions, which can be treated similarly. Through generalizing
the traditional homotopy method Liao in [13], the following the so-called
zero-order deformation equation was constructed:

(1 = p)L[¢(x; p) — uo(x)] = phH (x)N[é(x; )], (6)

where p € [0,1] is an embedding parameter, i # 0 is a nonzero auxiliary
parameter, H(x) is an auxiliary function, L is an auxiliary linear operator,
up(x) is an initial guess of u(x), and ¢(x;p) is an unknown function. It is
important, that one has a great deal of freedom to choose auxiliary operators
in the HAM. Obviously, when p = 0 and p = 1, the following relations,
respectively, hold:

¢(z;0) = uo(x),  ¢(z;1) = u(x).
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Thus, as p increases from 0 to 1, the solution ¢(x;p) varies from the initial
guess to the solution w(z). Expanding ¢(x;p) in Taylor series with respect
to p, one has

$(w:p) = uo(x) + Y um()p™, (7)

where 1 om ()
T p
U (#) = = Lo
If the auxiliary linear operator, the initial guess, the auxiliary parameter h,
and the auxiliary function are properly chosen, series (7) converges at p = 1,

and one has

+00
u(a:) = UO(IIT) + Z Um(l'), (8)

which must be one of the solutions of the original nonlinear equation, as
proved by Liao (see [13]). The governing equation can be deduced from the
zero-order deformation equation. Define the vector

U = {uo(x),u1(z),. .. up(z)}.

Differentiating (6), m times with respect to the embedding parameter p and
then setting p = 0 and finally dividing them by m!, we have the so-called
mth order deformation equation

L{uyn (2) = Xontim—1(2)] = hH (@) R (L 1), (9)
where T
Ro(U 1) = Dl g St WS (10)
and
we{t ns o
In equation (1) we choose the initial guess as follows:
uo(z) = crpn (z) + capa(T) + - + crpir(T)
where p;(x),i =1,2,...,r, are chosen in such a way that ug(z) satisfies the

boundary condition (2). By implementing the HAM we can consider N first
terms of series (8)

N
W (@) = (@) + 3 (@),
m=1

as an approximation of the solution of equation (1). It is worth to note that,
according to our main problem (1) including the parameter A and process
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of the HAM consisting of the parameter 7, the approximate solution wy(x)
enjoys these two parameters, that is, A and 7. In fact , we have

N
wn(z; A h) = ug(x +Zuml’/\ﬁ (12)

m=1

By imposing the boundary condition (3) on the approximate solution (12),
we get

N

w (b A 5) = ul? (0) + > uld (b; A, h),
m=1
where i € S’. Therefore, we encounter with a system of r equations and r
unknown coefficients ¢y, ¢a, ..., ¢,. In order to have a nontrivial solution, the
determinant of this system of equation including parameters A and A should
be equal to zero. So, by plotting this implicit function of A and h, so-called
h-curve, we can determine eigenvalues that correspond to each horizontal
plateaus.

3 Convergence of the HAM in FSLP

In the following theorem, we consider the convergence of the HAM on frac-
tional Sturm—Liouvill problem.

Theorem 1. If the following series
Z(x) = up(x) + Z U (), (13)
m=1

is convergent in which w,,(z) is obtained from (9), (10), and (11), then the
series (13) can be a solution of (1) and (2).

Proof. Since series (13) is convergent, we have

lim w,,(x) =0, (14)

m—0o0
by the necessary condition of convergent series.
Now, by using (11), we have

n

D7 fum (@) = Xmum—1(2)] = w1 (x) + (uz () — w1 (2)) + -+ + (un (@) — un—1(x))

m=1

= up(z).

Then by virtue of (14), we get
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D7 [t (@) = Xmttm—1 ()] = Jim [t (2) = Xmtm—1(z)] = Jlim u, (2) =0.
m=1

According to above relation and linearity of the auxiliary operator L, we can
write

L U (2) — XmUm—1(2)] | = L [um(z) — Xmum—1(z)] | =0.
(mZ:l[ ) Xt > (ZEEe—E)
So, by means of equation (9), we have

o0 o

Z L<[Um($) - Xmum—l(x)]> = hH(IL‘) Z [R"l(ﬁm—l)] =0.

m=1 m=1

For as much as, i # 0 and H(x) # 0, the following equality is obtained

> [Rus(Fn1)] = 0. (15)

m=1

Consequently, from (10), one can write

m—1 n
Rm[ﬁm—l] 7’3-1' 6apm 1 I:qu DO‘J Z’U,@ +CI0 Z’Uzz
3wl
i=1
Z () D% [tyy—1 ()] + qo(2)tm—1 () — Aw(x)upm—1(x).

Then,

[> " a5(2) D% [wm—1] + go (@)t —1 = Aw(@)um 1]
0 j=1

q;(z) DaJ[Z Um—1] +‘10[Z Um—1] — )\w(x)[z Um—1]

Z Rm[ﬁm 1 =
m=1

Fllﬂz ﬁMz

<.
Il
-

M:

q; (@) DZ(x)] + qo[Z ()] — Aw(z)[Z(x)]. (16)

Jj=1

Regarding to (15) and (16), we have

Zq; )DUZ ()] + qo[Z (2)] = Aw(x)[Z(x)] = 0.
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Moreover, from the initial guess ug(z) and the initial condition (2), we obtain
ui(a) =ul’ (@) =0, ies,

which implies

Z(a) = uo(a) + > um(a) = uo(a) =0.
m=0

Therefore, Z(z) is an analytic solution of the differential equation (1). [

Remark 1. We consider {zltion gdtion — g2r=1tien) in which r € N is
an arbitrary constant, as a basis function of the HAM in problem (1) in which
a1 = @y = ay,—1 = 0, with subject to initial condition (2) for which even order
of derivatives are just assumed. Then, we can write the series solution (8)
as a linear combination of basis functions with coefficients a; 1,a;2,...,a;,r,
1=0,...,m, as follows:

oo m
2 § :ai71x1+zan + ai72$3+wzn R ai7rx2r—1+zan

m=0 i=0
t—1 m
= lim E E ai T x4 g gt
t—o0 ! ? ?
m=0 {=0
_ 1 .3 2r—1
= 11m (a0711‘ + agox” + - +ag, T )
t—o0 ’ ’

+ (ag1z + -+ + ag, x>t a1t o 4ay O
+ R + (a071x + e+ G’O,Ter_l + 4 at_171x1+(t_1)0471,
N at—l,rl‘2r_1+(t_1>a")

= lim t(ap1z + agox® + -+ + ag 2> )
t—o0 ’ ) )

+ (t _ 1)(a1’1$1+an 4+ .0+ alﬂ_x%—l-ﬁ-an)
NI (at_l’lzlJr(tfl)an 4ot at_l’rx2r71+(tfl)an)
t—1
= lim Y (t —k)(ap 2z TFen . gy PR,

t—o0
k=0

In order to establish the convergence of above series we should have

(t =k — DagygjattFDen

(t — k)ay, ja'+kon)

lim <1

t—o00

k

t—k—1
for j =1,...,r. It is obvious that the lim;_,, |ﬁ| <1 forall k <t

k41,5
So, |#azan <1
Ok, j
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4 Numerical examples

To illustrate the proposed approach, some examples are presented in this
section. We use Mathematica software to calculate eigenvalues of following
problems.

Example 1. Consider the following fourth-order FSLP:
Da[y('r)] = /\y(m), S (0’ 1)7 (17)
where 3 < a < 4, subject to the boundary conditions

y(0) =y"(0) =0, (18)

and
y(1) =y"(1) = 0. (19)

We assume that the solution of (17) can be expressed by the set of the
following basis functions:

1+u’ 3+a :L,l+2a, C[’.3+20z’ . }

{z,2° o7,

According to the boundary condition (18), we can choose the initial ap-
proximation of the solution in the form uy(z) = c1x+cox®. It is obvious that
one must choose the auxiliary linear operator

Llp(x;p)] = D%(z; p).
From (17), we define the following nonlinear operator:
Ng(z;p)] = D*¢(x;p) — Ad(w;p). (20)
We have the zero order deformation equation (6) with the initial conditions
¢(0;p) =0, ¢"(0;p) =0.
From (10) and (20), we have

1 oD (uo +pus + -+ ) — Muo +pus + )]
(m—1)! opm—1
= D%pm—1(x) — M1 ().

Rm(ﬁmfl) -

Now, the solution of the m—th-order deformation equation (9), for m > 1
becomes
Um () = XmUm—1(x) + hJ* [H(x)Rm(ﬁm—l)]'

According to the rule of solution expression denoted by (8) and from (9), the
auxiliary function H(x) is uniquely determined with H(z) = 1.
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The first few terms of HAM series solution for o = 3.7 are as follows:

e1[(1 + )z — 0.013788F Az ] + eo[(1 + B)z® — 0.002166A 3],
e1[(1 + h)2z + (=0.027757 — 0.0275757h Az T 4 0.00001042\ 21 +29))
+eo[(1 4 %)z 4 (—0.004332 — 0.004332R)AiAz3TS + 6.40592 x 10772 \2g3 429,

uy

u2

Consequently the N—th order approximate solution of the HAM, wy (), is
in the form

N
wy(z) = Z Um (2) = 1y (2) + cann (). (21)
m=0

By imposing the boundary condition (19) on (21), we get

ci{n(L; A, h) + cann (1; X, h) = 0,
(¥ (1A, B) + canly (1; A, h) = 0.

In order to have nontrivial eigenfunctions, we just need to solve

det ( AR (LA k) ) =0

The above equation, which depends on A and £, is used to plot the A-curve.

We can observe that in the plot of A as a function of A, several horizontal
plateaus occur, each of which corresponds to an eigenvalue of the problem.

The results of Table 1 has been obtained by choosing & = —1. The exact
eigenvalues of this problem for the integer case a = 4, are known A, = (km)?,
k > 1 (see [11]). The obtained results of HAM are compared with those
calculated in [11]. As we can observe in Figure 2 the nth eigenfunction has
exactly, n — 1 zeros in the mentioned interval.

Table 1: Comparison results of first four eigenvalues of Example 1

Ak a=37 a=39 a = 3.9999 a=4
HAM [11] HAM [11] HAM [11] HAM [11]
A 91.412292 91.412293 93.533242 93.533230 97.404401 97.404401 97.409091 97.409091
Az 944.796194 944.795695 1324.156313 1324.156357 1558.290698 1558.290698 1558.545456 1558.545456
Az 4544.318681 4544.336950 | 6456.132806  6456.132485 7888.515088 7888.515134 7890.136374 7890.136374
A 12012.668230  12012.483491 | 19613.918138 19613.888783 | 24930.699029  24930.689877 | 24936.727305  24936.727305
CPU time 45s 42s 47s 22s

Example 2. Consider the following sixth-order FSLP:

4

D[y(x)] + Y q;(x)y? (@) + y(z) =0,  w € (0,5),
=0

subject to the boundary conditions
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Figure 1: A-curve according to o = 3.7

LosF s X

Figure 2: dotted line: Eigenfunction corresponding to A1; dot dashed line: Eigenfunc-
tion corresponding to A2; dashed line: Eigenfunction corresponding to Agz; thick lines:
Eigenfunction corresponding to A4 of Example 1

y(0) =y"(0) =y(0) =0

y(5) =y"(5) =y (5) =0.

where 5 < a < 6, ¢;(2),0 < j < 5are given by qo(z) = —r3(x), ¢1(z) = ry(z),
@2(x) = r2(2) —1{(2), ¢3(x) = —2r1(2), @u(@) = —ri(2), ri(z) = 0.0322,
ro(z) = 0.0003z* — 0.08, r3( ) =107%2% —0.001422. Figure 4 shows the first
four eigenfunctions of thls example.

Example 3. Consider the following tenth order FSLP:

—D%(x) = Ay(x)
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Table 2: Comparison results of first four eigenvalues of Example 2

Ak a=5.7 a=25.8 a=59 a=5.99
HAM [11] HAM [11] HAM [11] HAM [11]
A 0.147973 0.144551 0.117816 0.114673 | 0.094189  0.091268 0.076819 0.074124
Ao 4.575315 4.572390 4.563104 4.560000 4.515779 4.512994 4.461465 4.458254
Az 44.714848  44.712872 | 45.154858  45.152024 | 46.234038 46.230890 | 47.596156  47.592932
A 208.439520  0.699270 | 225.477660  1.826100 | 242.79754  1.923205 | 359.596203  2.595920
CPU time 304s 308s 327s 307s
200 T T T T ™
i |
150 ] 4
|| |
' |
A |
100 '| L
______“'——-_,_ .II] | |
L H—-.x‘“*x . | | -"I
soF B L ]
| / il
f ¢
|l { / \
v / \
{ )
oF, . ) h i s
-5 -4 =3 -2 =1 L

Figure 3: h-curve according to o = 5.99

<
q

Figure 4: dotted line: Eigenfunction corresponding to A1; dot dashed line: Eigenfunc-
tion corresponding to A2; dashed line: Eigenfunction corresponding to Az; thick lines:
Eigenfunction corresponding to A4 of Example 2

subject to the boundary conditions
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y(0) =3"(0) = y™@(0) = y@(0) = y®(0) = 0,
y(m) =y (7) =y (7) =y (z) = y®(7) = 0,

where 9 < a < 10. The kth exact eigenvalue of this problem is known to be
k10,

Table 3: Comparison results of first six eigenvalues of Example 3

A a=95 a=97 a=99 a = 9.99 « = 9.9999 exact A = k¥ for a = 10
A 1.748599 1.306696 1.075690 1.006707 1.000066 1
A2 728.928601 869.080768 974.250744 1018.989895 1023.949824 1024
Az 42282.627032 46348.445365 54048.023602 58515.254210 59043.62485 59049
As 525209.338050 712914.190485 923496.5577796 1035311.328463 1048443.414051 1048576
As 5168605.499169 | 6378765.105038 8421530.523672 9620208.712720 | 9765096.934552 9765625
Ao 21875877.180515 | 36191783.299387 | 52015671.224970 | 59033451.785699 | 60657173.019026 60466176
CPU time 73s 78s s 70s 81s 3ls

In our proposed method, we use fewer polynomial terms comparing with
another procedure (see [11]) and get more accurate results. For instance,
we just calculate N = 13 and N = 7 terms of approximate solutions, in
Examples 1 and 2, respectively; While the author in [11] considered N = 18
and N = 20 terms in aforementioned examples. Moreover, we obtain as the
same number eigenvalues as Hajji, Al-Mdallal, and Allan reported in [11].

5 Conclusion

In this paper, the HAM has been applied to high order fractional Sturm-—
Liouville problems. The main core of this paper is about to find the eigen-
values and eigenfunctions of these kind of problems. The proposed method
has more convenient than the existing methods, since, in spite of using fewer
terms to approximate the solution, we obtained more accurate numerical re-
sults. Moreover, it is readily used to solve complex fractional Sturm—Liouville
problems of an arbitrary high-order. This leads to fewer computations and
also more efficiency of HAM in comparison with the one proposed in [11].
Besides, the HAM on high order FSLPs is validated by verifying its conver-
gence.
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