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Constrained Bimatrix Games
with Fuzzy Goals and its Application

in Nuclear Negotiations

H. Bigdeli∗, H. Hassanpour, and J. Tayyebi

Abstract

Solving constrained bimatrix games in the fuzzy environment is the aim
of this research. This class of two-person nonzero-sum games is considered
with finite strategies and fuzzy goals when some additional linear constraints
are imposed on the strategies. We consider constrained two-person nonzero-

sum games with single and multiple payoffs. It is shown that an equilibrium
solution of single-objective case can be characterized by solving a quadratic
programming problem with linear constraints. Some mathematical program-
ming problems are also introduced to obtain the equilibrium points in multi-

objective case with crisp and fuzzy constraints. Finally, a political application
of such games is presented which is about nuclear negotiations between two
countries.

Keywords: Multiobjective game; Constrained game; Fuzzy constrained
game; Nuclear negotiations.

1 Introduction

Many real-world problems can be modeled as game problems. When the game
theory is used to analysis some conflict problems in real situations, impreci-
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sion or fuzziness is inherent in human judgments. Two types of inaccuracies of
human judgments should be incorporated in the games; the players’ ambigu-
ous understanding of the payoffs and the fuzzy goals of the players for each of
the objectives. Fuzzy set theory is well known for its ability to model decision
making problems involving vagueness due to the lack of information and/or
imprecision of the available information on the problem set-up [21,24]. This
ability has been successfully exploited for modeling different problems in var-
ious disciplines. In the field of fuzzy games, a considerable number of studies
have been made (see, for example, [1,11,13,17]). Two-person nonzero-sum fi-
nite games are a kind of noncooperative games [19]. Two-person nonzero-sum
games are also referred to as bimatrix games because they can be expressed
by a pair of payoff matrices. These kind of games contain two-person zero-
sum games as a special case. In real-world decision making problems facing
humans today, people want to attain simultaneous goals; that is, they have
multiple objectives. Hence, it seems natural that the game theoretic ap-
proaches to conflict resolution require to handle multiple objectives simulta-
neously. Wierzbicki [23] defined equilibrium solutions of multiobjective game
based on order relations, using several preference cones and optimality cri-
teria such as Pareto optimality for multiobjective noncooperative n-person
games with nonlinear payoff functions. Corley [7] defined equilibrium so-
lutions for multiobjective two-person nonzero-sum games and developed a
method to compute them. Authors of [5] defined a proxy single-objective
game with payoffs corresponding to a scalarizing function with weighting co-
efficients in multiobjective two-person nonzero-sum games and discussed the
existence of equilibrium solutions for the original multiobjective two-person
nonzero-sum games through the existence of the equilibrium solutions for the
single objective proxy game. Fahem and Radjef [9] investigated the concept
of properly efficient equilibrium for a multicriteria noncooperative strate-
gic game. Nishizaki and Sakawa [17] studied two-person nonzero-sum game
incorporating fuzzy goals in single and multiobjective environments. They
defined an equilibrium solution with respect to the degree of attainment of
the fuzzy goals in two-person nonzero-sum games and showed that an equi-
librium obtained from solving several mathematical programming problems.

In some real-life game problems, choice of strategies for players is con-
strained due to some practical reason why this should be; that is, not all
mixed strategies in a game are permitted for each player. These decision
problems give rise to constrained games. Constrained matrix games initially
were studied by Charnes [6] and then in a more general case by Kawaguchi
and Maruyama [10]. Dresher [8] gave a real example of the constrained matrix
game. Li and Cheng [11] presented a method based on the multiobjective
programming to solve constrained matrix games with fuzzy numbers. Li
and Hong [13] proposed a method for solving constrained matrix games with
payoffs of triangular fuzzy numbers. They introduced the concepts of Alpha-
constrained matrix games for the constrained matrix games with payoffs of
triangular fuzzy numbers. Also, they [12] proposed Alpha-cut based linear
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programming methodology for the constrained matrix games with payoffs of
trapezoidal fuzzy numbers.

The authors used multiobjective optimization in multiobjective zero-sum
fuzzy matrix games in other researches [3, 4]. In this paper, we consider the
case of constrained bimatrix games with single and multiple payoffs in which
fuzzy goals are specified for the objectives by the players.

The remainder of the paper is organized as follows. In section 2, some
preliminaries and necessary definitions about fuzzy sets and bimatrix games
are presented. In section 3, constrained bimatrix games with fuzzy goals
are introduced. It is shown that the equilibrium solution of this class of
nonzero-sum games can be characterized by solving a quadratic programming
problem. Then, multiobjective constrained bimatrix games with fuzzy goals
is considered, and a mathematical programming problem to solve such games
is presented. Also, for the case that additional linear constraints are imposed
on the strategies are fuzzy constraints, a mathematical programming problem
is introduced to obtain the equilibrium point of such games. In section 4, a
political application of multiobjective constrained bimatrix games with fuzzy
goals is presented in which nuclear negotiations between two countries have
been discussed. Finally, conclusion is made in section 5.

2 Preliminaries

In this section, we provide some definitions and preliminaries of fuzzy sets
and bimatrix games according to [1, 20].

Let X denote a universal set. A fuzzy subset Ã of X is defined by its
membership function µÃ : X → [0, 1] which assigns to each element x ∈ X
a real number µÃ(x) in the interval [0, 1]. The value of µÃ(x) represents

the grade of membership of x in Ã. The fuzzy subset Ã is denoted by a
set of ordered pairs of elements x and their grades µÃ(x); that is, Ã =
{(x, µÃ(x))|x ∈ X}.

A fuzzy decision making problem is characterized by a set X of possi-
ble alternatives and a set of fuzzy goals Gi, i = 1, . . . , p, as well as a set of
fuzzy constraints Cj , j = 1, . . . , n, each of which is expressed by a fuzzy
set on X. For such a decision making problem, Bellman and Zadeh [2]
proposed that a fuzzy decision is determined by an appropriate aggrega-
tion of the fuzzy sets Gi, i = 1, . . . , p, and Cj , j = 1, . . . , n. Realizing
that both the fuzzy goal and the fuzzy constraint are desired to be sat-
isfied simultaneously, they suggested the aggregation operator to be the
fuzzy intersection. Thus a fuzzy decision D could be defined as the fuzzy
set D = (G1 ∩ · · · ∩ Gp) ∩ (C1 ∩ · · · ∩ Cn); that is, µD(x) : X → [0, 1]
given by µD(x) = min(µG1(x), . . . , µGp(x), µC1(x), µCn(x)). Once the fuzzy
decision D is known, we can define x∗ ∈ X to be an optimal decision if
µD(x∗) = maxx µD(x).
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Let two players in a two-person bimatrix game be denoted by Players
I and II. In a two-person bimatrix game, each player has finite number of
strategies. The payoff function is determined by two matrices A,B ∈ Rm×n.
When Player I chooses his ith strategy and Player II his jth strategy, then
aij and bij are the payoffs of Players I and II, respectively. Thus, a bimatrix
game is determined by a pair of matrices (A,B). Rational behavior of players
is assumed; that is, each of them attempts to maximize his reward. Mixed
strategy is a probability vector over the set of pure strategies. So, bimatrix
game can be represented as BG : (X,Y,A,B), where

X = {x ∈ Rm|
m∑
i=1

xi = 1, xi ≥ 0 i = 1, . . . ,m}

and

Y = {y ∈ Rn|
n∑

j=1

yj = 1, yj ≥ 0, j = 1, . . . , n}

are called the mixed strategy spaces for Players I and II, and A and B are
called the payoff matrices for Players I and II, respectively.

Definition 1. A pair (x∗, y∗) ∈ X × Y is said to be an equilibrium so-
lution of the bimatrix game BG if

xTAy∗ ≤ x∗TAy∗ ∀x ∈ X

and

x∗TBy ≤ x∗TBy∗ ∀y ∈ Y.

In other words, no player has a motivation to change his strategy.

The following theorem due to Nash guarantees the existence of an equi-
librium solution of the bimatrix game.

Theorem 1. [20]Every bimatrix game BG : (X,Y,A,B) has at least one
equilibrium solution.

A Nash equilibrium solution of the bimatrix game BG can be obtained by
solving an appropriate quadratic programming problem as discussed below.

Theorem 2. [15]Let BG : (X,Y,A,B) be a given bimatrix game. The pair
(x∗, y∗) is an equilibrium solution of BG if and only if it is an optimal solu-
tion to the following quadratic programming problem:



G
al
le
y
P
ro
of

Constrained Bimatrix Games with Fuzzy Goals. . . 85

max
x,y,α,β

xT (A+B)y − α− β

s.t. Ay − αem ≤ 0,
BTx− βen ≤ 0,
x ∈ X, y ∈ Y,

(1)

where α and β are scalars; em and en are, respectively, m- and n-dimensional
column vectors whose elements are all ones. The optimal values of α and β
are the expected payoffs to Players I and II, respectively. Furthermore, the
optimal objective value of the problem (1) equals zero.

We will use Pareto optimality concept of multiobjective optimization in
solution concept of multiobjective two-person nonzero-sum games. Thus,
we review some of solutions concepts in multiobjective mathematical pro-
gramming. For convenience, let us introduce the following notation: for any
vectors z, z

′ ∈ RN

z = z
′ ⇐⇒ zi = z

′

i i = 1, . . . , N ;

z ≦ z
′ ⇐⇒ zi ≦ z

′

i i = 1, . . . , N ;

z < z
′ ⇐⇒ zi < z

′

i i = 1, . . . , N ;

z ≤ z
′ ⇐⇒ z ≦ z

′
and z ̸= z

′
.

A multiobjective mathematical programming problem can be written as

min f(z) = (f1(z), . . . , fl(z))
s.t.

z ∈ Z = {z ∈ RN |g(z) ≦ 0, h(z) = 0},

where g(z) = (g1(z), . . . , gm1(z)), h(z) = (h1(z), . . . , hm2(z)), and 0 is zero
vector with the same dimension as the left hand side vectors.
There does not generally exist a solution minimizing all of the objectives si-
multaneously. Therefore, Pareto optimal (efficient) solutions are introduced
as follows.

Definition 2. [22] z∗ ∈ Z is said to be a Pareto optimal solution if there
does not exist another z ∈ Z such that f(z) ≤ f(z∗).

As a slightly weaker solution concept than Pareto optimality, weak Pareto
optimal solutions are defined by replacing ≤ with < in Definition 2.

3 Constrained bimatrix games with fuzzy goals

Nishizaki and Sakawa [18] studied two-person nonzero-sum games incorpo-
rating fuzzy goals in multiobjective environment. They defined an equilib-
rium solution with respect to the degree of attainment of the fuzzy goals
and proved that an equilibrium solution can be obtained by solving several
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certain mathematical programming problems. Let us consider a case of BG
in which all mixed strategies x and y must be chosen from some sets X̂ and
Ŷ determined by some linear constraints. A constrained bimatrix game is
denoted by CBG : (X̂, Ŷ , A,B) in which

X̂ =
{
x ∈ Rm

∣∣eTmx = 1, Dx ≤ c , x ≥ 0
}
, (2)

and

Ŷ =
{
y ∈ Rn

∣∣eTny = 1, Ey ≤ d , y ≥ 0
}
, (3)

are called the mixed strategy spaces for Players I and II in the constrained
game, respectively. In the above sets c ∈ Rp, d ∈ Rq, D ∈ Rp×m, and
E ∈ Rq×n. em and en are m- and n-dimensional vectors of ones.
When Player I chooses a mixed strategy x ∈ X̂ and Player II chooses a
mixed strategy y ∈ Ŷ , the values xTAy and xTBy are the expected payoffs
for Players I and II, respectively.

Definition 3. A pair (x∗, y∗) ∈ X̂ × Ŷ is said to be an equilibrium so-
lution of the constrained bimatrix game CBG if

xTAy∗ ≤ x∗TAy∗ ∀x ∈ X̂,

x∗TBy ≤ x∗TBy∗ ∀y ∈ Ŷ .

In this paper, we incorporate fuzzy goals for objectives and introduce
equilibrium solutions in terms of maximizing the degree of attainment for
fuzzy goals similar to the work of [18]. In the following, we define fuzzy goals
for Players I and II.

Definition 4. Let the expected payoffs of Player I be D1 = {xTAy| x ∈
X̂, y ∈ Ŷ }. A fuzzy goal for Player I is a fuzzy set G̃1 represented by an
increasing membership function µ1 : D1 → [0, 1].

Definition 5. Let the expected payoffs of Player II be D2 = {xTBy| x ∈
X̂, y ∈ Ŷ }. A fuzzy goal for Player II is a fuzzy set G̃2 with an increasing
membership function µ2 : D2 → [0, 1].

Note that µ1 (µ2) assigns to each expected payoff xTAy ∈ D1 (xTBy ∈
D2) a real number µ1(x

TAy) (µ2(x
TBy)) which denotes the degree of satis-

faction of Player I (Player II) from the payoff xTAy (xTBy).

An equilibrium solution of a constrained bimatrix game with fuzzy goals
is defined with respect to the degree of attainment of the fuzzy goals.

Definition 6. (Equilibrium solution). A pair (x∗, y∗) ∈ X̂ × Ŷ is said to be
an equilibrium solution of the constrained bimatrix game CBG : (X̂, Ŷ , A,B)
with fuzzy goals if
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µ1(x
∗TAy∗) ≥ µ1(x

TAy∗) ∀x ∈ X̂,

µ2(x
∗TBy∗) ≥ µ2(x

∗TBy) ∀y ∈ Ŷ .

The membership function µ1 (µ2) in the above definition can be inter-
preted as Player I’s (Player II’s ) satisfaction function of payoff. Thus the
game with fuzzy goals can be reduced to an ordinary two-person constrained
nonzero-sum game whose payoff function is its satisfaction function. Let us
consider the fuzzy goal of Player I (Player II) as “the expected payoff should
be substantially greater than or equal to ā (b̄)”. Here, we use linear mem-
bership functions for these fuzzy goals as follows (see Figure 1 for µ1):

µ1(x
TAy) =


0, xTAy ≤ a,

1− ā−xTAy
ā−a , a ≤ xTAy ≤ ā,

1, xTAy ≥ ā,

(4)

and

µ2(x
TBy) =


0, xTBy ≤ b,

1− b̄−xTBy
b̄−b

, b ≤ xTBy ≤ b̄,

1, xTBy ≥ b̄.

(5)

In (4) and (5), ā and b̄ are the desirable values of expected payoffs for Players
I and II, respectively. Also, a and b are the least allowable values for their
expected payoffs. Thus ā− a (b̄− b) is the most allowable value for violation
from ā (b̄) for Player I (Player II). Notice that a, ā, b, and b̄ could be any
values with ā > a and b̄ > b which is given by players. In the case that
they can not give these values; we can set a = min

i
min
j
aij , ā = max

i
max

j
aij ,

b = min
i

min
j
bij , and b̄ = max

i
max

j
bij , in which a (b) gives the worst degree of

satisfaction and ā (b̄) gives the best degree of satisfaction for Player I (Player
II).
Letting

Â = A
ā−a , B̂ = B

b̄−b
, c1 = − a

ā−a , and c2 = − b

b̄−b
;

the membership functions µ1(x
TAy) and µ2(x

TBy) can be rewritten as

µ1(x
TAy) =


0, xTAy ≤ a,

c1 + xT Ây, a ≤ xTAy ≤ ā,
1, xTAy ≥ ā,

and
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µ2(x
TBy) =


0, xTBy ≤ b,

c2 + xT B̂y, b ≤ xTBy ≤ b̄,
1, xTBy ≥ b̄.

respectively.

Figure 1: A linear membership function for fuzzy goal of Player I.

The following theorem states that an equilibrium solution of CBG : (X̂, Ŷ , Â, B̂)
is equal to the equilibrium solution of CBG : (X̂, Ŷ , A,B). Moreover, it is
also an equilibrium solution with respect to the degree of attainment of the
fuzzy goals for CBG : (X̂, Ŷ , A,B) with fuzzy goals.

Theorem 3.A pair of strategies (x∗, y∗) satisfies the conditions

x∗T Ây∗ ≥ xT Ây∗ ∀x ∈ X̂

x∗T B̂y∗ ≥ x∗T B̂y ∀y ∈ Ŷ

if and only if (x∗, y∗) satisfies the following conditions

x∗TAy∗ ≥ xTAy∗ ∀x ∈ X̂

x∗TBy∗ ≥ x∗TBy ∀y ∈ Ŷ

furthermore, when the membership functions of the fuzzy goals are linear
functions, (x∗, y∗) satisfies the following conditions

µ1(x
∗TAy∗) ≥ µ1(x

TAy∗) ∀x ∈ X̂

µ2(x
∗TBy∗) ≥ µ1(x

∗TBy) ∀y ∈ Ŷ

Proof. The presented proof in [1] (Theorems 9.2.1 and 9.2.2) in the case of
unconstrained bimatrix games is also valid for our problem.
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The following example shows that the converse of the second part of The-
orem 3 is not established.

Example 1. Set

X = {x|x1 + x2 = 1, x1, x2 ≥ 0}, Y = {y|y1 + y2 = 1, y1, y2 ≥ 0},

A = B =

[
1 0.75
0.5 0.25

]
,

µ1(x
TAy) =


0, xTAy ≤ 0.25,

1− 0.5−xTAy
0.25 , 0.25 ≤ xTAy ≤ 0.5,

1, xTAy ≥ 0.5,

and

µ2(x
TBy) =


0, xTBy ≤ 0.25,

1− 0.5−xTBy
0.25 , 0.25 ≤ xTBy ≤ 0.5,

1, xTBy ≥ 0.5.

For x∗ =

(
0.2
0.8

)
and y∗ =

(
0.7
0.3

)
, we have

µ1

(
x∗TAy∗

)
≥ µ1

(
xTAy∗

)
∀x ∈ X

and
µ2

(
x∗TBy∗

)
≥ µ2

(
x∗TBy

)
∀y ∈ Y.

Because

x∗TAy∗ = (0.2, 0.8)

[
1 0.75
0.5 0.25

] [
0.7
0.3

]
= [0.6 0.35]

[
0.7
0.3

]
= 0.525

and
µ1

(
x∗TAy∗

)
= µ1 (0.525) = 1

which imply that

1 = µ1

(
x∗TAy∗

)
≥ µ1

(
xTAy∗

)
∀x ∈ X.

Similarly, 1 = µ1

(
x∗TBy∗

)
≥ µ1

(
x∗TBy

)
∀y ∈ Y .

On the other hand for x =

(
0.4
0.6

)
, we have

xTAy∗ = (0.4, 0.6)

[
1 0.75
0.5 0.25

] [
0.7
0.3

]
= [0.7 0.45]

[
0.7
0.3

]
= 0.625

µ1

(
xTAy∗

)
= µ1 (0.625) = 1

We see that, x∗TAy∗ = 0.525 < xTAy∗ = 0.625. Therefore (x∗, y∗) is not
an equilibrium point for bimatrix game (X,Y,A,B). Hence the converse of
Theorem 3 is not established.
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Now, we have the following theorem which provides a quadratic program-
ming problem to find an equilibrium solution of the CBG : (X̂, Ŷ , A,B) with
fuzzy goals.

Theorem 4.(Equivalence theorem) Let (x∗, y∗, α∗, β∗, u∗, v∗) be an optimal
solution of the following quadratic programming problem:

max
x,y,u,v,α,β

xT (Â+ B̂)y − cu− dv − α− β

s.t. Ây ≤ cuem + αem,

B̂Tx ≤ dven + βen,
DTx− c ≤ 0,
ET y − d ≤ 0,
eTmx = 1,
eTny = 1,
x, y, u, v ≥ 0.

(6)

Then (x∗, y∗) is an equilibrium solution of the CBG : (X̂, Ŷ , A,B) with fuzzy
goals.

Proof. First, we show that the optimal value of objective function is zero.
The constraints of the problem evidently imply that

xT Ây + xT B̂y − cu− dv − α− β ≤ 0.

Thus the objective optimal value of the problem (6) is nonpositive. Consider
the point (x̄, ȳ, ᾱ, β̄, ū, v̄), where x̄ = x∗ ∈ X̂, ȳ = y∗ ∈ Ŷ , ᾱ = x∗T Ây∗ −
cu∗, β̄ = x∗T B̂y∗ − dv∗, ū = u∗, and v̄ = v∗. We first prove that it is feasible
to the problem (6). Assume that it is not feasible. Obviously, the solution
does not satisfy at least one of the two first constraints of the problem (6).
We assume that the first constraint does not hold. The proof of the other
case is similar. Thus,

Ây∗ > cu∗em + α∗em. (7)

Multiplying both sides of (7) x∗ ∈ X̂, implies that

x∗T Ây∗ > cu∗ + α∗ = x∗T Ây∗

which is incorrect.

On the other hand, it is clear that the objective value of (x̄, ȳ, ᾱ, β̄, ū, v̄)
is zero. Thus it means that the optimal value of objective (6) is zero.
Now, let (x∗, y∗, α∗, β∗, u∗, v∗) be an optimal solution of the problem (6);
thus

x∗T Ây∗ + x∗T B̂y∗ − cu∗ − dv∗ − α∗ − β∗ = 0. (8)
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From the first and second constraints, for any x ∈ X̂ and y ∈ Ŷ , we have

xT Ây∗ ≤ cu∗ + α∗

and x∗T B̂y ≤ dv∗ + β∗,
(9)

which imply

xT Ây∗ + x∗T B̂y ≤ cu∗ + α∗ + dv∗ + β∗.

Also, the equation (9) implies in particular that

x∗T Ây∗ ≤ cu∗ + α∗

and x∗T B̂y∗ ≤ dv∗ + β∗.

On the other hand, from (8) we have

x∗T Ây∗ + x∗T B̂y∗ = cu∗ + α∗ + dv∗ + β∗.

Thus

x∗T Ây∗ = cu∗ + α∗

and x∗T B̂y∗ = dv∗ + β∗.

Therefore, (9) implies that

x∗T Ây∗ ≥ xT Ây∗ ∀x ∈ X̂

and x∗T B̂y∗ ≥ x∗T B̂y ∀y ∈ Ŷ

This proves that (x∗, y∗) is an equilibrium pair of CBG : (X̂, Ŷ , Â, B̂). But,
by Theorem 3, this means that (x∗, y∗) is an equilibrium solution of the
CBG : (X̂, Ŷ , A,B) with fuzzy goals.

Remark 1. When an optimal solution (x∗, y∗, α∗, β∗, u∗, v∗) of (6) has
been obtained, (x∗, y∗) gives an equilibrium solution of the constrained bima-
trix game CBG : (X̂, Ŷ , A,B) with fuzzy goals. The degree of attainment of
fuzzy goal G̃1 and G̃2 can then be determined by µ1(x

∗TAy∗) (or µ1(x
∗T Ây∗))

and µ2(x
∗TBy∗) (or µ2(x

∗T B̂y∗)).

3.1 Multiobjective constrained bimatrix games with
fuzzy goals

Multiobjective two-person nonzero-sum games can be expressed as multiple
m× n matrices
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A1 =

 a111 . . . a11n
...

. . .
...

a1m1 . . . a
1
mn

 , . . . , Ar =

 ar11 . . . ar1n
...

. . .
...

arm1 . . . a
r
mn

 ,

B1 =

 b111 . . . b11n
...

. . .
...

b1m1 . . . b
1
mn

 , . . . , Bs =

 bs11 . . . bs1n
...

. . .
...

bsm1 . . . b
s
mn

 ,
where Player I has m pure strategies and r objectives and Player II has n
pure strategies and s objectives. When Player I chooses the pure strategy i
and Player II chooses the pure strategy j, they respectively receive the payoff
vectors (a1ij , . . . , a

r
ij) and (b1ij , . . . , b

s
ij). The mixed strategy spaces for Players

I and II are, respectively, given by (2) and (3).

When Player I chooses a constrained mixed strategy x ∈ X̂ and Player
II chooses a constrained mixed strategy y ∈ Ŷ , the k-th payoff of Player I
is fk1 (x, y) = xTAky and the l-th expected payoff of Player II is f l2(x, y) =
xTBly. Assume that for each objective fk1 (x, y) = xTAky, k = 1, . . . , r,
Player I has a fuzzy goal such as “the k-th objective value of the game
should be substantially more than or equal to some value āk”. This state-
ment can be quantified by eliciting a membership function. Assume that the
corresponding linear membership function is defined as follows:

µk
1(x

TAky) =


0, xTAky ≤ ak,

1− āk−xTAky
āk−ak , ak ≤ xTAky ≤ āk,

1, xTAky ≥ āk,

where ak is the least allowable value of the k-th payoff.
Similarly, assume that for each objective f l2(x, y) = xTBly, l = 1, . . . , s,
Player II has a fuzzy goal such as “the l-th objective value of the game
should be substantially more than or equal to some value b̄l.” Then the
corresponding linear membership function is defined as follows:

µl
2(x

TBly) =


0, xTBly ≤ bl,

1− b̄l−xTBly
b̄l−bl

, bl ≤ xTBly ≤ b̄l,

1, xTBly ≥ b̄l,

where bl is the least allowable value of the l-th payoff.
Letting

Âk = Ak

āk−ak , B̂
l = Bl

b̄l−bl
, ck1 = − ak

āk−ak , and c
l
2 = − bl

b̄l−bl
,

the membership functions µk
1(x

TAky) and µl
2(x

TBly) can be rewritten as
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µk
1(x

TAky) =


0, xTAky ≤ ak,

ck1 + xT Âky, ak ≤ xTAky ≤ āk,
1, xTAky ≥ āk,

and

µl
2(x

TBly) =


0, xTBly ≤ bl,

cl2 + xT B̂ly, bl ≤ xTBly ≤ b̄l,
1′ xTBly ≥ b̄l.

We consider the equilibrium solutions in terms of maximizing the degree of
attainment of fuzzy goals. We use the method of Bellman and Zadeh [2] to
aggregate the fuzzy goals.
The aggregated fuzzy goals of Players I and II are as follows, respectively:

µ1(x, y) = mink=1,...,r µ
k
1(x

TAky),
µ2(x, y) = minl=1,...,s µ

l
2(x

TBly).
(10)

Definition 7. A pair of strategies (x∗, y∗) is an equilibrium solution with
respect to the degree of attainment of the fuzzy goals aggregated by the
minimum component for the multiobjective CBG : (X̂, Ŷ , A,B) with fuzzy
goals if for any other mixed strategies x ∈ X̂ and y ∈ Ŷ

µ1(x
∗, y∗) ≥ µ1(x, y

∗)

and

µ2(x
∗, y∗) ≥ µ2(x

∗, y),

where µ1 and µ2 are given by (10).

Based on the above definition, an equilibrium solution is (x∗, y∗) in which,
x∗ and y∗ are the optimal solutions to the following two mathematical pro-
gramming problems:

maximizemin{µ1
1(x

TA1y∗), . . . , µr
1(x

TAry∗)}
s.t. eTmx = 1,

DTx ≤ c,
x ≥ 0,

and

maximizemin{µ1
2(x

∗TB1y), . . . , µs
2(x

∗TBsy)}
s.t. eTny = 1,

ET y ≤ d,
y ≥ 0.

Remark 2. Similar to the proposed theorem for unconstrained bimatrix
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games in [17] (Lemma 4.2.1), we can say that an equilibrium point is a pair
of strategies (x∗, y∗) in which x∗ and y∗ are the optimal solutions of the
following problems, respectively:

maximizemink=1,...,r{ck1 + xT Âky∗}
s.t. eTmx = 1,

DTx ≤ c,

0 ≤ ck1 + xT Âky∗ ≤ 1, k = 1, . . . , r,
x ≥ 0,

(11)

and

maximizeminl=1,...,s{cl2 + x∗T B̂ly}
s.t. eTny = 1,

ET y ≤ d,

0 ≤ cl2 + x∗T B̂ly ≤ 1, l = 1, . . . , s,
y ≥ 0.

(12)

Since the constraints of the problems (11) and (12) are separable, these
problems yield the following mathematical programming problem:

maximize(mink=1,...,r{ck1 + xT Âky∗}+minl=1,...,s{cl2 + x∗T B̂ly})
s.t. DTx ≤ c,

ET y ≤ d,
eTmx = 1,
eTny = 1,

0 ≤ ck1 + xT Âky∗ ≤ 1, k = 1, . . . , r,

0 ≤ cl2 + x∗T B̂ly ≤ 1, l = 1, . . . , s,
x ≥ 0,
y ≥ 0.

Now, we can present the following theorem.

Theorem 5.Let (x∗, y∗, α∗, β∗, λ∗1, λ
∗
2, u

∗, v∗) be an optimal solution to the
following nonlinear programming problem

(NLP1):
max λ1 + λ2 − cu− dv − α− β
s.t.

Âky + ck1em ≤ cuem + αem for some k ∈ {1, . . . , r} , (c1)

(B̂l)
T
x+ cl2en ≤ dven + βen for some l ∈ {1, . . . , s} , (c2)

xT Âky + ck1 ≥ λ1, k = 1, . . . , r, (c3)

xT B̂ly + cl2 ≥ λ2, l = 1, . . . , s, (c4)
DTx ≤ c, (c5)
ET y ≤ d, (c6)
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eTmx = 1, (c7)
eTny = 1, (c8)

0 ≤ ck1 + xT Âky ≤ 1, (c9)

0 ≤ cl2 + xT B̂ly ≤ 1, (c10)
0 ≤ λ1, λ2 ≤ 1, (c11)
x, y, u, v ≥ 0. (c12)

Then (x∗, y∗) is an equilibrium solution with respect to the degree of attain-
ment of the aggregated fuzzy goal.

Proof. First, we show that the optimal value of objective is zero. Let
(x, y, α, β, λ1, λ2, u, v) be an arbitrary feasible solution of the problem (NLP1).
From the constraints (c1) and (c7), it is easy to verify that

xT Âky + ck1 ≤ cu+ α for some k ∈ {1, . . . , r}.

Thus
min
k

{
xT Âky + ck1

}
≤ cu+ α.

Similarly, from the constraints (c2) and (c8) we have

min
l

{
xT B̂ly + cl2,

}
≤ dv + β.

From the constraints (c3) and (c4),

min
k

{
xT Âky + ck1

}
≥ λ1,

and
min

l

{
xT B̂ly + cl2

}
≥ λ2.

Therefore, we have

λ1 + λ2 − cu− dv − α− β ≤ 0.

In other words, the objective function value of (NLP1) is less than or equal
to 0. We can verify that the solution (x̄, ȳ, ᾱ, β̄, λ̄1, λ̄2, ū, v̄) in which

x̄ = x∗ ∈ X̂,

ȳ = y∗ ∈ Ŷ ,

ᾱ = mink

{
x∗T Âky∗ + ck1

}
− cu∗,

β̄ = minl

{
x∗T B̂ly∗ + cl2

}
− dv∗,

λ̄1 = mink

{
x∗T Âky∗ + ck1

}
,

λ̄2 = minl

{
x∗T B̂ly∗ + cl2

}
,

ū = u∗, and v̄ = v∗,
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is feasible to the problem (NLP1). Assume that it is not feasible. So the
solution does not satisfies at least one of the two constraints (c1) and (c2)
of the problem (NLP1). We assume that the constraint (c1) does not hold.
The proof of the other case is similar. Thus,

Âky∗ + ck1em > cu∗em + α∗em. (13)

Multiplying x∗ ∈ X̂ both sides of (13), we have

x∗T Âky∗ + ck1 > cu∗ + α∗.

Thus,

min
k

{
x∗T Âky∗ + ck1

}
> min

k

{
x∗T Âky∗ + ck1

}
.

Also, its objective function value is zero. It means that the optimal value of
objective of the nonlinear problem (NLP1) is zero.

Now, Let (x∗, y∗, α∗, β∗, λ∗1, λ
∗
2, u

∗, v∗) be an optimal solution to the pro-
gramming problem (NLP1). Thus

λ∗1 + λ∗2 − cu∗ − dv∗ − α∗ − β∗ = 0. (14)

From the constraints (c1) and (c2), for each feasible solution (x, y, α, β, λ1, λ2, u, v),
we have

xT Âky∗ + ck1 ≤ cu∗ + α∗ for some k ∈ {1, . . . ,m},
x∗T B̂ly + cl2 ≤ dv∗ + β∗ for some l ∈ {1, . . . , n}.

Thus,

mink

{
xT Âky∗ + ck1

}
≤ cu∗ + α∗,

minl

{
x∗T B̂ly + cl1

}
≤ dv∗ + β∗.

(15)

Also, according to the constraints (c3) and (c4),

mink

{
x∗T Âky∗ + ck1

}
≥ λ∗1,

minl

{
x∗T B̂ly∗ + cl2

}
≥ λ∗2.

(16)

Now, from (14) and (16) it follows that

α∗ + β∗ + cu∗ + dv∗ = λ∗1 + λ∗2 ≤ min
k

{x∗T Âky∗ + ck1}+min
l
{x∗T B̂ly∗ + cl2}.

Therefore,

min
k

{x∗T Âky∗ + ck1} ≥ −min
l
{x∗T B̂ly∗ + cl2}+ α∗ + β∗ + cu∗ + dv∗. (17)
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On the other hand, the first inequality of (15) for x = x∗ and (17) imply that

cu∗+α∗ ≥ min
k

{x∗T Âky∗+ck1} ≥ −min
l
{x∗T B̂ly∗+cl2}+α∗+β∗+cu∗+dv∗.

It follows that

min
l
{x∗T B̂ly∗ + cl2} ≥ β∗ + dv∗. (18)

Similarly,

min
k

{x∗T Âky∗ + ck1} ≥ α∗ + cu∗. (19)

Thus, from (15), (18), and (19), we have

mink{x∗T Â1y∗ + c11} = α∗ + cu∗,

minl{x∗T B̂ly∗ + cl2} = β∗ + dv∗.
(20)

Consequently, (15) and (20) imply that

min
k

{x∗T Âky∗ + ck1} ≥ min
k

{xT Âky∗ + ck1}, ∀x ∈ X̂,

and
min

l
{x∗T B̂ly∗ + cl2} ≥ min

l
{x∗T B̂ly + cl2} ∀y ∈ Ŷ .

Hence, x∗ and y∗ are, respectively, optimal solutions to the problems (11)
and (12). Therefore, by Remark 2 the pair (x∗, y∗) is an equilibrium solution
with respect to the degree of attainment of the fuzzy goals aggregated by the
minimum component for the multiobjective game.

Using the techniques of solving nonlinear programming problems contain-
ing constraints such as (c1) and (c2), the nonlinear problem (NLP1) can be
solved by solving the following mixed binary nonlinear programming prob-
lem.

max λ1 + λ2 − cu− dv − α− β
s.t.

Â1y + c11em ≤ cuem + αem +M(1− δ1)em,
...

Âry + cr1em ≤ cuem + αem +M(1− δr)em,

(B̂1)
T
x+ c12en ≤ dven + βen +M(1− δ

′

1)en,
...

(B̂s)
T
x+ cs2en ≤ dven + βen +M(1− δ

′

s)en,

xT Âky + ck1 ≥ λ1, k = 1, . . . , r,

xT B̂ly + cl2 ≥ λ2, l = 1, . . . , s,



G
al
le
y
P
ro
of

98 H. Bigdeli, H. Hassanpour, and J. Tayyebi

DTx ≤ c,
ET y ≤ d,
eTmx = 1,
eTny = 1,

0 ≤ ck1 + xT Âky ≤ 1,

0 ≤ cl2 + xT B̂ly ≤ 1,
0 ≤ λ1, λ2 ≤ 1,
r∑

k=1

δk = 1,

s∑
l=1

δ
′

l = 1,

δk = 0 or 1, k = 1, . . . r,

δ
′

l = 0 or 1, l = 1, . . . s,
x, y, u, v ≥ 0,

where M is an enough large number. This problem can be solved by branch
and bound methods of solving mixed zero-one nonlinear problems [14], or by
using optimization softwares such as Lingo [25] and Gams [26].

3.2 Multiobjective constrained bimatrix games with
fuzzy goals and fuzzy constraints

Assume that the constraints imposed on mixed strategies are fuzzy con-
straints. In other words, the mixed strategy spaces for Players I and II
are, respectively, as follows:

X̃ =
{
x ∈ Rm

∣∣eTmx = 1, Dx≥̃c , x ≥ 0
}
,

Ỹ =
{
y ∈ Rn

∣∣eTny = 1, Ey≥̃d , y ≥ 0
}
.

The symbol “≥̃” denotes a relaxed or fuzzy version of the ordinary in-
equality “≥”. (We consider only fuzzy version of ≥ in order to adopt to the
considered fuzzy goals. Note that a ≤ constraint can be transformed to a
≥ one). More explicitly, these fuzzy inequalities mean that “for t = 1, . . . , p
and τ = 1, . . . , q, the constraints Dtx and Eτy should be substantially more
than or equal to ct and dτ , respectively ”.

For treating the fuzzy inequalityDtx≥̃ct, we use the following linear mem-
bership function

µ1(Dtx) =


0, Dtx ≤ ct,
1− c̄t−Dtx

c̄t−ct
, ct ≤ Dtx ≤ c̄t,

1, Dtx ≥ c̄t,

(21)
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where c̄t = ct and ct = ct − δt, in which δt is a subjectively chosen constant

expressing the limit of the admissible violation of the inequality. Letting D̂t =
Dt

c̄t−ct
and c

′

1t = − ct
c̄t−ct

, the above membership function can be rewritten as

follows:

µ1(Dtx) =


0, Dtx ≤ ct,

c
′

1t + D̂tx, ct ≤ Dtx ≤ c̄t,
1, Dtx ≥ c̄t.

(22)

Also, µ2(Eτy) can be defined similar to (21) and rewritten as

µ2(Eτy) =


0, Eτy ≤ dτ ,

c
′

2τ + Êτy, dτ ≤ Eτy ≤ d̄τ ,
1, Eτy ≥ d̄τ ,

(23)

where Êτ = Eτ

d̄τ−dτ
, c

′

2τ = − dτ

d̄τ−dτ
, d̄τ = dτ , and dτ = dτ − δ

′

τ .

According to these membership functions, we define an equilibrium solu-
tion with respect to the degree of attainment of the aggregated fuzzy goal as
follows.

Definition 8. A pair of strategies (x∗, y∗) is an equilibrium solution with
respect to the degree of attainment of the fuzzy goals aggregated by the min-
imum component for the multiobjective CBG : (X̃, Ỹ , A,B) with fuzzy goals
if for any other mixed strategies x ∈ X̃ and y ∈ Ỹ

min
k=1,...,r
t=1,...,p

{
µk
1(x

∗TAky∗), µ1(Dtx
∗)
}
≥ min

k=1,...,r
t=1,...,p

{
µk
1(x

TAky∗), µ1(Dtx)
}
,

and

min
l=1,...,s
τ=1,...,q

{
µl
2(x

∗TBly∗), µ2(Eτy
∗)
}
≥ min

l=1,...,s
τ=1,...,q

{
µl
2(x

∗TBly), µ2(Eτy)
}
.

According to the membership functions (22) and (23), we can say that an
equilibrium point is a pair of strategies (x∗, y∗) in which x∗ and y∗ are the
optimal solutions of the following problems, respectively.

maximizemin{c11 + xT Â1y∗, . . . , cr1 + xT Âry∗, c
′

11 + D̂1x, . . . , c
′

1p + D̂px}
s.t. eTmx = 1,

0 ≤ ck1 + xT Âky∗ ≤ 1, k = 1, . . . , r,

0 ≤ c
′

1t + D̂tx ≤ 1, t = 1, . . . , p,
x ≥ 0,

(24)

and
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maximizemin{c12 + x∗T B̂1y, . . . , cs2 + x∗T B̂sy, c
′

21 + Ê1y, . . . , c
′

2q + Êqy}
s.t. eTny = 1,

0 ≤ cl2 + x∗T B̂ly ≤ 1, l = 1, . . . , s,

0 ≤ c
′

2τ + Êτy ≤ 1, τ = 1, . . . , q,
y ≥ 0.

(25)

Note that the problems (24) and (25) are similar to the problems presented
in [17] for solving bimatrix games with fuzzy goals in which additional fuzzy
constraints imposed on the strategies becomes additional fuzzy goals. Thus
it is natural to extend the presented theorems in [17]. The following theorem
expresses that an equilibrium point can be obtained by solving a mathemat-
ical programming problem.

Theorem 6.(Equivalence theorem). Let (x∗, y∗, α∗, β∗, λ∗1, λ
∗
2) be an opti-

mal solution to the following nonlinear programming problem:

(NLP2):

max λ1 + λ2 − α− β
s.t. 

Âky + ck1em − αem ≤ 0 for some k ∈ {1, . . . , r} ,

D̂t + c
′
1tem ≤ αem for some t ∈ {1, . . . , p} , (B̂l)

T
x+ cl2en − βen ≤ 0 for some l ∈ {1, . . . , s} ,

Êτ + c
′
2τ en ≤ βen for some τ ∈ {1, . . . , q} ,

xÂky + ck1 ≥ λ1, k = 1, . . . , r,

D̂t
T
x+ c

′
1t ≥ λ1, t = 1, . . . , p,

xB̂ly + cl2 ≥ λ2, l = 1, . . . , s,

Êτ
T
y + c

′
2τ ≥ λ2, τ = 1, . . . , q,

eTmx = 1,
eTny = 1,

0 ≤ ck1 + xÂky,≤ 1 k = 1, . . . , r,

0 ≤ c
′
1t + D̂tx ≤ 1, t = 1, . . . , p,

0 ≤ cl2 + xT B̂ly ≤ 1, l = 1, . . . , s,

0 ≤ c
′
2τ + Êτy ≤ 1, τ = 1, . . . , q,

0 ≤ λ1, λ2 ≤ 1,

x, y ≥ 0.

Then (x∗, y∗) is an equilibrium solution with respect to the degree of attain-
ment of the aggregated fuzzy goal.

Proof. The proof is similar to the proof of Theorem 5.

Note that if the fuzzy constraints imposed on mixed strategies are not
considered, the problem (NLP2) is the same as the introduced problem by
Nishizaki and Sakawa [17] to solve bimatrix game with fuzzy goals.

Similar to the problem with crisp constraints in subsection 3.1, to solve
this problem, it is sufficient to solve the following mixed binary nonlinear
programming.
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max λ1 + λ2 − α− β
s.t.

Â1y + c11em ≤ αem +M(1− δ1)em,
...

Âry + cr1em ≤ αem +M(1− δr)em,′

D̂1 + c
′

11em ≤ αem +M(1− δr+1)em,
...

D̂p + c
′

1pem ≤ αem +M(1− δr+p)em,

(B̂1)
T
x+ c12en ≤ βen +M(1− δ

′

1)en,
...

(B̂s)
T
x+ cs2en ≤ βen +M(1− δ

′

s)en,

Ê1 + c
′

21en ≤ βen +M(1− δ
′

s+1)en,
...

Êq + c
′

2qen ≤ βen +M(1− δ
′

s+q)en,

xT Âky + ck1 ≥ λ1, k = 1, . . . , r,

D̂t
T
x+ c

′

1t ≥ λ1, t = 1, . . . , p,

xT B̂ly + cl2 ≥ λ2, l = 1, . . . , s,

Êτ
T
y + c

′

2τ ≥ λ2, τ = 1, . . . , q,
eTmx = 1,
eTny = 1,

0 ≤ ck1 + xÂky ≤ 1, k = 1, . . . , r,

0 ≤ c
′

1t + D̂x ≤ 1, t = 1, . . . , p,

0 ≤ cl2 + xT B̂ly ≤ 1, l = 1, . . . , s,

0 ≤ c
′

2τ + Êy ≤ 1, τ = 1, . . . , q,
0 ≤ λ1, λ2 ≤ 1,
r+p∑
k=1

δk = 1,

s+q∑
l=1

δ
′

l = 1,

δk = 0 or 1, k = 1, . . . r + p,

δ
′

l = 0 or 1, l = 1, . . . s+ q,
x, y, u, v ≥ 0.

Again, the above problem can be solved by branch and bound methods of
solving mixed zero-one nonlinear problems [14], or by using optimization
softwares such as Lingo [25] and Gams [26].

In this section, We use multiobjective optimization to study multiob-
jective two-person constrained bimatrix games. Thus, we expect to consider
Pareto optimality concept for multiobjective two-person bimatrix games. Be-
fore defining weak Pareto optimal equilibrium solution, we recall the defini-
tion of the best reply strategies as follows by using the concept of Pareto
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optimality in multiobjective optimization.

Definition 9. [17]. Let a payoff vector of Player I be denoted by p1(x, y) ∈ Rr

when Player I chooses a mixed strategy x ∈ X̂, and let Player II chooses a
mixed strategy y ∈ Ŷ . Player I’s preference cone is defined by

C1 =
{
z = (z1, . . . , zr) ∈ Rr|zk ≥ 0, k = 1, . . . , r

}
.

Then, given Player II’s strategy ŷ, the set of payoffs for the weak Pareto best
reply strategies is defined by

p1(ŷ) = {p1(x, ŷ) ∈ z1(ŷ)|z1(ŷ) ∩ (p1(x, ŷ) + intC1) = ∅

for some strategy x ∈ X̂ of P layer I}

where z1(ŷ) is the set of attainable payoffs of Player I against the strategy
ŷ ∈ Ŷ of Player II and intC1 denotes the set of interior points of C1. Similarly,
let Player II’s payoff vector be denoted by p2(x, y) ∈ Rs, and let Player II’s
preference cone be

C2 =
{
z = (z1, . . . , zs) ∈ Rs|zl ≥ 0, l = 1, . . . , s

}
.

Then, given Player I’s strategy x̂ ∈ X̂, the set of payoffs for weak Pareto best
reply strategies is defined by

p2(x̂) = {p2(x̂, y) ∈ z2(x̂)|z2(x̂) ∩ (p2(x̂, y) + intC2) = ∅,

for some strategy y ∈ Ŷ of P layer II},

where z2(x̂) is the set of attainable payoffs of Player II against the strategy
x̂ of Player I.

Definition 10. [23]. Let the payoff vectors of Players I and II be p1(x, y) =
(p11(x, y), . . . , p

r
1(x, y)) and p2(x, y) = (p12(x, y), . . . , p

s
2(x, y)), respectively.

For any pair of strategies x ∈ X̂ and y ∈ Ŷ , let Player I’s set of payoff
vectors for the weak Pareto best reply strategies and Player II’s set of payoff
vectors for the weak Pareto best reply strategies be denoted by p1(y) and
p2(x), respectively. Then the set of the weak Pareto optimal equilibrium
solutions is defined by

WPE = {(x∗, y∗)|p∗1(x∗, y∗) ∈ p1(y
∗), p∗2(x

∗, y∗) ∈ p2(x
∗)} .

Pareto optimal equilibrium solution can be defined by replacing intC1

and intC2 with C1\{0} and C2\{0} in the above definitions, respectively.
Wierzbicki [23] explored in detail the relation between scalarizing functions
and Pareto optimal equilibrium solutions. If scalarizing function is a strictly
monotone function, then the obtained equilibrium point is Pareto optimal
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equilibrium solution, and if it is monotone function which is not always
strictly monotone, then obtained equilibrium point is weak Pareto optimal
equilibrium solution. Also, suppose a player assesses that ak or bl is suf-
ficiently small and assesses that āk or b̄l is sufficiently large. We have the
following theorem.

Theorem 7An equilibrium solution with respect to the degree of attainment
of the fuzzy goals aggregated by a minimum component is a weak Pareto op-
timal equilibrium solution.

Proof. According to that the minimum component is not always strictly
monotone, the proof is completed.

4 A political application: investigating nuclear
negotiations

The application of game theory and its importance to social science were
quickly recognized. Now, game theory is used extensively in analyzing psy-
chology, philosophy, sociology, politics, and economics. Most importantly,
game theory is used to analyze international relations, specifically in coun-
tries with conflicting goals and interests. Game theory provides a logical
analysis of situations of conflict and cooperation. A game is a situation in
which

1) There are at least two players. A player may be an individual, but it
may also be a more general entity like a company, a nation, or even a
biological species.

2) Each player has a number of possible strategies, courses of action which
he may choose to follow.

3) The strategies chosen by each player determine his outcome of the game.

4) Associated to each possible outcome of the game there is a collection
of numerical payoffs, one to each player. These payoffs represent the
value of the outcome to the different players.

Game theory can be divided into two categories: zero-sum games and
nonzero-sum games. Zero-sum games are games in which one player wins
and the other loses. The two players do not cooperate, and their interests
are in total conflict. Each player chooses a certain set of strategies, and he
does not know the choices of the other player. Nonzero-sum games, on the
other hand, are games in which the interests of the players are not strictly
opposed. The success of one player does not come as a result of the failure
of the other player.
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Because the interests of the players are not in total conflict and not strictly
coincident, a nonzero-sum game allows the players to both compete and co-
operate to achieve outcomes that are advantageous to both players. Nonzero-
sum games can be played without communication, with communication be-
fore the game, and with cooperation. In international relations, countries
compete and cooperate to maximize their national interests. These countries
also have diplomatic relations, and therefore, they communicate with one
another. Therefore, this study will focus on the nonzero-sum games in which
the players can communicate before the game strategic moves.

It is important to note that the data in this discussion are bogus totally
and is brainchild of the authors and have not specific explanation for what
happened in the world of today between two countries.

Let us explain the details of the problem. Country I is sanctioned by
Country II, and its allies due to nuclear activities. Now, Country I is not in a
good economic position. To fix the economic problem, Country I decides to
negotiate with Country II to lift nuclear sanctions and achieve the favorable
economic situation in the region. However, it is possible to Country I find
the weak political position among its allies and its people. It is possible to
improve the political situation in the other countries due to negotiation but
Country I is not optimistic to this improvement. Since Country I is interested
in a win-win game, so we formulate our problem as a win-win game. In this
negotiation it is assumed that after the establishment of results, the countries
act on their decisions. During the negotiations, Country I’s strategies are as
follows:

(1) Do not reduce the number of centrifuges (even increase their numbers)
and extend nuclear activities.

(2) Reduce of the number of centrifuges and limit the nuclear activities
under strict inspections.

(3) Suspend the nuclear activities.

Also, Country II’s strategies are as follows:

(1) Do not cancel any of sanctions.

(2) Cancel some natural or legal sanctions.

(3) Military attack.

Country II has stated that if Country I chooses the strategies (2) or (3),
then he may choose second strategy. Both countries do not trust each other
to do after agreement. So data should be chosen in such a way that the
distrust between two countries be considered. Here we assume that both
countries said that they would act after the agreement. Note that there are
opponents of this agreement in congress of Country II. Thus, it is expected
that after the agreement, by congressional pressure on the government some
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Country II

Country I
(50,30) (80,5) (45,10)
(20,70) (20,50) (30,15)
(10,60) (10,30) (15,5)

Political position

Country II

Country I
(60,30) (70,40) (5,20)
(1,50) (50,50) (0,10)
(5,40) (20,40) (5,10)

Economic position

new sanctions are imposed against Country I way out of nuclear activities.
Country II choosing the first strategy in addition to sanctions, concerned to
military threats and create sedition in Country I. It is also possible, even
move with second strategy to military threats and create sedition in this
country. However, with Country II’s commitment, Country I predicts these
actions after the agreement. Although it is possible mathematical models of
these issues are complex in real world, our aim of this discussion is only to
show a part of applications of these games in the nuclear negotiations and
the method of determining the best strategy.

Suppose that Country I will incur cost as much as 55, 70, and 80 unites
if he chooses the strategies (1), (2), and (3), respectively. Country I does
not want to spend more than 75 unites; that is, the mixed strategies of the
country I must satisfy the constraint condition: 55x1 + 70x2 + 80x3 ≤ 75.

Country II will incur cost as much as 30, 60, and 90 unites, by choosing the
strategies (1), (2), and (3), respectively. However, Country II only provides
80 unites;that is, the mixed strategies of the country II must satisfy the
constraint condition: 30y1 + 60y2 + 90y3 ≤ 80.

Assume that the payoff matrices of this game in view of political and
economic positions are given in Table 1. The numbers in these tables are
the payoffs for the countries. Country I’s payoffs are the first numbers, and
Country II’s payoffs are second numbers.

We ask with players the amounts which are satisfied with them and the
limit of the admissible violation of the inequalities. Let fuzzy goals G̃1

1 and
G̃2

1 of the Country I for the two objectives be represented by the following
linear membership functions:

µ1(x
TA1y) =


0, xTA1y ≤ 20,

1− 40−xA1y
40−20 , 20 ≤ xTA1y ≤ 40,

1, xTA1y ≥ 40,
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and

µ1(x
TA2y) =


0, xTA2y ≤ 15,

1− 50−xA2y
25−15 , 15 ≤ xTA2y ≤ 50,

1, xTA2y ≥ 50,

Let fuzzy goals G̃1
2 and G̃2

2 of the Country II for the two objectives be repre-
sented by the following linear membership functions:

µ2(x
TB1y) =


0, xTB1y ≤ 30,

1− 40−xB1y
40−30 , 10 ≤ xTB1y ≤ 40,

1, xTB1y ≥ 40,

and

µ2(x
TB2y) =


0, xTB2y ≤ 35,

1− 40−xB2y
45−35 , 20 ≤ xTB2y ≤ 40,

1, xTB2y ≥ 40.

By solving the mixed binary mathematical programming problem (NLP1),
the equilibrium point is obtained. Thus, equilibrium solutions are optimal
solutions to the following problem.

max λ1 + λ2 − 75u− 80v − α− β
s.t.

2.5y1 + 4y2 + 2.25y3 − 75u− α ≤ 1 +Mδ1,
y1 + y2 + 1.5y3 − 75u− α ≤ 1 +Mδ1,
0.5y1 + 0.5y2 + 0.75y3 − 75u− α ≤ 1 +Mδ1,
12/7y1 + 2y2 + 1/7y3 − 75u− α ≤ 3/7 +Mδ2,
1/35y1 + 10/7y2 + 0y3 − 75u− α ≤ 3/7 +Mδ2,
1/7y1 + 4/7y2 + 1/7y3 − 75u− α ≤ 3/7 +Mδ2,

3x1 + 7x2 + 6x3 − 80v − β ≤ 3 +Mδ
′

1,

0.5x1 + 5x2 + 3x3 − 80v − β ≤ 3 +Mδ
′

1,

1x1 + 1.5x2 + 0.5x3 − 80v − β ≤ 3 +Mδ
′

1,

6x1 + 10x2 + 8x3 − 80v − β ≤ 7 +Mδ
′

2,

8x1 + 10x2 + 8x3 − 80v − β ≤ 7 +Mδ
′

2,

4x1 + 4x2 + 2x3 − 80v − β ≤ 7 +Mδ
′

2,
4/7x1y1 + 1/35x2y1 + 1/7x3y1 + 2x1y2 + 10/7x2y2 + 12/7x3y2
+1/7x1y3 + 0x2y3 + 1/7x3y3 − λ1 ≥ 3/7,
6x1y1 + 10x2y1 + 8x3y1 + 8x1y2 + 10x2y2 + 8x3y2
+4x1y3 + 2x2y3 + 2x3y3 − λ2 ≥ 7,
1.5x1y1 + 0.5x2y1 + 0.25x3y1 + 4x1y2 + 0.5x2y2 + 0.5x3y2
+0.5x1y3 + 1.5x2y3 + 0.25x3y3 − λ1 ≥ 1,
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3x1y1 + 7x2y1 + 6x3y1 + 0.5x1y2 + 5x2y2 + 3x3y2
+1x1y3 + 1.5x2y3 + 0.5x3y3 − λ2 ≥ 3,
55x1 + 70x2 + 80x3 ≤ 75,
30y1 + 60y2 + 90y3 ≤ 80,
x1 + x2 + x3 = 1,
y1 + y2 + y3 = 1,
12/7x1y1 + 1/35x2y1 + 1/7x3y1 + 2x1y2 + 10/7x2y2 + 4/7x3y2
+1/7x1y3 + 0x2y3 + 1/7x3y3 − λ1 ≥ 3/7,
2.5x1y1 + 1x2y1 + 0.5x3y1 + 4x1y2 + 0.5x2y2 + 0.5x3y2
+2.25x1y3 + 1.5x2y3 + 0.5x3y3 − λ1 ≥ 1,
3x1y1 + 7x2y1 + 6x3y1 + 0.5x1y2 + 5x2y2 + 3x3y2
+1x1y3 + 1.5x2y3 + 0.5x3y3 − λ1 ≥ 3,
6x1y1 + 10x2y1 + 8x3y1 + 8x1y2 + 10x2y2 + 8x3y2
+4x1y3 + 2x2y3 + 2x3y3 − λ1 ≥ 7,
δ1 + δ2 = 1,

δ
′

1 + δ
′

2 = 1,
δ1, δ2 = 0 or 1,

δ
′

1, δ
′

2 = 0 or 1,
x1, x2, x3 ≥ 0,
y1, y2, y3 ≥ 0,
u, v ≥ 0.

This problem is solved by Lingo software. The obtained strategies are as
(x∗1, x

∗
2, x

∗
3) = (0.56, 0.38, 0.06) for Country I and (y∗1 , y

∗
2 , y

∗
3) = (0.69, 0.31, 0)

for Country II. This means that according to the conditions of the problem
the chance of success in negotiations between the two countries is that both
countries choose their first strategy.

5 Conclusion

In this paper, constrained bimatrix games with single and multiple payoffs are
studied, which incorporate fuzzy goals for objectives. Such fuzzy games has
not been considered in previous researches, based on the best knowledge of
the authors. A programming problem with linear constraints and a quadratic
objective function was presented to obtain the equilibrium solution of single
objective problem of such games. In multiobjective case, equilibrium points
was defined and the mathematical programming problems was introduced to
obtain the equilibrium points of this class of games with fuzzy goals and the
fuzzy/crisp constraints. We proposed two mixed binary nonlinear program-
ming problems to solve these mathematical programming problems. Weak
Pareto optimal equilibrium solution was defined and showed that obtained
equilibrium points of these problems are weak Pareto optimal equilibrium
solutions. A political application of these games was presented which inves-
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tigate nuclear negotiations between two countries. The equilibrium point of
this game was obtained by the proposed method. Solving constrained multi-
objective bimatrix games with fuzzy payoffs and fuzzy nonlinear goals needs
more researches, which can be our future work.
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