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Kudryashov method for exact
solutions of isothermal magnetostatic

atmospheres

N. Kadkhoda∗ and H. Jafari

Abstract

The Kudryashov method to look for the exact solutions of the nonlinear

differential equations is presented. The Kudryashov method is applied to
search for the exact solutions of the Liouville equation and the Sinh-Poisson
equation. The equations of magnetohydrostatic equilibria for a plasma in a
gravitational field are investigated analytically. An investigation of a family

of isothermal magnetostatic atmospheres with one ignorable coordinate cor-
responding to a uniform gravitational field in a plane geometry is carried out.
The distributed current in the model J is directed along the x-axis where x

is the horizontal ignorable coordinate. These equations transform to a single
nonlinear elliptic equation for the magnetic vector potential u. This equation
depends on an arbitrary function of u that must be specified.

Keywords: Kudryashov method; magnetostatic equilibria; nonlinear evolu-
tion equations; traveling waves.

1 Introduction

The equations of magnetostatic equilibria have been used extensively to
model the solar magnetic structure [1, 4, 9, 11]. An investigation of a fam-
ily of isothermal magnetostatic atmospheres with one ignorable coordinate
corresponding to a uniform gravitational field in a plane geometry is carried
out. The force balance consists of the force between J ∧ B (B, magnetic
field induction, J is the electric current density), the gravitational force, and
gas pressure gradient force. However, in many models, the temperature dis-
tribution is specified a priori and direct reference to the energy equations is
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eliminated. In solar physics, the equations of magnetostatic have been used
to model diverse phenomena, such as the slow evolution stage of solar flares,
or the magnetostatic support of prominences [20]. The nonlinear equilib-
rium problem has been solved in several cases [3, 8, 17, 18]. In this paper,
we obtain the exact analytical solutions for the Liouville and sinh-Poisson
equations using the Kudryashov method. Because these two models will be
special cases of magnetostatic atmospheres model. Also here there is force
balance between different forces. The Kudryashov method was developed by
Kudryashov on the basis of a procedure analogous to the first step of the test
for the Painlev property [2, 7, 7, 9, 10]. The paper is organized as follows :
In Section 2, we describe the methodology of Kudryashov method for solv-
ing nonlinear evolution equations when the Riccati equation is used as the
simplest equation. We describe the Basic equations in Section 3. We apply
this methodology and obtain exact solutions of the Liouville and sinh-Poisson
equations in Section 4. Finally, the concluding remarks are presented in Sec-
tion 5.

2 Analysis of the Kudryashov method

We consider a partial differential equation and we assume that by means of an
appropriate transformation this partial differential equation is transformed
to a nonlinear ordinary differential equation in the form

P (u, u′, u′′, u′′′, ...) = 0. (1)

Exact solution of this equation can be constructed as finite series

u(ξ) =

n∑
i=0

Ai(G(ξ))
i, (2)

where G(ξ) is a solution of some ordinary differential equation referred to as
the simplest equation. The simplest equation has two properties:

1. the order of simplest equation should be less than the order of equation
(1).

2. we should know the general solution of the simplest equation or at least
exact analytical particular solution(s) of the simplest equation.

In this paper, we use the equation of Riccati, as the simplest equation. This
equation is a well-known nonlinear ordinary differential equation which pos-
sesses the exact solution constructed by elementary function. In this paper
for the Riccati equation

G′(ξ) = cG(ξ) + dG(ξ)2, (3)
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we use the solution

G(ξ) =
c exp[c(ξ + ξ0)]

1− d exp[c(ξ + ξ0)]
; d < 0, c > 0, (4)

and

G(ξ) = − c exp[c(ξ + ξ0)]

1 + d exp[c(ξ + ξ0)]
; d > 0, c < 0. (5)

Here ξ0 is a constant of integration. Now u(ξ) can be determined explicitly
by using the following three steps:

• Step (1). By considering the homogeneous balance between the highest
nonlinear terms and the highest order derivatives of u(ξ) in equation
(1), the positive integer n in (2) is determined.

• Step (2). By substituting equation (2) with equation (3) into equation
(1) and collecting all terms with the same powers of G together, the left
hand side of equation (1) is converted into a polynomial. After setting
each coefficient of this polynomial to zero, we obtain a set of algebraic
equations in terms of Ai (i = 0, 1, 2, ..., n), c, d.

• Step (3). Solving the system of algebraic equations and then substi-
tuting the results and the general solutions of (4) or (5) into (2) gives
solutions of (1).

3 Basic equations

The relevant of magnetohydrostatic equations consisting of the equilibrium
equation with force balance will be as:

J ∧ B − ρ∇Φ−∇P = 0, (6)

which is coupled with Maxwells equations:

J =
∇∧ B

µ
, (7)

∇ · B = 0, (8)

where P, ρ ,µ and Φ are the gas pressure, the mass density, the magnetic
permeability and the gravitational potential, respectively. It is assumed that
the temperature is uniform in space and that the plasma is an ideal gas with
equation of state p = ρR0 T0, where R0 is the gas constant and T0 is the
temperature. Then the magnetic field B can be written by the following:

B = ∇u ∧ ex +Bx ex = (Bx,
∂u

∂z
,
−∂u
∂y

). (9)
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The form of (9) for B ensures that ∇ · B = 0, and there is no mono pole
or defect structure. equation (6) requires the pressure and density be of the
form [11]:

P (y, z) = P (u) e
−z
h , ρ(y, z) =

1

(gh)
P (u) e

−z
h , (10)

where h = R0 T0

g is the scale height. Substituting equations (7-10) in equation

(6), we obtain

∇2 u+ f(u) e
−z
h = 0, (11)

where

f(u) = µ
dP

du
. (12)

Equation (12) gives

P (u) = P0 +
1

µ

∫
f(u)du (13)

Substituting equation (13) into equation (10), we obtain

P (y, z) = (P0 +
1

µ

∫
f(u)du) e

−z
h , (14)

ρ(y, z) =
1

gh
(P0 +

1

µ

∫
f(u)du) e

−z
h , (15)

where P0 is constant. Taking transformation

x1 + i x2 = e
−z
l e

iy
l (16)

equation (12) reduces to

∂2 u

∂ x21
+
∂2 u

∂ x22
+ l2 f(u) e(

2
l −

1
h )z = 0. (17)

These equations have been given in Khater et al. (2000).

4 Application of the Kudryashov method

In this section, we will investigate the Kudryashov method for solving specific
forms of f(u).
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4.1 Liouville equation

We first consider Liouville equation and the following equation will be special
case of equation (17). Let us assume f(u) has the form (Dungey, 1953; Low,
1975):

f(u) = −α2A0e
− A

A0 , (18)

where A0 and α2 are constants. Hence

P (y, z) = (P0 +
α2A2

0

2µ
e

−2A
A0 )e

−z
h . (19)

Inserting equation (18) into equation (17) we obtain

∇2A/A0 = l2α2e
−2A
A0

+( 2
l −

1
h )z, (20)

where ∇2 = ∂2

∂x2
1
+ ∂2

∂x2
2
. Let us set

A

A0
=
z

L
+ w(y, z), (21)

where L is a constant. Then equation (20) becomes

∇2w − l2α2e−2w−( 2
L+ 1

h− 2
l )z. (22)

Let us identify l by
2

l
=

2

L
+

1

h
, (23)

and inserting equation (23) into equation (22) we obtain a Liouville type

ϕxx + ϕtt − α 2l2e−2ϕ = 0. (24)

In order to apply the Kudryashov method, we use the wave transformation
ξ = x− kt and change equation (24) into the form

(1 + k2)ϕ′′ = α 2l2e−2ϕ, (25)

we next use the transformation

v = e−2ϕ, (26)

we obtain
(1 + k2)vv

′′
− (1 + k2) (v′)

2
+ 2α2 l2 u3 = 0, (27)

with balancing according step (1) we get n = 2, therefore the solution of (27)
can be expressed as follow:
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v(ξ) =
2∑

i=0

Ai(G(ξ))
i. (28)

Substituting equation (28) along with (3) into (27) and setting the coefficients
of all powers of G to zero, we obtain a system of nonlinear algebraic equations
for A0, A1, A2 . Solving the resulting system with the help of mathematica,
we have the following sets of solutions:

A0 = 0,

A1 = − cd(1+k2)
l2α2 ,

A2 = −d2(1+k2)
l2α2 ,

(29)

where ξ = x−kt, λ,α,l are constants. Therefore, substituting (29) in (28) and
general solution (3) according to (4), we obtain solution of (27) as follows:

v1(ξ) = −c
2d(1 + k2)

l2α2

e(c(ξ+ξ0))

(1− de(c(ξ+ξ0)))2
, (30)

where d < 0 , c > 0 , ξ = x− kt. Using transformation

v = e−2ϕ, (31)

we get solution of (24) as follows:

ϕ1(ξ) = −1

2
ln[−c

2d(1 + k2)

l2α2

e(c(ξ+ξ0))

(1− de(c(ξ+ξ0)))2
]. (32)

Now substituting (29) in (28) and general solution (3) according to (5), we
obtain solution of (27) as follows:

v2(ξ) =
c2d(1 + k2)

l2α2

e(c(ξ+ξ0))

(1 + de(c(ξ+ξ0)))2
, (33)

where d > 0, c < 0 , ξ = x− kt. Using transformation

v = e−2ϕ, (34)

we get solution of (24) as follows:

ϕ2 = −1

2
ln[
c2d(1 + k2)

l2α2

e(c(ξ+ξ0))

(1 + de(c(ξ+ξ0)))2
]. (35)
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4.2 Sinh-Poisson equation

In this section, we consider sinh-Poisson equation which plays an important
role in the soliton model with BPS bound [4, 6]. Also, this equation will be
special case of equation (17). If we assume

f(u) = −β
2

4
(
A0

h
) sinh(ϕ). (36)

The same as above we have

ϕxx + ϕtt = β2 sinh(ϕ). (37)

In order to apply the Kudryashov method, we use the wave transformation
ξ = x− kt and change equation (37) into the form

(1 + k2)ϕ′′ = β2 sinh(ϕ), (38)

we next use the transformation{
v = eϕ,

sinh(ϕ) = eϕ−e−ϕ

2 ,
(39)

we obtain

2(1 + k2)vv
′′
− 2(1 + k2) (v′)

2 − β2(v3 − v) = 0. (40)

With balancing according to step (1) we get n = 2, therefore the solution of
(40) can be expressed as follows:

v(ξ) =
2∑

i=0

Ai(G(ξ))
i. (41)

Substituting equation (41) along with (3) into (40) and setting the coefficients
of all powers of G to zero, we obtain a system of nonlinear algebraic equations
for A0, A1, A2 . Solving the resulting system with the help of mathematica,
we have the following sets of solutions:

A0 = 1,
A1 = 4d

c ,

A2 = 4d2

c2 ,

c = ± β√
1+k2

,

(42)

where ξ = x − kt, λ,β are constants. Therefore, using Substituting (42) in
(41) and general solution (3) according to (4), we obtain solution of (40) as
follows:
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v1(ξ) =

(
1 + dec(ξ+ξ0)

)2(
1− dec(ξ+ξ0)

)2 ; d < 0, c > 0, (43)

where c = β√
1+k2

when β > 0 or c = − β√
1+k2

when β < 0 and ξ = x − kt.

Using transformation
v = eϕ, (44)

we get solution of (37) as follows:

ϕ1(ξ) = ln[

(
1 + dec(ξ+ξ0)

)2(
1− dec(ξ+ξ0)

)2 ], (45)

where c = β√
1+k2

when β > 0 or c = − β√
1+k2

when β < 0. Now with

Substituting (42) in (41) and general solution (3) according to (5), we obtain
solution of (40) as follows:

v2(ξ) =

(
1− dec(ξ+ξ0)

)2(
1 + dec(ξ+ξ0)

)2 ; d > 0, c < 0, (46)

where c = β√
1+k2

when β < 0 or c = − β√
1+k2

when β > 0 and ξ = x − kt.

Using transformation
v = eϕ, (47)

we get solution of (37) as follows:

ϕ2 = ln[

(
1− dec(ξ+ξ0)

)2(
1 + dec(ξ+ξ0)

)2 ], (48)

where c = β√
1+k2

when β < 0 or c = − β√
1+k2

when β > 0.

5 Conclusion

This study shows that the Kudryashov method is quite efficient and practical
and is well suited for use in finding exact solutions for the Liouville and Sinh-
Poisson equations. The reliability of the method and the reduction in the
size of computational domain give this method a wider applicability. In this
paper, the Kudryashov method has been successfully used to obtain some
exact travelling wave solutions for the Liouville and Sinh-Poisson equations.
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دما هم مغناطیسی اتمسفر دقیق های جواب برای معادله ترین ساده روش

۲ جعفری حسین و ۱ کدخدا اله نعمت

ریاضی گروه پایه، علوم دانشکده قائنات، بزرگمهر دانشگاه ۱

کامپیوتر علوم و ریاضی دانشکده مازندران، دانشگاه ۲

١٣٩۴ مرداد ١٠ مقاله پذیرش ،١٣٩۴ خرداد ٢٧ شده اصلاح مقاله دریافت ،١٣٩٣ اسفند ٢٩ مقاله دریافت

است. شده ارائه خطی غیر دیفرانسیل معادلات دقیق های جواب جستجوی برای کودریاشف روش : چکیده
کار به هایپربولیک-پواسون سینویس معادله و لیوویل معادله دقیق جوابهای جستجو برای کودریاشف روش
صورت به گرانشی میدان یک در پلاسما برای مغناطیس هیدرواستاتیک تعادل معادلات است. شده برده
مختصات یک با دما هم مغناطیسی اتمسفر از خانواده یک بررسی اند. گرفته قرار بررسی مورد تحلیلی
در J مدل در شده توزیع جریان است. شده انجام مسطحه هندسه در یکنواخت گرانشی میدان یک به متناظر
معادله یک به تبدیل معادلات این است. شده هدایت باشد می افقی مختصات x آن در که x محور امتداد
وابسته u دلخواه تابع یک به معادله این شوند. می u مغناطیسی برداری پتانسیل برای خطی غیر بیضی

شود. مشخص باید که است

تراولینگ. امواج خطی؛ غیر تکامل معادلات مغناطیسی؛ تعادل کودریاشف؛ روش : کلیدی کلمات
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