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Abstract

In this paper, we demonstrate the existence and uniqueness a semi-

analytical solution of an inverse heat conduction problem (IHCP) in the form

: ut = uxx in the domain D = {(x, t)| 0 < x < 1, 0 < t ≤ T}, u(x, T ) =

f(x), u(0, t) = g(t), and ux(0, t) = p(t), for any 0 ≤ t ≤ T . Some numerical

experiments are given in the final section.
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1 Introduction

The procedure to solve an IHCP is very important in determining unknown tem-

perature histories and heat flux from known values in the body, which are usually
∗E-mail: shidfar@iust.ac.ir
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measured as a function of space and time. Especially, a direct measurement of

the heat flux or temperature in a boundary or initial time of hot body is almost

impossible. Therefore, recent studies of IHCPs have been numerically treated and

extended of multiple dimensions with the help of computing architecture. Some

numerical and theoretical approaches to IHCPs are summarized in [4], [2]. Such

a procedure using an exact solution are given by Burggraf [3]. It has been shown

that, if an error is made in known boundary condition, then there will be some

errors in unknown heat flux of other boundary. A lower bound of this error can

be estimated by 1√
∆t

sinh( 1√
∆t

). These results are consistent with earlier obser-

vation that small values of time ∆t can produce large error in surface flux. In

this paper, we apply a finite difference method of semi-implicit type for ∂u
∂t and

use a parameter θM for driving a stable and convergent solution to the IHCPs.

Now, suppose that for any given t, 0 ≤ t ≤ T, u(x, t) ∈ C4[0, 1] and satisfying

ut(x, t) = uxx(x, t), in D = {(x, t)| 0 < x < 1, 0 < t ≤ T}, (1.1)

u(x, T ) = f(x), 0 ≤ x ≤ 1, (1.2)

u(0, t) = g(t), 0 ≤ t ≤ T, (1.3)

ux(0, t) = p(t), 0 ≤ t ≤ T, (1.4)

ux(1, t) = h(t), 0 ≤ t ≤ T, (1.5)

u(x, 0) = φ(x), 0 ≤ x ≤ 1, (1.6)

where f(x), g(t), and p(t) are piecewise-continuous known functions, T is a

given positive constant number and h(t), φ(x), and u(x, t) are unknown func-

tions, which remain to be determined.

In the next section, we discrete the variable t and reduce (1.1) − (1.4) to a

system of linear, nonhomogenous second order differential equations. Stability

and convergency of this method is studied in section 3. Some numerical result

and discussion are given in section 4.
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2 A Numerical Solution

In this section, we discrete the variable t to approximate the solution of (1.1)−

(1.4).

Let M ∈ N, ∆tM = T
M , and ti = i∆t, for i = 0, 1, ..., M . For the solution

u, we define ui(x) = u(x, ti), for i = 0, 1, ..., M . Similarly for a given sequence

of functions {ui(x)| i = 0, 1, ..., M} we use ûi(x) instead of the approximate of

ui(x). Putting
ûi+1(x) = ûi(x) + (θM

∂û(x, ti)
∂t

− (θM − 1)
∂û(x, ti+1)

∂t
)∆tM , (2.1)

for θM ≥ 0, then by using (2.1) into (1.1) − (1.4) we obtain a system of linear

nonhomogenous second order differential equations with given initial conditions

in the form

θM∆tM û′′i (x) + ûi(x) = ûi+1(x) + (θM − 1)∆tM û′′i+1(x), (2.2)

ûi(0) = g(ti) = gi, (2.3)

û′i(0) = p(ti) = pi, (2.4)

for i = 0, 1, ..., M − 1, where û0(x) (0 < x ≤ 1) and ûi(1), i = 0, 1, ..., M − 1

are unknown.

Clearly ûM (x) = uM (x) = f(x). Using these assumptions, the problem (2.2)−

(2.4) has a solution of the following form

ûi(x) = gi cos
x√

θM∆tM
+

û′i(1)− V̂ ′
i (1)

Ŵ ′
i (1)

pi sin
x√

θM∆tM
+ Fi(x), (2.5)

for i = 0, 1, ..., M − 1, where

Fi(x) =
1

θM

√
θM∆tM

∫ x

0
ûi+1(s) sin

x− s√
θM∆tM

ds

− θM − 1
θM

√
∆tM pi+1 sin

x√
θM∆tM

+
θM − 1

θM
ûi+1(x)

− θM − 1
θM

gi+1 cos
x√

θM∆tM
, i = 0, 1, ..., M − 1, (2.6)

V̂i and Ŵi are the solutions of the following problems, respectively,

θM∆tM V̂ ′′
i (x) + V̂i(x) = ûi+1(x) + (θM − 1)∆tM û′′i+1(x),
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V̂i(0) = gi,

V̂ ′
i (0) = pi, i = 0, 1, ..., M − 1, (2.7)

and

θM∆tMŴ ′′
i (x) + Ŵi(x) = 0,

Ŵi(0) = 0,

Ŵ ′
i (0) = 1, i = 0, 1, ..., M − 1. (2.8)

Clearly, the heat flux ûx(1, ti) may be obtained from (2.6) of the form

ûx(1, ti) = pi Ŵ ′
i (1) + V̂ ′

i (1), i = 0, 1, ..., M − 1. (2.9)

Now, for each n ∈ N, if θM∆tM 6= (nπ)−2 and f ′′(x) is a piecewise-continuous

function in [0, 1], then the system of solutions (2.5) are unique [1].

The above result may be summarized in the following statement.

Theorem 2.1. If, for each n ∈N, θM∆tM 6= (nπ)−2, and f ′′ is a piecewise-

continuous function in [0, 1], then the system of differential equations (2.2)-(2.4)

has a unique solution.

Proof. See the analysis preceding the of above theorem.

3 Stability and convergency of solution

In the next theorem, the convergency of the solution (2.5) to the unique solution

will be shown.

Theorem 3.1. If θM , ∆tMand f satisfy the assumptions of Theorem 2.1 and

|∂
2u(x,t)
∂t2

| ≤ C < ∞ for any t ∈ [0, 1], where C is a positive constant number and

θM = βM∆t−αM such that βM > 0, 1 + ln(2βM )
ln(∆tM ) ≤ αM ≤ 1 for any M ≥ 3, then

the solution of the system (2.2)-(2.4) is convergent to the unique solution of the

problem (1.1)-(1.4), for any 0 ≤ x ≤ 1.

Proof. For all i = 0, 1, ..., M − 1, we have

θM∆tM u′′i (x) + ui(x) = ui+1(x) + (θM − 1)∆tM u′′i+1(x)
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− 1
2
∆t2M (θ2

M

∂2u(x, ξi)
∂t2

− (θM − 1)2
∂2u(x, ηi)

∂t2
), (3.1)

where ti < ξi < ti + θM∆tM and ti+1 < ηi < ti+1 + (θM − 1)∆tM .

Now, if we put

ei(x) = ûi(x)− ui(x) for i = 0, 1, ..., M, (3.2)

then ei(x) satisfies.

θM∆tM e′′i (x) + ei(x) = ei+1(x) + (θM − 1)∆tM e′′i+1(x)

− 1
2
∆t2M (θ2

M

∂2u(x, ξi)
∂t2

− (θM − 1)2
∂2u(x, ηi)

∂t2
), (3.3)

and ei(0) = e′i(0) = 0, from which, we conclude that

ei(x) =
1

θM

√
θM∆tM

∫ x

0
ei+1(s) sin

x− s√
θM∆tM

ds +
θM − 1

θM
ei+1(x)

− 1
2
θ
−1/2
M ∆t

3/2
M

∫ x

0
(θ2

M

∂2u(s, ξi)
∂t2

− (θM − 1)2
∂2u(s, ηi)

∂t2
) sin

x− s√
θM∆tM

ds

= Ii,1(x) + Ii,2(x) + Ii,3(x), i = 0, 1, ..., M − 1. (3.4)

Clearly, the integrand in Ii,3(x) denotes the truncation error and the other

terms Ii,1(x) and Ii,2(x) show that, errors of initial and boundary data for the

problem (1.1) how to propagate. In remaining of the proof, we consider two cases:

Case I. If

ei(0) = e′i(0) = 0, i = 0, 1, ..., M − 1,

eM (x) = 0, 0 < x < 1, (3.5)

then clearly one may conclude that

|Ii,3(x)| ≤ C(θM∆tM )3/2, for i = 0, 1, ..., M − 1, (3.6)

where C is defined in Theorem 2.2. Thus, eM−1(x) = IM−1,3(x) and one may

show that

|eM−i(x)| ≤ (
1
2
θ−2
M ∆t−1

M + 1− θ−1
M )|eM−i−1(x)|+ IM−i,3(x)
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=
i−1∑
k=0

(1− θ−1
M +

1
2
θ−2
M ∆t−1

M )k|IM−i−k,3(x)|

≤ C(θM∆tM )(3/2)
i−1∑
k=0

(
1
2
θ−2
M ∆t−1

M + 1− θ−1
M )k, i = 1, 2, ..., M. (3.7)

Clearly, for any fixed value θM , limit |eM−i(x)| will not be zero, when ∆tM

is vanished, which implies the divergency of the solution. If we choose θM =

βM∆t−αM
M for 0 < αM ≤ 1 and βM ≥ 0, then for each M ≥ 3, and αM which

satisfies in the following inequality

1 +
ln(2βM )
ln∆tM

≤ αM ≤ 1,

we obtain that

|eM−i(x)| ≤ C1β
3/2
M ∆t

3/2(1−αM )
M , (3.8)

where

C1 = C

i−1∑
k=0

(1− θ−1
M +

1
2
θ−2
M ∆t−1

M )k.

Consequently, if ∆tM tends to zero, then |eM−i(x)| is vanished and ûi(x) for

i = 1, 2, ..., M , convergences to the exact unique solution of the problem (1.1)-

(1.4).

Case 2. In this case, let us suppose

ĝi = gi + εi,1,

p̂i = pi + εi,2, for i = 0, 1, ..., M − 1,

and f̂(x) = f(x) + ε(x), then by using (2.5), (2.6), (2.7) and (2.8), we obtain

ei(x) = εi,1 cos
x√

θM∆tM
+ εi,2

√
θM∆tM sin

x√
θM∆tM

+
1

θM

√
θM∆tM

∫ x

0
ei+1(s) sin

x− s√
θM∆tM

ds

− θM − 1
θM

√
∆tM εi+1,2 sin

x√
θM∆tM

− θM − 1
θM

√
∆tM εi+1,1 cos

x√
θM∆tM

+ Ii,3(x), (3.9)
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where ei(x) is a global error for i = 0, 1, ..., M , and eM (x) = ε(x).

Now if |ε(x)|, |εi,1|, and |εi,2| tend to zero for each i = 0, 1, ..., M , then

|eM−i(x)| ≤
i−1∑
k=0

(1− θ−1
M +

1
2
θ−2
M ∆t−1

M )k |IM−i+k,3(x)|,

and

|IM−i+k,3(x)| ≤ Cβ
3/2
M ∆t

3/2(1−αM )
M → 0.

Finally, |eM−i(x)| vanishes for all i = 0, 1, ..., M. �

4 Numerical Examples

In this section we will present simulated cases to evaluate the capability of the

proposed robust input estimation scheme.

Example 4.1. Assume that

f(x) = x2 + 2,

g(t) = 2t,

p(t) = 2,

T = 1.

Obviously, u(x, t) = x2 + 2t is an exact solution of the problem. Now, we use

our numerical method to this problem. For x = 1, ∆tM = 0.02, αM = 0.8, and

βM = 0.9, the result are given in the following table.

t û(1, t) u(1, t) |u(1,t)−û(1,t)|
|u(1,t)| ux(1, t) ûx(1, t) |ux(1,t)−ûx(1,t)|

|ux(1,t)|

0 0.993614 1 0.0063 2 1.98329 0.0083

0.2 1.38377 1.4 0.019 2 1.96382 0.018

0.4 1.77821 1.8 0.012 2 1.95272 0.023

0.6 2.1803 2.2 0.0089 2 1.95764 0.021

0.8 2.58875 2.6 0.0043 2 1.97603 0.011

Table 1. Exact and estimate of the temperature and heat flux

in the above problem
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One can see from the data in table 1, the relation errors generated through the

computation show that the approximate and the exact solutions are vanished.

Example 4.2. Suppose that

f(x) = x3 + 6x,

g(t) = 0,

p(t) = 6t,

T = 1.

Clearly, the exact solution to this problem is u(x, t) = x3 + 6xt.

Now, for x = 1, ∆tM = 1
30 , αM = 0.9, and βM = 5, we obtain the following

result given in table 2.

t û(1, t) u(1, t) |u(1,t)−û(1,t)|
|u(1,t)| ux(1, t) ûx(1, t) |ux(1,t)−ûx(1,t)|

|ux(1,t)|

0 0.992943 1 0.007 3 2.9757 0.008

0.2 2.17963 2.2 0.009 4.2 4.13599 0.001

0.4 3.37199 3.4 0.008 5.4 5.31314 0.001

0.6 4.57445 4.6 0.005 6.6 6.52107 0.001

0.8 5.7853 5.8 0.002 7.8 7.75477 0.005

Table 2. Exact and estimate of the temperature and heat flux

in Example 4.2
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