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Abstract

Certain algebraic invariants of the integral group ring ZG of a group G

were introduced and investigated in relation to the problem of extending

the Farrell-Tate cohomology, which is defined for the class of groups of finite

virtual cohomological dimension. It turns out that the finiteness of these

invariants of a group G implies the existence of a generalized Farrell-Tate

cohomology for G which is computed via complete resolutions.

In this article we present these algebraic invariants and their basic prop-

erties and discuss their relationship to the generalized Farrell-Tate cohomol-

ogy. In addition we present the status of conjecture which claims that the

finiteness of these invariants of a group G is equivalent to the existence of a

finite dimensional model for EG, the classifying space for proper actions.
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1 Introduction

In their efforts to generalize the Farrell-Tate cohomology, which was defined for

the class of groups of finite virtual cohomological dimension, Ikenaga in [12] and

Gedrich and Gruenberg in [10] considered certain algebraic invariants of a group

and showed that if these were finite then generalized Tate cohomology is defined

for the group.

In particular, Ikenaga defined the generalized cohomological dimension of a

group G, cdG, to be

cd G = sup{k : Extk
ZG(M,F ) 6= 0, M Z-free, F ZG-free}

and showed that if G admits a complete resolution and cdG < ∞ then generalized

Tate cohomology is defined for G.

A complete resolution of G is an acyclic complex {Pk}k∈Z of projective ZG-

modules which agree with an ordinary projective resolution of G in sufficiently

high (positive) dimensions.

Gedrich and Gruenberg considered the supremum of the projective lengths

of injective ZG-modules, spli ZG, and the supremum of the injective lengths of

projective ZG-modules, silp ZG. Then showed that if spli ZG < ∞ then G admits

a complete resolution and moreover silp ZG < ∞ which implies that any two

complete resolutions are homotopy equivalent, so generalized Tate cohomology is

defined for G.

Note that silp ZG and cd G are closely related, namely cdG ≤ silp ZG ≤

1 + cdG.

Mislin in [19] generalized these ideas and defined generalized Tate cohomol-

ogy, Ĥn(G,−), for any group G and any integer n as follows: Ĥn(G,−) =

lim−→
j≥0

S−jHn+j(G,−) where S−jHn+j(G,−) denotes the jth left satellite of the

functor Hn+j(G,−). Alternative but equivalent definitions were also given by

Benson and Carlson [1] and Vogel (see [11]).

Note that the generalized Tate cohomology can not always be calculated via
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complete resolutions as they do not always exist. It turns out that the general-

ized Tate cohomology can be calculated via complete resolutions if and only if

spli ZG < ∞ [24].

This article is a survey on the algebraic invariants of G that appeared in the

search for the definition of generalized Tate cohomology for G.

We first discuss their basic properties and interrelations.

We then discuss the state of a conjecture (Conj. A in [26]) which claims that

the finiteness of the above algebraic invariants, which imply that the generalized

Tate cohomology can be calculated via complete resolutions, is the algebraic

characterization of those groups G which admit a finite dimensional model for

EG, the classifying space for proper actions of G.

2 spli ZG

First we will establish some notation.

Let G be a group, H ≤ G and i : ZH → ZG the ring homomorphism induced

from H ↪→ G. Then the ring homomorphism i gives rise to the following functors:

1. r : ZGMod → ZHMod, where any (left) ZG-module can be regarded as a

ZH-module via i. If M ∈ ZGMod, then we denote r(M) by M |H .

2. e : ZHMod → ZGMod

N → ZG ⊗
ZH

N , where the left ZG-action on ZG ⊗
ZH

N is inherited

from the (ZG, ZH)-bimodule structure of ZG.

The module e(N) = ZG ⊗
ZH

N is called induced and we denote it by
↘
ZG ⊗

ZH
N .

3. c : ZHMod → ZGMod

N → HomZH(ZG, N), where the left ZG-action on HomZH(ZG, N)

is inherited from the (ZH, ZG)-bimodule structure of ZG.

The (left) ZG-module c(N) = HomZH(ZG, N) is called co-induced and we

denote it by HomZH(Z
↙
G, N).

Let now G be a group and A,B ∈ ZGMod.

We denote by HomZ(
↘
A,

↘
B) (resp.

↘
A ⊗

Z

↘
B) the (left) ZG-module HomZ(A,B)



4 Olympia Talelli

(resp. A ⊗
Z

B) with the diagonal action (gf)(α) = gf(g−1α), g ∈ G, f ∈

HomZ(A,B), α ∈ A (resp. g(α⊗ β) = gα⊗ gβ, g ∈ G, α ∈ A, β ∈ B).

The following Proposition states the well-known relation between the diagonal

action and the induced and co-induced actions. The Corollary after it, states some

of the Proposition’s well-known consequences.

We state both without proofs.

Proposition 2.1. Let G be a group, H ≤ G and M ∈ ZGMod. If Z(G/H) is

the permutation module, where G/H is the set of cosets gH and G acts on G/H

by left translations then

(i) Z(G
↘
/H)⊗

Z

↘
M ∼=

↘
ZG ⊗

ZH
M/H

(ii) HomZ

(
Z
↘
( G/H),

↘
M

)
∼= HomZH(Z

↙
G, M |H).

Corollary 2.2. Let A ∈ ZGMod with proj.dimZG A ≤ m. Then

(i) If B ∈ ZGMod with B Z-free then proj.dimZG

↘
A ⊗

Z

↘
B ≤ m;

(ii) If B ∈ ZGMod with B Z-injective then inj.dim HomZ(
↘
A,

↘
B) ≤ m.

The following proposition and theorem state some basic properties of spli ZG

[10].

Spli ZG is the supremum of the projective lengths of the injective ZG-modules.

It is not difficult to see that spli ZG < ∞ iff every injective ZG-module has finite

projective dimension.

Proposition 2.3.

(i) If G is a finite group then spli ZG = 1

(ii) If G is a group with cdZG = n then spli ZG ≤ n + 1

(iii) Let G be a group and H ≤ G. If I is an injective ZG-module then I|H is

an injective ZH-module. Moreover spli ZH ≤ spli ZG
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(iv) If H ≤ G and | G : H |< ∞, then spli ZG = spli ZH.

Proof.

(i) If I is an injective ZG-module, with G finite, then I is cohomologically

trivial [e.g. [2]] and hence proj.dim I ≤ 1 and since I is not Z-free it follows

that proj.dim I = 1.

(ii) Since cdZG = n we have that proj.dimZG Z = n hence by Corollary 2.2 (i),

for any ZG-module A with A Z-free we have that proj.dimZG A ≤ n.

Now if M is any ZG-module and one takes a projective presentation of M

0−→K−→P−→M−→0

then K, being a submodule of P , is Z-free. Hence proj.dimZG K ≤ n and

since P is projective, it follows that proj.dimZG M ≤ n + 1. In particular

if I is an injective ZG-module then proj.dimZG I ≤ n + 1.

(iii) If I is an injective ZG-module, then I|H is an injective ZH-module since

HomZG

(↘
ZG ⊗

ZH
−, I

)
∼= HomZH(−, I|H)

and
↘
ZG ⊗

ZH
− is an exact functor: ZHMod → ZGMod.

Now if K is an injective ZH-module, then K is a ZH-direct summand of

the injective ZG-module HomZH(Z
↙
G, K). Hence

proj.dimZH K ≤ proj.dimZH HomZH(Z
↙
G, K)|H ≤ proj.dimZG HomZH(Z

↙
G, K)

, which implies that spli ZH ≤ spli ZG.

(iv) Let | G : H |< ∞ and let spliZH = m. By (iii), to show that spli ZG = m, it

is enough to prove that every injective ZG-module has projective dimension

≤ m.
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Let I be an injective ZG-module, then by (iii) I|H is an injective ZH-module

and since spli ZH = m, there is a ZH-projective resolution

0−→Pm−→· · ·−→P0−→I|H−→0,

which implies that proj.dimZG

↘
ZG ⊗

ZH
I|H ≤ m.

Since | G : H |< ∞, it follows that

↘
ZG ⊗

ZH
I|H ∼= HomZH(Z

↙
G, I|H).

But I is a ZG-direct summand of HomZH(Z
↙
G, I|H), hence proj.dimZG I ≤

m.

We will show that spli ZG < ∞ is an extension closed property.

For this we need the following lemma.

Lemma 2.4. Let G be a group and J = HomZ(Z
↙
G, Z). Then

(i) inj.dimZG J ≤ 1;

(ii) if spli ZG = m then proj.dimZG J ≤ m;

(iii) spli ZG < ∞ iff proj.dimZG J < ∞.

Proof. The exact sequence of abelian groups 0 → Z → Q → Q/Z gives rise to

the following exact sequence of ZG-modules

0−→HomZ(Z
↙
G, Z)−→HomZ(Z

↙
G, Q)−→HomZ(Z

↙
G, Q/Z)

from which follows (i) and (ii), since HomZ(Z
↙
G, Q) and HomZ(Z

↙
G, Q/Z) are

injective ZG-modules.

Now let proj.dimZG J < ∞. We will show that every injective ZG-module I

has finite projective dimension.
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From the Z-split ZG-exact sequence 0 → IG → ZG
ε→ Z → 0, where ε is the

augmentation map, we obtain the Z-split ZG-exact sequence

0 → Z → J → HomZ(
↘
I G,

↘
Z) → 0, which gives rise to the ZG-exact sequence 0 →

I →
↘
I ⊗

↘
J →

↘
I ⊗C → 0, where C = HomZ(

↘
I G,

↘
Z). Note that HomZ(Z

↙
G, Z) ∼=

HomZ(
↘
ZG,

↘
Z). Since I is a ZG-direct summand of

↘
I ⊗

↘
J it is enough to show

that proj.dimZG

↘
I ⊗

↘
J < ∞.

Let 0 → K → P → I → 0 be a ZG-projective presentation of I. Since J is

Z-torsion-free we obtain the following ZG-exact sequence

0−→
↘
K ⊗

Z

↘
J−→

↘
P ⊗

Z

↘
J−→

↘
I ⊗

Z

↘
J−→0.

Since proj.dimZG J < ∞ and P , K are Z-free it follows from Corollary 2.2 (i)

that proj.dimZG

↘
K ⊗

Z

↘
J < ∞ and proj.dim

↘
P ⊗

Z

↘
J < ∞, hence

proj.dimZG

↘
I ⊗

Z

↘
J < ∞.

It is clear from the proof of (iii) of the above lemma that we have

Corollary 2.5. spli ZG < ∞ iff there is a Z-split, ZG-monomorphism

0 → Z → M with proj.dim M < ∞ and M Z-torsion free.

Theorem 2.6. [10] Let 1 → N → G
π→ K → 1 be an extension of groups. Then

spli ZG ≤ spli ZN + spli ZK.

Proof. Let spli ZN = n and spli ZK = m and let I be an injective ZG-module.

We will show that proj.dimZG I ≤ n + m.

We consider the Z-split ZK-exact sequence

0−→Z−→HomZ(Z
↙
K, Z)−→HomZ(IK, Z)−→0

as a ZG-exact sequence via π : G → K and tensoring it with I, we obtain the

following ZG-exact sequence

0−→I−→I ⊗HomZ(Z
↙
K, Z).
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Since I is a ZG-direct summand of
↘
I ⊗HomZ(Z

↙
K, Z) it is enough to show that

proj.dimZG I ⊗
Z

J ≤ n + m, where J is the ZG-module HomZ(Z
↙
K, Z).

Now by Lemma 2.4 (ii), proj.dimZK J ≤ m and since spli ZN = n it follows

that proj.dimZN I|N ≤ n.

Hence there exists Q : 0 → Qm → · · · → Q0 → J → 0 a ZK-projective

resolution of J of length m and P : 0 → Pn → · · · → P0 → I → 0 a ZG-

exact sequence with Pi ZG-projective modules for all 0 ≤ i ≤ n − 1 and Pn|N a

projective ZN -module.

Consider the following ZG-complexes Q′ : 0 → Qm → · · · → Q0 → 0, a ZG-

complex via π : G → K and

P ′ : 0 → Pn → · · · → P0 → 0 and let Q′ ⊗
Z

P ′ be their tensor product.

Since J is Z-torsion free it follows from the Künneth formula that we obtain

a ZG-exact sequence 0 → Bm+n → · · · → B0 →
↘
I ⊗

Z

↘
J → 0, where

Bλ =
(

Q′ ⊗
Z

P ′
)

λ

= ⊕
r+s=λ

↘
Qr ⊗

Z

↘
P s.

By Proposition 2.1 (i), Bλ is a projective ZG-module for 0 ≤ λ ≤ m+1. Since

Ps|N is a projective ZN -module for all s, we obtain a ZG-projective resolution

of
↘
I ⊗

Z

↘
J of length m + n.

3 spli ZG, silp ZG, fin. dim ZG, K(ZG)

Silp ZG = sup{inj.dimZG P |Pproj.ZG-module} and it is not difficult to see that

silp ZG < ∞ iff every projective ZG-module has finite injective dimension.

Note that silp ZG ≤ m is equivalent to the following extension condition [12]:

For every exact sequence

0−→ ker ∂m−→Pm
∂m−−→ Pm−1−→· · ·−→P0−→M−→0

with Pi projective ZG-modules for 0 ≤ i ≤ m, any map ker ∂m → P , P a

projective ZG-module, extends to a map Pm → P .
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It is not difficult to see that if silp ZG and spli ZG are both finite then they

are equal.

The following Proposition, which we state without proof, gives some basic

properties of silp ZG.

Proposition 3.1.

(i) If G is a finite group, then silp ZG = 1.

(ii) If G is a group with cdZG = n then silp ZG ≤ n + 1.

(iii) If G is a group and H ≤ G then silp ZH ≤ silp ZG.

Moreover, if |G : H| < ∞ then silp ZG = silp ZH.

Theorem 3.2. [10] For any group G, silp ZG ≤ spli ZG.

Proof. It is enough to show that if spli ZG < ∞ then silp ZG < ∞. By Lemma

2.4 (iii), it is enough to show that if proj.dimZG J < ∞ then silp ZG < ∞, where

J = HomZ(Z
↙
G, Z).

Let proj.dimZG J < ∞ and consider a projective ZG-module P . The exact

sequence 0 → Z → Q → Q/Z → 0 gives rise to the following ZG-exact sequence

0−→P−→P ⊗
Z

Q−→P ⊗
Z

Q/Z−→0.

Hence to show that inj.dimZG P is finite, it is enough to show that inj.dim P ⊗
Z

D

is finite, where D is a Z-injective abelian group.

Let P̃ = P ⊗
Z

D, where D is a divisible abelian group, then P̃ is a direct

summand of an induced module hence it is relative projective i.e. if

0−→A−→B−→P̃−→0 (∗)

is an exact sequence of ZG-modules which is Z-split, then (∗) is ZG-split.

Consider the Z-split ZG-exact sequence 0 → Z → J → C → 0 where C =

HomZ(
↘
JG,

↘
Z). This gives rise to the following Z-split, ZG-exact sequence

0−→HomZ(
↘
C,

↘
P̃ )−→HomZ(

↘
J ,

↘
P̃ )−→HomZ(

↘
Z,

↘
P̃ )−→0.
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But HomZ(
↘
Z,

↘
P̃ ) ∼= P̃ , hence P̃ is a ZG-direct summand of HomZ(

↘
J ,

↘
P̃ ).

Since proj.dimZG J < ∞ it follows from Corollary 2.2 (ii) that

inj.dimZG HomZ(
↘
J ,

↘
P̃ ) < ∞.

Open questions 3.3.

a) It is not known if silp ZG < ∞ is an extension closed property.

b) It is not known if there is a group G such that silp ZG < ∞ and spli ZG

infinite.

c) It is conjectured in [6] that for any group G, silp ZG = cdG + 1 = spli ZG.

This is proved in [6] for certain classes of groups.

Two more algebraic invariant of G, the finiteness dimensions of ZG, and k(G)

are related to spli ZG, and spli ZG. The finiteness dimension of ZG, fin.dim ZG,

which is the supremum of the projective dimensions of the ZG-modules of finite

projective dimension and

k(G) = sup{proj.dimZG M |proj.dimZH M < ∞ for every finite subgroup H ≤ G}.

Proposition 3.4. [26] Let G be any group, then

fin.dim ZG ≤ silp ZG ≤ spli ZG ≤ k(ZG).

Moreover, if any of the above invariants is finite then it is equal to the ones less

than equal to it.

Proof. It is easy to see that fin.dim ZG ≤ silp ZGZG and by Theorem 3.2,

silp ZG ≤ spli ZG. Now by Proposition 2.3 (i) and (iii) it follows that spli ZG ≤

k(G).

Now if k(G) < ∞ then clearly k(G) ≤ fin.dim ZG, hence

fin.dim ZG = silp ZG = spli ZG = k(ZG).
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In [4], it was shown that if G is an HF-group then silp ZG = spli ZG = fin.dim ZG =

k(ZG).

The class HF of groups was defined by Kropholler in [14] as follows. Let H0F

be the class of finite groups. Now define HαF for each ordinal α by transfinite

recursion: if α is a successor ordinal then HαF is the class of groups G which

admits a finite dimensional contractible G-CW -complex with cell stabilizers in

Hα−1F , and if α is a limit ordinal then HαF =
⋃

β<α

HβF . A group belongs to

HF if it belongs to HαF , for some ordinal α.

Note that a G-CW -complex is a CW -complex on which G acts by self-

homeomorphisms in such a way that the set-wise stabilizer of each cell coincides

with its point-wise stabilizer.

The class HF contains among others all groups of finite virtual cohomological

dimension and all countable linear groups of arbitrary characteristic. Moreover,

it is extension closed, subgroup closed, closed under directed unions and closed

under amalgamated free products and HNN -extensions.

4 Another characterization of spli ZG < ∞

Definition. A complete resolution for a group , (F ,P, n), consists of an acyclic

complex F = {(Fi, ∂i)|i ∈ Z} of projective modules and a projective resolution

P = {(Pi, di)|i ≤ 0} of G such that F and P coincide in sufficiently high dimen-

sions

· · · −→Fn+1−→Fn
∂n−−→ Fn−1−→· · ·−→F0−→F−1−→F−2−→· · ·∥∥∥ ∥∥∥

· · · −→Pn+1−→Pn
dn−−→ Pn−1−→· · ·−→P0−→Z−→0

The number n is called the coincidence index of the complete resolution.

Inekaga in [12] defined the notion of generalized cohomological dimension of

a group G, cdG = sup{k : Extk
ZG(M,F ) 6= 0, M Z-free, F ZG-free}.
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Note that cdG ≤ silp ZG ≤ cd G + 1.

He showed in [12] that if G admits a complete resolution then G admits a

complete resolution of coincidence index cdG. In particular a group G with

vcd G < ∞ admits a complete resolution of coincidence index vcd G.

Moreover, it was shown in [12] that if a group G admits a complete resolution

of coincidence index n, then

(i) H i(G, P ) 6= 0 for some ZG-projective module P and some i ≤ n

(ii) fin.dim ZG ≤ n + 1.

Since admitting a complete resolution is a subgroup closed property, and since

if A is a free abelian group of infinite rank, H i(A, P ) = 0 for any projective ZA-

module and any i, it follows from (i) that if a group G contains a free abelian

subgroup of infinite rank then G does not admit a complete resolution.

Proposition 4.1. [24] If spli ZG < ∞ then there is a Z-split ZG-exact sequence

0 → Z → A with A Z-free and proj.dimZG A < ∞.

Proof. It was shown in [24] that if spli ZG < ∞ then G admits a complete reso-

lution.

Now consider a complete resolution for G

−→Fn+1
∂n+1−−−→ Fn

∂n−−→ Fn−1−→· · ·−→F0−→F−1−→· · ·∥∥∥ ∥∥∥
−→Pn+1

dn+1−−−→ Pn
dn−−→ Pn−1−→· · ·−→P0−→Z−→0

Let Rn = im∂n, n ∈ Z. If λ : Rn → P is a ZG-homomorphism with P a projective

ZG-module, then by Theorem 3.2 silp ZG < ∞ hence there is a positive integer

m0 and an integer m so that λ represents the zero element in Extm0
ZG(Rm, P ).

Hence we obtain the following commutative diagram

· · · −→Fn+1−→Fn−→Fn−1−→Fn−2−→· · ·−→F1−→F0−→F−1
↘ ↗

R0

−→

∥∥∥ ∥∥∥ yfn−1

yfn−2

yf1

yf0

yf
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· · · −→Fn+1−→Fn−→Pn−1−→Pn−2−→· · ·−→P1−→P0−→Z

where R0 = im ∂0.

Clearly [f ] ∈ ExtZG(R−1, Z) and Yoneda product with [f ] induces an iso-

morphism: Exti
ZG(Z,−) → Exti+1

ZG (R−1,−). This implies (c.f. [27]) that [f ] is

represented by an extension 0 → Z → A → R−1 → 0 with proj.dimZG A < ∞.

The result now follows since R−1 is Z-free as a ZG-submodule of a projective

ZG-module.

Theorem 4.2. [24] The following statements are equivalent for any group G.

(i) spli ZG < ∞;

(ii) There is a Z-split ZG-exact sequence 0 → Z → A with A Z-free and

proj.dimZG A < ∞.

Proof. (i)⇒(ii) is Proposition 4.1.

For (ii)⇒(i). Let I be an injective ZG-module and consider a ZG-projective

presentation of I

0−→K−→P−→I−→0.

Since A is Z-free we obtain the following ZG-exact sequence

0−→
↘
K ⊗

Z

↘
A−→

↘
P ⊗

Z

↘
A−→

↘
I ⊗

Z

↘
A−→0.

By Corollary 2.2 (i), proj.dimZG

↘
K ⊗

Z

↘
A < ∞ and proj.dimZG

↘
P ⊗

Z

↘
A < ∞ hence

proj.dimZG

↘
I ⊗

Z

↘
A < ∞, but tensoring 0 → Z → A with I we obtain that I is a

ZG-direct summand of
↘
I ⊗

Z

↘
A, and the result follows.

The following proposition states some of the properties of such a module A.

Proposition 4.3. [26] Let G be a group and let 0 → Z → A be a Z-split, ZG-

exact sequence with A Z-free and proj.dim A = n. Then

(i) If proj.dimZG M < ∞ and M is Z-free then proj.dimZG M ≤ n
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(ii) spli ZG ≤ n + 1

(iii) For any finite subgroup H of G, A|H is a projective ZH-module.

Proof. (i) Consider the ZG-exact sequence 0 → Z → A → Ā → 0. Clearly Ā is

Z-free.

Now let proj.dimZG M = m. By Corollary 2.2 (i) we have that

proj.dimZG

↘
M ⊗

↘
A ≤ n, m and proj.dimZG

↘
M ⊗

↘
Ā ≤ m. It now follows from the

long exact Ext-sequence associated to

0−→M−→
↘
M ⊗

Z

↘
A−→

↘
M ⊗

Z

↘
Ā−→0

that if proj.dimZG M > n then proj.dimZG M ⊗ Ā ≥ m + 1, which is a contra-

diction and hence proj.dimZG M ≤ n.

(ii) Let I be an injective ZG-module and 0 → K → P → I → 0 a ZG-

projective presentation of I. By Theorem 4.2 spli ZG < ∞ hence

proj.dimZG K < ∞ and by (i) proj.dimZG K ≤ n which implies that

proj.dimZG I ≤ n + 1.

(iii) Since A|H is Z-free and has proj.dimZH A < ∞ it follows that A is a

projective ZH-module (c.f. [2], Ch. VI).

Theorem 4.4. spli ZG < ∞ is a Weyl-group closed property i.e. if spli ZG < ∞

and H is a finite subgroup of G then spli Z(NG(H)/H) < ∞.

Proof. Assume that spli ZG < ∞ and let H be a finite subgroup of G. Let

N = NG(A), then by Proposition 2.3 (iii) spli ZN < ∞ hence by Theorem 4.2

there is a Z-split ZN -exact sequence

0−→Z−→A (∗)

with A Z-free and proj.dimZN A = n.

Consider a ZN -projective resolution of A of length n

0−→Pn−→Pn−1−→· · ·−→P0−→A−→0. (∗′)



Algebraic characterizations for finiteness of . . . 15

Since A|H is a projective ZH-module, (∗′) gives rise to the following Z(N/H)-

exact sequence

0−→PH
n −→PH

n−1−→· · ·−→PH
0 −→AH−→0.

It is not difficult to see that PH
i are projective Z(N/H)-modules since ZNH ∼=

Z(N/H) as Z(N/H)-modules, hence proj.dimZ(N/H) AH ≤ n.

Moreover, (∗) gives rise to the Z-split and Z(N/H)-exact sequence 0 → Z →

AH . Hence by Theorem 4.2 spli Z(N/H) < ∞.

5 The classes of groups H1F and EG

A group G belongs to H1F if there is a finite dimensional contractible G-CW -

complex with finite cell stabilizers.

By a theorem of Serre (see also Exercise in [2], p. 191) it follows that H1F

contains all groups of finite virtual cohomological dimension.

It also contains infinite torsion groups, for example a countable locally finite

group G is in H1F , since G acts on a tree with finite vertex stabilizers. It was

proved in [5] that if G is a locally finite group of cardinality less than Nw then

G is in H1F .

For sufficiently large e it is known [13] that the free Burnside groups of expo-

nent e admit actions on contractible 2-dimensional complexes with cyclic stabi-

lizers, hence these groups are in H1F .

If G is in H1F and X is a finite dimensional contractible G-CW -complex with

finite cell stabilizers, then the argumented cellular chain complex of X gives rise

to the following ZG-exact sequence

0−→ ⊗
in∈In

Z(G/Gin)−→· · ·−→ ⊗
i0∈I0

Z(G/Gi0)−→Z−→0

with Gij finite for all ij .

So if G is in H1F and G is torsion free then cdZG < ∞.

In particular a free abelian group of infinite rank is not in H1F .
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Proposition 5.1. If G is in H1F then

fin.dim ZG = silp ZG = spli ZG = k(ZG) < ∞.

Proof. Since G is in H1F , there is a ZG-exact sequence

0−→ ⊗
in∈In

Z(G/Gin)−→· · ·−→ ⊗
i0∈I0

Z(G/Gi0)−→Z−→0

with Gij finite subgroups of G for all ij .

If M is a ZG-module such that proj.dimZH M |H < ∞ for every finite sub-

group H of G, and 0 → K → P → M → 0 is a ZG-projective presentation of M

then K|H is a projective ZH-module for every finite subgroup H of G.

Hence if we tensor (∗) with K we obtain the following ZG-exact sequence

0−→ ⊗
in∈In

Z(
↘
G/Gin)⊗

Z

↘
K−→· · ·−→ ⊗

i0∈I0
Z(
↘
G/Gi0)⊗Z

↘
K−→K−→0

which by Proposition 2.1 (i), is a ZG-projective resolution of K, since K|H is a

projective ZH-module for every finite subgroup H of G.

Hence proj.dimZG K ≤ n which implies that k(ZG) ≤ n. The result now

follows from Proposition 3.4.

In [15] Kropholler and Mislin proved

Theorem A. Every HF-group of type FP∞ is in H1F .

A group G is said to be of type FP∞ if there is a ZG-projective resolution of

G

· · · −→Pn−→Pn−1−→· · ·−→P0−→Z−→0

with Pi finitely generated ZG-modules for all i ≥ 0.

Notation. If X is a class of groups, we denote by Xb the subclass of X consisting

of those groups in X , for which there is a bound on the orders of the finite

subgroups.

To prove Theorem A, they first considered the following two properties of

HF-groups of type FP∞, which were both shown using complete cohomology.
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• If G is an HF-group of type FP∞ then G is in HFb.

In particular, if |Λ(G)| is the G-simplicial complex determined by the poset

of the non-trivial finite subgroups of G, then dim |Λ(G)| < ∞.

• If G is an HF-group of type FP∞, then proj.dimZG B(G, Z) < ∞, where

B(G, Z) is the ZG-module of bounded functions from G to Z.

They then proved, by induction on dim |Λ(G)|

Theorem B. If G is an HF-group such that dim |Λ(G)| < ∞ and

proj.dimZG B(G, Z) < ∞ then G is in H1F .

Clearly Theorem A follows from Theorem B.

Generalizations of this Theorem were obtained in [17], [20], [26].

Note that B(G, Z), the ZG-module of bounded functions from G to Z, is a

Z-free ZG-module and there is a Z-split ZG-exact sequence 0 → Z i−→ B(G, Z)

where i(n) : G → Z is the constant function cn [16].

By Theorem 4.2 proj.dimZG B(G, Z) < ∞ implies that spli ZG < ∞. Now if

G is in HF then it is known [4] that spli ZG = k(ZG).

So if G is in HF and proj.dimZG B(G, Z) < ∞ then k(ZG) < ∞. It is easy

to see that k(ZG) < ∞ is a subgroup closed property and by Theorem 4.4 a

Weyl-group closed property [26].

These properties, which are implications of the finiteness of the proj.dim of

B(G, Z), for G in HF , are crucial for the proof of Theorem B.

The following Conjecture, (Conj. A in [26]), claims that the finiteness of the

algebraic invariants we’ve studied here, give an algebraic characterization for the

class H1F .

Conjecture A. The following statements are equivalent for a group G:

(1) G is in H1F ;

(2) G is of type Φ;

(3) spli ZG < ∞;

(4) silp ZG < ∞;
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(5) fin.dim ZG < ∞,

where, a group G is said to be of type Φ if it has the property that for every ZG-

module M , proj.dimZG M < ∞ if and only if proj.dimZH M |H < ∞ for every

finite subgroup H of G.

Note that G is of type Φ it if has the property that for every ZG-module M ,

proj.dimZG M < ∞ if and only if M |H is a cohomologically trivial ZH-module,

for every finite subgroup H of G.

Proposition 5.1 shows that (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) in Conjecture A.

Kropholler and Mislin’s Theorem show essentially that (5) ⇒ (1) if G is in

(HF)b.

In [26] it was shown that (5) ⇒ (1) if G is a torsion-free locally soluble group.

In support of Conj. A is also a result obtained in [5] which says that a group

G is finite if and only if spli ZG = 1. It is worth mentioning that its proof uses

the theory of groups acting on trees.

If G is in H1F then there is a ZG-resolution of G by direct sums of permuta-

tion modules of finite subgroups of G, i.e.

0−→ ⊗
in∈In

Z(G/Gin)−→· · ·−→ ⊗
i0∈I0

Z(G/Gi0)−→Z−→0 (∗)

with Gij finite subgroups of G for all ij .

It follows from (∗) that if G is in H1F then cdQG < ∞.

It is likely that the existence of (∗) is another algebraic characterization for

the H1F-class of groups.

As we mentioned before if G is a group of finite virtual cohomological dimen-

sion, vcd G < ∞ then G is in H1F , actually G is in H1Fb.

We consider the class H1F or rather the class H1Fb as a more “natural class”

than the class of groups of finite vcd .

The class H1Fb is closed under extensions and taking fundamental groups of

finite graphs of groups [21] unlike the class of groups of finite vcd .
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The following example of a group G, which was constructed by Dyer in [8] as

a counter example to a conjecture related to residual finiteness, has the following

properties

• G is a free product with amalgamation of groups of finite vcd ,

• G is an extension of a finite group by a group of finite cohomological di-

mension and yet G is not of finite vcd .

G = A ∗
H,ϕ

B where

A =<a1, a2, a3, a, d | [ai, aj ] = [ai, d] = [a, d] = dp = 1,

aa
1 = a2, a

a
2 = a3, a

a
3 = a1a

−3
2 a2

3 >

B =<b1, b2, b3, b, e | [bi, bj ] = [bi, e] = [b, e] = ep = 1,

bb
1 = b2, b

b
2 = b3, b

b
3 = b1b

−3
2 b2

3 >

and

H =< a1, a
p
2, a3, d > ϕ(H) =< bp

1, b2, b
p
3, e >

and

ϕ(a1) = bp
1e ϕ(ap

2) = b2 ϕ(a2) = bp
3 ϕ(d) = e.

Note that A ∼= B ∼= (Z × Z × Z × Cp) C Z, hence vcdA = vcdB = 4. It follows

that < d >⊆ ∩{N |G : N | < ∞} hence G does not have a torsion-free subgroup

of finite index.

Moreover we have the group extension

1−→ < d > −→G−→K−→1 (∗∗)

where K is a group with cdZK < ∞ which implies that the class of groups of

finite vcd is not extension closed.

Now since K is in H1F and < d > is finite it follows from (∗∗) that G is in

H1F .

It is worth mentioning that, it is not known whether H1F is extension closed.
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The class H1F is closely related to the class of groups which admit a finite

dimensional model for EG, the classifying space for proper actions.

For every group G, there exists up to G-homotopy a unique G-CW -complex

EG such that the fixed point space EGH is contractible for every finite subgroup

H of G and empty for infinite H. A G-CW -complex is called proper if all point

stabilizers are finite (equivalently, if all its G-cells are of the form G/H × σ with

H a finite subgroup of G). The space EG is an example of a proper G-CW -

complex and it is referred to as the classifying space for proper actions, because

it has the universal property, ”for any proper G-CW -complex X there is a unique

G-homotopy class of G-maps X → EG”.

For a survey on classifying spaces see [18]. It is clear that the class of groups

that admit a finite dimensional model for EG is a subclass of H1F .

Kropholler and Mislin in [15] actually proved that if G is an HF-group such

that dim |Λ(G)| < ∞ and proj.dimZG B(G, Z) < ∞ then G admits a finite di-

mensional model for EG.

Moreover, it was shown in [26] that the condition (5) of Conjecture A implies

that G admits a finite dimensional EG, if G is a torsion-free locally soluble group.

However it is an open question whether the class of groups which admit a finite

dimensional EG is indeed a proper subclass of H1F .
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