1. Baker, C.T.H., Makroglou, A. and Short, E. Regions of stability in the numerical treatment of Volterra integro-differential equations, SIAM J. Numer. Anal. 16 (1979), 890–910.
2. Brunner, H. Implicit Runge-Kutta-Nystrom methods for general second order Volterra integro-differential equations, Comput. Math. Appl. 14 (1987), 549–559.
3. Brunner, H. Collocation methods for Volterra integral and related functional equations, Cambridge University Press, 2004.
4. Brunner, H. and Lambert, J.D. Stability of numerical methods for Volterra integro-differential equations, Computing (Arch. Elektron. Rechnen.) 12 (1974), 75–89.
5. Brunner, H. and Van der Houwen, P.J. The Numerical solution of Volterra equations, CWI monographs, vol. 3, North Holland, Amesterdam, 1986.
6. Butcher, J.C. Numerical methods for ordinary differential equations, Third edition. With a foreword by J. M. Sanz-Serna. John Wiley & Sons, Ltd., Chichester, 2016.
7. Cardone, A., Conte, D. and Paternoster, B. A family of multistep collocation methods for Volterra integro-differential equations, AIP Conference Proceedings, 1168 (2009), 358–361.
8. Cardone, A. and Conte, D. Multistep collocation methods for Volterra integro-differential equations, Appl. Math. Comput. 221 (2013), 770–785.
9. Conte, D. and Paternoster, B. Multistep collocation methods for Volterra Integral equations, Appl. Numer. Math. 59 (2009), 1721–1736.
10. Cushing, J.M. Integrodifferential equations and delay models in population dynamics. Lecture Notes in Biomathematics, vol. 20. Berlin Heidelberg-New York: Springer 1977.
11. Dahlquist, G. A special stability problem for linear multistep methods, Nordisk Tidskr. Informationsbehandling (BIT) 3 (1963), 27–43.
12. Fazeli, S. and Hojjati, G. Numerical solution of Volterra integro differential equations by superimplicit multistep collocation methods, Numer. Algor. 68 (2015), 741–768.
13. Fazeli, S., Hojjati, G. and Shahmorad, S. Multistep Hermite collocation methods for solving Volterra integral equations, Numer. Algor. 60 (2012),27–50.
14. Ferguson D. The question of uniqueness for G.D. Birkhoff interpolation problems, J. Approx. Theory, 2 (1969), 1–28.
15. Ferguson, D. Some interpolation theorems for polynomials, J. Approx. Theory, 9 (1973), 327–348.
16. Grimaldi R.P. Discrete and combinatorial mathematics: An Applied In troduction, Reading, Mass: Addison-Wesley, 1994.
17. Hairer, E. and Wanner, G. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin, 1996.
18. Hale, J.K. Functional differential equations, Applied Mathematical Sciences, Vol. 3. Springer-Verlag New York, New York-Heidelberg, 1971.
19. Linz, P. Linear multistep methods for Volterra integro-differential equations, J. Ass. Comput. Mach. 16 (1969), 295–301.
20. Mahdi, H., Abdi, A. and Hojjati, G. Efficient general linear methods for a class of Volterra integro-differential equations, Appl. Numer. Math. 127 (2018), 95–109.
21. Mahdi, H. Hojjati, G. and Abdi, A. Explicit general linear methods with a large stability region for Volterra integro-differential equations, Math. Model. Anal. 24 (2019), 478–493.
22. Matthys, J. A-stable linear multistep methods for Volterra integro differential equations, Numer. Math. 27 (1976), 85–94.
23. Miller, R.K. Almost-periodic behavior of solutions of nonlinear Volterra system, Quart. Appl. Math. 28 (1971), 553–570.
24. Schoenberg, I.J. On Hermite–Birkhoff interpolation, J. Math. Anal. Appl. 16 (1966), 538–543.
25. Stoer, J. and Bulirsch, R. Introduction to numerical analysis, Springer, 2002.
26. Volterra, V. Theory of functional and of integral and integro-differential equations, Moscow, Nauka, 1982.
27. Wolkenfelt, P.H.M. The construction of reducible quadrature rules for Volterra integral and integro-differential equations, IMA J. Numer. Anal. 2 (1982), 131–152.
Send comment about this article