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portionate delays of different orders. Delay differential equations have some
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A numerical computation for solving delay and neutral differential ...

The use of orthonormal polynomials is the key advantage of this method
because it reduces computational cost and runtime. Some examples are
provided to demonstrate the effectiveness and accuracy of the suggested
strategy. The method’s accuracy is reported in terms of absolute errors.
The numerical findings are compared to other numerical approaches in the
literature, particularly the regular Legendre wavelets method, and show
that the current method is quite effective in order to solve such sorts of

differential equations.

AMS subject classifications (2020): Primary 34K40; Secondary 65L05, 40C05.

Keywords: Generalized Legendre wavelets; orthonormal polynomials delay

differential equations; neutral differential equations; accuracy.

1 Introduction

Delay differential equations are important in the mathematical and physical
modelling of real-world problems such as human body control and multi-
body control systems, electric circuits, the dynamical behavior of a system in
fluid mechanics, chemical engineering [18, 33], infectious diseases, bacterio-
phage infection’s spread [9], population dynamics, epidemiology, physiology,
immunology, neural networks, and the application of Legendre wavelet for
solving differential pharmacology.

For solving nonlinear differential equations with proportional delays, there
are several numerical techniques, like the Runge-Kutta—Fehlberg methods
[25], Adomian decomposition method [8, 14, 26], Hermite wavelet-based
method [32], Aboodh transformation method [1], power series method [5],
decomposition method [34], differential transform method [22], Iterative vari-
ational approach [19], Pade’s series-based approach and power method [35],
spectral method [2], variable multistep methods [21], quasilinearization tech-
nique [28], polynomial least squares method [10], homotopy perturbation
method [31], first kind Bessel’s functions [39, 40], Legendre polynomials of
shifted form [41, 44], and the first Boubaker polynomial approach [12]. More-
over, solving equations of nonlinear ordinary differential type using colloca-

tion methods with the use of Bessel polynomials are studied in [38, 42, 43]. In
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El-Shazly and Ramadan 902

addition, numerous numerical approaches, such as the One-leg-method [36]
and Chebyshev polynomials [30], have been employed to approximate the
solutions of neutral differential equations. Giimgiim, Ozdek,. and Ozaltun
[16, 17] have presented Legendre wavelet solutions of both high order non-
linear ordinary delay differential equations and neutral differential equations
with proportional delays. Nisar et al. [24] presented the efficient and signifi-
cant solutions to a nonlinear fractional model. Zhang et al. [45] investigated
the multiple solitons, lump solitons, and interaction with two stripe soli-
ton solutions, for the fractional gCBS-BK equation. Amer and Olorode [3]
presented a numerical evaluation of a novel slot-drill enhanced oil recovery

technology for tight rocks.

In this paper, we use our suggested generalized Legendre wavelet ap-
proach (GLW M) [13] to solve delay and neutral differential equations with

proportionate delays of different orders in the following form:

3 Q 2 r
DD RpgOy P (= mpg () + YD Srs )y (S766)y™) (rst) = A(8),
p=0q=0 r=0 s=0
Q<3, (1)
with the initial conditions
y ) (0) = p=0,1, 2, (2)

where the given continuous functions R,,(t),Sys(t),h (t) and the variable
delays npq(t) on 0 < t < 1, d,5s and ~,, constants are assigned to indicate

proportional delays.

The mechanism of our suggested method is reducing computational cost
and runtime with the use of orthonormal polynomials. We provide vari-
ous examples to demonstrate the effectiveness and accuracy of the suggested
strategy. We reported the method’s accuracy in terms of absolute errors.
The numerical findings are compared to other numerical approaches in the
literature, particularly the regular Legendre wavelets method (RLW M), and
manifest that the current method is quite effective in order to solve such sorts

of differential equations.
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903 A numerical computation for solving delay and neutral differential ...

2 Definitions and preliminaries

2.1 Legendre wavelet and its properties

Considering a single function “mother wavelet” (t), from which wavelets
represent a family of functions by dilating and transforming this single func-

tion. This family of continuous wavelets [15] has the following form:

_ 1 t—>b
Yab(t) = |al 2¢( ), a, b €R, a#0. (3)

a

The Legendre wavelets on the interval [0, 1) is defined by

k
1 o5 k ~ n—1 N+l .
JmE oL, (26 —q), <t < :
’(/)n,m(t) _ m+ 3 ( n) ok oF (4)

0 otherwise,

k=1 and f = 2n — 1, the order

for which k is positive integer, n =1, 2 ,..., 2
of the Legendre polynomial is denoted by m =0, 1, 2, ... , M and the
normalized time is denoted by ¢t. The Legendre polynomials acquired in the

above definition are defined as follows:

Lo(t)=1,

Lit) =t , (5)
2m +1 m

Ly (t) = t Ly(t) — —— Lyu_1(t), =1,23, ...,

alt) = TE L)~ 2 Luat), m 3

which are orthogonal over [—1, 1] with weighting function w(t) = 1, for more
details (see [4]). After shifting the Legendre polynomials by ¢ = 2z — 1, the
shifted Legendre polynomials L, (x) = L} (2¢ — 1) that are orthogonal on
[0,1) can be denoted as follows:

- (m + s)la*®

xT) = —ymts T
L) = Y (-1 T

s=0
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El-Shazly and Ramadan 904

2.2 Generalized Legendre wavelet expansion

In this subsection, we offer a generalization for the Legendre wavelets method,
denoted by GLW M [13], for solving delay and neutral differential equations
with proportionate delays of different orders defined as in (1). The proposed
GLW M on the interval [0,1) are defined by

k
1 5 k ~ n—1 n+1 .
w0,y = Ve pmlptt=n), e St <R

0 otherwise

for which k is positive integer, n = 1, 2 ,..., g ', n > 3 and
n = 2n — 1 and the order of the Legendre Polynomial is denoted by m =
0,1,2, ..., M and the normalized time is denoted by ¢.

3 Discussion and results

3.1 Function approximation

A function f(¢) defined on [0,1) may be expanded as infinite series of the

type seen below:

f(t) = Z Z Cn,m 1/J“n,m7 (7)

n=1m=0

where Cnym =< f7 w#n,’m > = fol f(t) wun,nb(t) dt .

After trimming, (7) can be written as follows:

uEt o

FO =YY cam Wam(t) = CTW (1), (®)

n=1 m=0

where

— T
C= [01,0,6171, <o C1ILM5C2,05,C2,1 -+ C2 M 5 oo Cpk—1 gCpk—1 15+« Cpb—1 pf

and
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905 A numerical computation for solving delay and neutral differential ...

U(t) =

T
”w
1/J1,01/)“1,1 s ’(/}ﬁ]u s %ﬁoﬂ’% s ’(/}5,]\/[ s ka—l,owﬁk—lJ s ¢5k—17M:| .

3.2 Generalized Legendre wavelet operational matrix of

differentiation

The gth derivative of the vector ¥(t), defined in (6) can be obtained by

d4
—U(t) = DIU(¢t
() = Drr) 0
where D? is the gth power of the u*~'(M + 1) x u*~1(M + 1) operational

matrix of differentiation D, defined in [23] as follows:

FO--0

0 F -
D= :
-0

F=p"x
0 0 0 0 0
V3 0 0 0 0
0 V3v5 0 0 0
N4i 0 VBT 0 0
2M +1 0 VBV2M +1...V2M —1v/2M +10 }M is odd
0 V3vV2M ¥ 1 0 ... V2M —12M +1 0 }M is even

3.3 The use of the operational differentiation matrix

To address the problem presented in (1) and (2), we first find the approxi-
mated solution considering the truncated series in (8), utilizing generalized

Legendre wavelets as
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El-Shazly and Ramadan 906

Y

“chnmw nm ):CT\II(t), (10)

n=1 m=0
where the coefficients ¢, ,,, are to be determined. Using (9) to approximate

the pth derivative as

y(1) = 0T () =T D). (1)

Substituting (10) and (11) into (1) implies that

) (12)
+3 D Snu(O)CT D (8,5t) CTD W (rst) = h(t) , Q< 3.

We need p*~1(M + 1) equations to determine the unbeknown coefficients
Cn,m of the vector C. The first three equations are derived using the initial
conditions (2), (3), and (4) as

y(0)=CTD ¥ (0),
y® (0)=CTDP ¥ (0), p=1,2.

and pF~'(M + 1) — 3 equations are obtained by substituting the first
(W"~1(M + 1)) — 3 roots of shifted Legendre polynomial P,k-1(p11)(t) in
(12).

Then, using MATLAB, we can solve the obtained system of nonlinear

equations and the approximated solution in (10) is obtained.

3.4 Convergence criteria of the proposed GLWM

In this subsection, we discuss the theoretical analysis of the convergence of

our approach to solve (1).
We want to prove that y(t) = >° > cum¥h () defined in (10) using
n=1m=0
the GLWM converges to y(t).
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907 A numerical computation for solving delay and neutral differential ...

Let L2(R) be the Hilbert space. We have shown that 19, (t) =

k
m + 32 Ly, ("t — 7)) forms an orthonormal basis [13].

Let y(t) = Z hnih () be a solution of (1) such that hy; = (y(t), ¥4 (1))
forn=11in Wthh (., .) denotes the inner product.

Let we denote ¢ (t) = ¢*(t) and a; = (y(t), YH(¢))

)= {y(0), () ¥ ().

i=1

Consider the sequences of partial sums

n—1 m—1
W= S0 )l W = 3 ;0%
i=1 7=t

Then,
(y(t), Wi <y Zaj Pr (2, > ZO‘J ) J)>
n—1
aj o Z ‘CVJ|
j=1
Moreover,

2

n—1
| Waey = W I = || D oy 9#(t5)

n—1 n—1
<Z a; P (L) Z @ W(tj)>

n—1 n—1 n—1
=Y S way @) v = > i
i=m j=m i=m

As n — o0, by Bessel’s inequality, we get that Z | o |7 is convergent, it
yields that {W,,_1} is a Cauchy sequence and it converges to W (say).

Now, we have
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El-Shazly and Ramadan 908

<W —y(),9"(t;) > = <Wyk(ty) > — <y(t),¥"(t;) >
= < nh—{{.loWn_l s ¢#(tj) > =

= lim <W,_1, ’(/)/L(tj) > =y

n—00
n—1
- nhanolo < Zaj wu(tj) ; @/}M(tj) > oy
=1

= Oéj—Oéj:O,

which is satisfied only in the case if y(¢t) = W. Thus, y(t) = > a; ¥*(t;).

3.5 Error bound

Suppose that the function y(¢) defined in [0, 1] is m times continuously

differentiable function. Then there exists a mean error bound for the ap-

'uk—l M
proximation of Y Y cum ¥H(t) = CTWH(t) to y(t) as follows [37]:
n=1 m=0
T ! (m)
lv=CTor@) | < o su, [0

mlp™ 0,1

“w
approximate y(t) to the polynomial CTW#(t) of mth degree, taking into con-

We divide the interval [0, 1] into subintervals {ﬁﬂﬁcl ) ﬁtl] So we can

sideration a minimum error for these subintervals. Therefore, we can utilize

the maximum error estimation for this polynomial that insets y(¢), that is,

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 900-937



909 A numerical computation for solving delay and neutral differential ...

Hy—dwwwW=/’Mw—c%um2dt
0

_z/ — Oy (D) di

<> /221 [y(t) —y*(t)] * dt

[y 2

< sup
Z /2" 2 m'ﬂmk telo, 1]

1
1
< ——  sup ’y(m) t ’2dt
/0 [m!,umk teo, 1] @

1 2

— s (m)

- sup [y |
mlp™ o, 1)

where y*(t) denotes the mth order interpolation of y(t). Taking the square

roots of both sides yields the desired outcome.

4 Numerical examples

In this section, we demonstrate the advantage and high accuracy of our pro-
posed GLWM by applying it to various conventional delay differential equa-
tions. All the numerical test examples of our program were carried out by
MATLAB R2015a.

Example 1. Assume the equation of the second-order neutral differential

form through proportional delays shown below [17]:

The exact solution of this initial value problem is given by y(t) = t2.
We first apply the GLWM for M =2 k=1, = 3.
For this choice of M, k, u, the function approximation for y(¢) will take

the summation form,

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 900-937



El-Shazly and Ramadan 910

pTt oM 1

2
y(t) ~ Z ch,mw;,m(t) = Z Z Cn,m¢z,m t) = cry, (14)

n=1 m=0 n=1m=0
where 03><1 = [6170 C1,1 C1,2 ]T and \Ifgxl(t) = wq)o(t)
where the generalized Legendre wavelets wul’m(t) ,
case, are given by

<
i—‘t
—
—
~
—_
<
N}
—
~
N

o =] 0<t<s
? 0, otherwise,
B (t) = 3¥2(3t—1), 0<t< 2
o 0, otherwise,
g {FEE-D =D 0<i<h
v 0, otherwise.
Thus, y(t) and y(%) can be approximated as
V2V3 3v2 V15 3 1
y(t) = cio D) + Cl,lT(St* 1) + c2 W (5(3t71)2 _ 5)’
¢ V2v3 3V2 .t Vit 3.t ., 1
y(i) - a0y + 01717(35*1) + 61,2W (5(3571) 75).

To calculate the first and second derivatives of y(t), we use the 3 x 3

operational matrix of differentiationP and P? in the form

0 0 0 00
P =1|3/3 , P? = 0 00
0 3V150 9v/450 0

as follows:

y'(t) = c113V/3Y4 o + €123V 159,

2v/3 3v/2
= 01,13\/3\[2\[ + c1,23\/15\2—f(3t —1),

2v3
y//(t) = c1,29v45 wlf,o =c1,2 9v45 \/;f ,

and hence y”(£) =c12 9V45 @ .

Using these approximations, (13) takes the form

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 900-937



911 A numerical computation for solving delay and neutral differential ...

61,29@€ﬁ = %(61,0 ‘/52‘/3 + 01,137\/5(315 ~D+eip %(%(Bt —1)2 - %)
V2v/3 3vV2 _t V15,3t 5 1
+ (c1,0 5 + 61,17(35 -1) +61’2W(5(35 -1)° - 5) (15)
+ cl,lsﬁ\/i\/g + 01,23\/ﬁ¥(3% —1)

1 33
+ 510 9\/45g — 2t 1

It should be noted that in order to find the unknown coefficients,
c1,0 €1,1 1,2, we need three equations. Two equations are obtained from

the initial conditions in (13) as follows:

LVRE o wE VB
10— L1 1,2\/§f7

2v3 3v2
C1713\/§g — 01,23\/ﬁ\72f=0.

We can gain the third equation by inserting the first root of third-order shifted
generalized Legendre polynomial, given by ¢ = 0.07513, in (15). Solving this

3x3 nonlinear system gives

Csx1=[c10 c11 c12)”

= [0.12096245643373 0.104756560175784 0.027048027531119]T.

Hence, the approximate solution of [17, Example 1] using our proposed
GLW M is obtained as

y(t) =CTw
= [0.12096245643373 0.104756560175784 0.027048027531119]T><
@
22 (3t - 1)
B (G6t-17-3)

Along with the absolute errors compared to the exact solution, the esti-

mates of the approximation can be evaluated at the locations in the prescribed

interval, 0 < ¢ < 2 and summarized in the table (Table 1) below.

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 900-937
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Table 1: Approximate solution and the absolute error of in [17, Example 1] using our
GLWM for M =2;k=1;p=3

t | Exact solution | Approximate solution | Absolute error
0.1 0.01 0.009999999999990999 9.0015e-15
0.2 0.04 0.03999999999999143 8.5733e-15
0.3 0.09 0.08999999999999162 8.3786e-15
0.4 0.16 0.1599999999999916 8.4176e-15
0.5 0.25 0.2499999999999913 8.6902e-15
0.6 0.36 0.3599999999999908 9.1964e-15

0.35¢ 4
0.30

—rExact
-+ Present method

Figure 1: Approximate solution against the exact solution for Example 1

In Table 2 below, absolute error comparisons between the proposed ap-
proach GLWM and the RLW M for the same M (M = 2) and other nu-
merical methods, namely, the Runge-Kutta method of two-stage order-one
case (RKM) [25], One-leg # method with = 0.8 [36], variational iteration
method (VIM) with n = 6 [11], homotopy perturbation method (HPM) with
n = 6 [7], reproducing kernel Hilbert space method (RKHSM) with n = 100
[20], Legendre—Gauss collocation method (LCM) with n = 10 [6], homotopy
analysis method (HAM) with n = 6 [29] are provided. Also, we present

solutions on this interval for comparison because the numerical approaches

mentioned previously produced solutions in the same range. From Table 1,

Figure 1, and Table 2, we can presume that the current method is more ac-

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 900-937



913 A numerical computation for solving delay and neutral differential ...

curate, effective, and promising when compared to other numerical methods,

particularly with the normal Legendre wavelet method.

Table 2: Comparison of the absolute error of the suggested method with other numerical
methods

t | Present method | RLWM[17] One-leg § | RKM|[25]
GLWM (M = 2) (M =2) | Method|36]
0.1 9.0015e-15 3.43e-11 6.10e-03 1.00e—03
0.2 8.5733e-15 7.79¢-11 2.58e-02 2.02e—03
0.3 8.3786e-15 1.98e-10 6.47e-02 3.07e—03
0.4 8.4176e-15 3.26e-10 1.37e-01 4.17e—03
0.5 8.6902e-15 4.62e-10 2.81e-01 5.34e—03
t VIM RKHSM HPM HAM LCM

n=6[11]| n=1001[2 | n=61[7] | n=61[20] | n =10 [6]
0.1 | 1.67e—04 | 9.57e—06 | 1.67e—04 | 2.25¢—08 | 6.59e—17
0.2 | 7.15e—04 | 1.95e—04 | 7.15¢—04 | 9.81e—08 | 1.37e—17
0.3 | 1.73¢—03 | 2.94e—04 | 1.72¢—03 | 2.44e—07 | 5.67c—18
0.4 | 3.30e—03 | 3.93¢—04 | 3.30e—03 | 4.90e—07 | 6.98e—17
0.5 | 5.55e—03 | 4.92e—04 | 5.55¢—03 | 8.69e—07 | 2.13e—17

Example 2. Consider the following equation of the first order neutral dif-

ferential form through proportional delay [17]:

y'(t) = —y(t) + 0.1y(0.8t) + 0.5y (0.8¢) + (0.32t — 0.5)e ¥ 4 et 0 <t <1

(16)

The exact solution of this initial value problem is given by y(t) = te™*.
We first apply the GLWM for M =4,k =1, = 3.
For this choice of M, k, i1, the function approximation for y(¢) will take

the summation form:

pt M 1 4
~ Z Z Cn,mw;;,m(t) = Z Z Cn mwn m CT\I} (17)

n=1 m=0

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 900-937



El-Shazly and Ramadan 914

T
where Csx1 =[c10 c1,1 c12 ¢1,3 c¢1,4] and
T

Usa(t) = [80() 91000 @120 ¥1a() @1a0) |

where the generalized Legendre wavelets wim(t),m =0,1,2,3,4, which in

this case, are given by

’l/)“ (t) _ ?7 0 S t < %7
o 0, otherwise,
) = 2(3¢ - 1), 0<t< 2
b 0, otherwise,
) = VI (33t-1)°-1), 0<t< 2
b2 0, otherwise,
W) = V2 (3t —1) (5(3t —1)2 — 3), 0<t< 2
3 0, otherwise,
. 36 (35(3t — 1)* — 30(3t — 1) + 3), 0<t< 2
VYra(t) = .
0, otherwise.

So, we can approximate y(t) and y(0.8t) as

y(t) =c1 0? + a1 1£( 3t—1)+ cLQ@(?,(?,t -1)%-1)
+ cl,g‘%ﬁ(?ﬁ —1)(5(3t — 1) = 3)
+ 1 431\?(35(& —1)* =303t —1)* +3),
y(0.81) :cm? +ews 3*2[( 3(0.81) — 1) + 01,2@ (3(3(0.8) — 1)2 — 1)
+ 01,3@(3(0.&‘) —1)(5(3(0.8t) — 1)2 — 3)
3\/6

+era—r (35(3(0.8t) —1)* = 30(3(0.8t) — 1)* + 3).

In order to approximate the first derivative of y(t), we use the 5 x 5

operational matrix of differentiation P in the form

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 900-937



915 A numerical computation for solving delay and neutral differential ...

0 0 0 0 0
3v3 0 0 0 0

P = 0 3V15 0 0o 0],
3V7 0 335 0 0
0 3v27 0 3v630

as follows:

y'(t) = <C1,13\/§ + 01,33\ﬁ) Yo+ (CLQ?’\/B + ClAg\/ﬁ) Yia
—+ 01733\/5'1/11112 + 61,43\/@1#;3'

Using these approximations, (16) takes the form
6
(c113V3 + C1,33\ﬁ)§ + (c1,23V15 + €1,43V27) ( \[(3t -1))
+¢1.33V35 (@(3(& -1)2 - )) + ¢1,43V63 (f( t—1)(5(3t —1)% — 3))

610\2[ +c1 13\2/5(3 1)+Cl72@(3(3t— 1)2 - 1)
=~ | +e13 Y2 (3t - 1)(5(3t — 1)* - 3)
o125 (35(3t — 1) — 30(3t — 1) + 3)
[ 108 + 11 22(3(0.8) — 1) + 1,30 (3(3(0.8t) — 1)2 — 1)
+0.1 | 461,32 (3(0.8t) — 1)(5(3(0.8t) — 1)2 — 3)
| +era 2B (35(3(0.8) — 1)1 — 30(3(0.8t) — 1) + 3)
[ (113V3 + c1.53V7) % + (1,23VT5 + ¢1.43v27) (22(3(0.80) — 1))
405 | +¢1.53v35 (@( (3(0.8t) — 1)2 — 1))
| +e1.43V/63 ( (3(0.8t) — 1) (5(3(0.8t) — 1)? — 3))

+ (032t —0.5)e” """ 4+ e .
(0.32t — 0.5)e 8¢ t (18)

Note that in order to determine the unknown coefficients
€10 €11 Ci2 C1,3 C1,4, we need five equations. One equation is ob-
tained from the initial conditions in (16) as follows:

V6 3v2 V30 V42 3v6

A - =0.
5 C1,1 9 C1,2 B €1,3 B +cCi4 B

€1,0

The second, third, fourth, and fifth equations are obtained by inserting the

smaller four roots of the sixth-order shifted generalized Legendre polynomial,
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El-Shazly and Ramadan 916
that are given by t; = 0.03127, to = 0.1538, t3 =0.3333, ¢4 = 0.5128 | in
(18).
Solving this nonlinear 5 x 5 system gives
Csx1=[c10 c11 c12 c13 c1a]t
= [0.17673294249913 0.07841472133705 0.01644085313212
0.00146577426114 0.00009124056578]T.
Hence, the approximate solution of Example 2 using our proposed GLW M
is obtained as
y(t) = CTw
= [0.17673294249913 0.07841472133705 0.01644085313212
0.00146577426114 0.00009124056578}T

: s _
2
223t - 1)
* (33— 1)2 -1

VI (3¢ 1) (5(3t — 1) - 3)
| 245 (35(3t — 1)* — 30(3t — 1) + 3)

Along with the absolute errors compared to the exact solution, we can

evaluate the approximation at the locations in the prescribed interval, 0 <

t < % and summarized in the table (Table 3) below.

Table 3: Comparison of the absolute error for Example 2 of the suggested method with

other numerical methods

t | suggested method | RLWM [17] One-leg 6 Two-stage Variational | RKHSM HPM
GLWM (M =4) Method|36] order-one iteration | n=100 (7] | n=6 (7]
(M=4),p=3 Runge-Kutta method
method [25] n=06 [11]
0.1 6.44e-07 1.19e—05 4.65e—03 8.68e—04 1.30e—03 1.42e—04 1.06e—03
0.2 3.78e-06 2.01e—05 1.45e—02 1.49e—03 2.14e—03 1.17e—04 | 1.35e—03
0.3 2.50e-06 2.40e—05 2.57e—02 1.90e—03 2.63e—03 9.45e—04 | 1.18¢—03
0.4 3.33e-06 2.15e—06 3.60e—02 2.16e—03 2.84e—03 7.59e—04 7.61le—04
0.5 5.88e-06 2.76e—05 4.43e—02 2.28e—03 2.83e—03 6.03e—04 | 2.32e—04
0.6 1.35e-05 2.13e—05 5.03e—02 2.31e—03 2.67e—03 4.73e—04 | 2.98e—04

In Table 3 and Figure 2, absolute error comparisons between the proposed
approach GLW M and the RLWM for the same M (M = 2) and other
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T

-~ Present method
——RLWM[32]

-9-Method[29]
—&Method(5)

- Method[36)
RKHSM[38]
——HPM[37]

Figure 2: Absolute error for Example 2 using the presented method against the other
methods listed in Table 3

numerical methods, Runge-Kutta method of two-stage order-one case (RKM)
[26], One-leg @ method with § = 0.8 [36], Variational iteration method (VIM)
with n = 6 [11], Homotopy perturbation method (HPM) with n = 6 [7],
Reproducing Kernel Hilbert space method (RKHSM) with n = 100 [20],
Legendre-Gauss collocation method (LCM) with n = 10 [6], Homotopy
analysis method(HAM) with n = 6 [29] are provided.

We can presume that the current method is more effective and promising
when compared to other numerical solutions, particularly with the normal
Legendre wavelet method. Moreover, the absolute errors compared to the
exact solution, we can evaluate the approximation at the locations in the
prescribed interval, 0 < t < %, for two values of p = 3, p = 4 and
summarized in the next table, Table 4, given as.

As, one can see the absolute error is improved as we increase the values

of the parameter p .

Example 3. Consider the following third order nonlinear equation with pro-

portional delay [16]:

YO+ -2 =0, 0<t<L. )

y(0)=0, y'(0)=1, y"(0) =0,

with the exact solution of the type y(t) = sin ().
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Table 4: Comparison of the absolute error for Example 2 of our proposed method GLWM

in two cases p =3, u=4.

t Present method Present method
GLWMM =4), p=3 | GLWM(M =4), pn=4
0.1 6.44e-07 7.52 e-07
0.2 3.78e-06 1.49e-08
0.3 2.50e-06 8.55e-07
0.4 3.33e-06 1.64e-06
0.5 5.88e-06 2.43e-05

We first apply the GLWM for M =5 k=1, = 3.

For this choice of M, k , u, the function approximation for y(¢) will

take the summation form:

T V4 105
T
chn m'l/)nm Zand}nm ):C\Ija (20)
n=1 m=0 n=1m=0
where Cox1 =[c10 c1,1 €12 ¢1,3 ¢1,4 c1,5]" and

T

Uexa(t) = [%p(@ a0 V) Yist) ¥ial) s |

where the generalized Legendre wavelets are w’li’m(t) , m=0,1,2,3,4,5.

So, we can approximate y(t) and y(¢/2) as

V6 3v2 V30

y(t) =c1,0~—=— 5 +011—(3t71)+612 1 (3(3t —1)2 1)

+c13~—— (3t —1) (5(3t = 1)* = 3)

3 6
+ 14— (353t — 1)* —30(3t — 1)* + 3)

6
+ 15 (63(3t —1)° — 70(3t — 1)® + 15(3t — 1)) ,
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V6 3v/2 V30

Y(t/2) =105 + e (3(t/2) = 1) + a2~ (B6(t/2) — 1) - 1)
+ 01,3@(3@/2) —1)(5(3(t/2) = 1)* = 3)
+ c1,4¥(35(3(t/2) —1)* = 30(3(t/2) — 1)> + 3)
+ c1’5\§—§6 (63(3(t/2) — 1)° — 70(3(¢/2) — 1)® + 15(3(¢/2) — 1)) .

To approximate the first, second, and third derivatives of y(t), we use the

6 x 6 operational matrix of differentiation P in the form

0 0 0 0 0 0
3vV3 0 0 0 0 0
P 0 3vV15 0 0 0 0
37 0 3v3 0 0 0f°
0 3v27 0 3v63 0 0
3vI1 0 3V55 0 3v990
0 0 00
0 0 0 00
P2 9v/45 0 0 0 00
0 9v/15/35 0 o 00|’
0 0 9v35v63 0 00
0 9V15vB5+9v27v99 0 9v63v9900
and
P3 =
0 0 0 000
0 0 0 000
0 0 0 000
27v/35V/45 0 0 000 |’
0 27v/15v/35V/63 0 000
27/45+/55 + 27/81v/99 + 27+/7/63/99 0 27+/35v63v99 0 0 0
as follows:
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y/(t) = (61713\/§ + 61,33\/? + 61753\/ﬁ> io + (01,23\/ﬁ + 61743\/ﬁ) ’l/)il

+ (61733& + 61,53\/%> wlfg + 01,43\/@ 1#1573 +ci15 3@1&54
6
= <01$13\/§ + 01’33\/? + 61’53\/ﬁ> £
3
(Cl 23\/>+ C1 43\/>) ( f(?)t — 1))

(Cl 33\/>+ Cc1 53\/>) <\/7( 3t - 1) 1))
+ ¢1,43V63 <\/>(3t —1)(5(3t—1)2 — 3))

+ ¢1.53V99 <3\[(35(3t —1D* =303t —1)2 + 3)) ,

Y (t) = (c1729\/475) P+ (01739\/£\/ﬁ + e (gx/%\/ﬁ + 9@@)) iy

+ (61,49\/@\/%) (UAPEE 01,59@\/@1/)?,3
— (c0a9VB) Y2 4 (c020VEBVTE + cr5 (9IS + VTG0 )

(3\[( t— 1)) + (01,49\/@@) <\<f>0(3(3t N 1))

2

SONRNCINGE (\ﬁm — (G- 1) - 3)) 7

() = (e1,527VB5VS + e 5 (27V/55V5 + 27V/BIVOD + 27V TVEBVE9) ) wlg

(
+ (01,427\/@\/%\/ﬁ> 1/)1 1 (Cl 527\/>\/7\/>>
- (01,327\/%/?5%1 5 (27\F\ﬁ+ 27V81V99 + 27[W\ﬁ>)
)
)

ol%

+ (c1,427\/&x/£\/ﬁ ( (3t —1 )

+(c1,527\/@\/£\/5 ( (3(3t — 1)2 1)).

Using these approximations, (19) takes the form
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(e1,527V/35V/A5 + 15 (27V/55V/45 + 27V/E1V99 + 27V7TVE3V99) ) ?
+ (e1,427V63V/35VT5) ( 32 (51 - 1>>
+ (017527\/@\/%\/@> (@(3(& —1)2 - 1)) +1

010\2[4-6113\[( (t/2)—1)+012r( (3(t/2)_1) )
+er 32 (3(/2) — 1)(5(3(t/2) — 1)% = 3)

o7 o1 38(35(3(¢/2) — 1)* — 30(3(t/2) — 1)* +3)
15488 (63(3(1/2) — 1)° — T0(3(t/2) — 1)® + 15(3(1/2) — 1))
= 0.

(21)

Note that in order to determine the unknown coefficients
€0 €1 Ci2 €13 14 C15 , we need six equations. Three equa-

tions are obtained from the initial conditions in (19) as follows:

V6 3v2 2v/30 2/42 24/6 8/66

C1,0— — C1,1 +ci2 —C1,3 +ci4 —Cl 55— =
2 2 4 4 16

(01 13\f—|—01 33VT + ¢ 53\/>) £ _ <C1 ,3V15 + ¢ 43\/>) <3f>
(Cl 33V35 + ¢y 53\ﬁ> <M> —cy, 13V63 (2\/>>

+c 53\/7 (24\[> = 1,

(c129f)f—(c139Wf+c15(9WW+9Wf))<{)

(01 49\/>\/>) <2W> ci, 59v99/63 <2f> =0.

The fourth, fifth, and sixth equations are obtained by inserting the smaller
three roots of the seventh order shifted generalized Legendre polynomial,
t; = 0.02251,t2 = 0.1129,t5 = 0.2538, in (21).

Solving this nonlinear 6 x 6 system gives
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Cox1 = [Cl,o C11 €12 €13 Ci4 C15 ]T
= [0.26223389730166 0.14684295578193 —0.00438943865859
—0.00071526649488 0.00001058352043 0.00000106184998 ]T.

Hence, the approximate solution of Example 3 using our proposed GLW M

is obtained as

y(t) = CTw
= [0.26223389730166 0.14684295578193 —0.00438943865859

—0.00071526649488 0.00001058352043  0.00000106184998] T
- NG -

2
32 (3¢ 1)
30 (3(3¢—1)2 — 1)
VA2 (3t - 1) (5(3t — 1)% - 3)
36 (35(3¢ — 1)* —30(3t — 1)2 + 3)

i \{76766 (63(3t —1)> —70(3t — 1)3 + 15(3t — 1) ) |

Along with the absolute errors compared to the exact solution, we can
evaluate the approximation at the locations in the prescribed interval, 0 <

t < 2, and summarized in the table (Table 5) below.

Table 5: Numerical results and the absolute error for Example 3 for our proposed
method GLWM using fifth- and sixth-order polynomials (M =5, 6)

t Exact solution | Approximate solution M =5 | Absolute Error | Approximate solution M = 6 | Absolute Error
Present method GLWM Present method GLW M
(M=5pu=3k=1) (M =6,p=3k=1)
0.1 | 0.09983341665 0.09983341651 1.369¢-10 0.09983341665 1.969¢-12
0.2 | 0.1986693308 0.198669332 1.2394¢-09 0.1986693307 9.529¢-11
0.3 | 0.2955202067 0.2955202026 4.0622e-09 0.2955202072 5.532e-10
0.4 | 0.3894183423 0.3894183507 8.4262e-09 0.3894183404 1.956e-9
0.5 | 0.4794255386 0.4794258702 3.3162e-07 0.4794255601 2.152e-8
0.6 | 0.5646424734 0.5646445308 2.0574e-06 0.5646427814 3.08e-7

In Table 6, absolute error comparisons between the proposed approach
GLW M and the RLW M and other numerical methods is shown.

Example 4. Assume the following equation of the second order nonlinear
differential form through proportional delay [16]:
Y (t) 4+ 2 y(t) — y*(t) + y(t?/8) = sin t —sin®t +sin(t?/8), 0<t <1,

y(0)=0,  ¥(0)=1,
(22)
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Table 6: Comparison of the absolute errors with other numerical methods

Absolute Error Absolute Error Absolute Error Absolute Error | Decomposition Adomian
for present method | for present method for Legendre for Legendre Method decomposition
GLWM GLWM wavelets method | wavelets method E13 [34] Method E9 [14]
(M =5) (M =6) RLWM RLWM
(n=3k=1) (n=3k=1) (M =5) (M = 6)
0.1 1.369¢-10 1.969¢-12 2.54e-09 5.37e-10 0.0 1.02e-15
0.2 1.2394e-09 9.529-11 3.24e-09 1.39¢-09 0.0 5.28e-13
0.3 4.0622¢-09 5.532¢-10 2.11e-08 1.59¢-09 0.0 2.02¢e-11
0.4 8.4262¢-09 1.956e-9 1.44e-08 7.06e-09 0.0 2.69¢e-10
0.5 3.3162e-07 2.152e-8 1.21e-07 3.52e-09 2.61e-09 2.00e-09
0.6 2.0574e-06 3.08e-7 1.42e-07 3.27e-08 1.04e-08 1.03e-08
with the exact solution of the form y(¢) = sin ¢. Comparison between

approximate solution and the absolute error of [16, Example 3] using our
GLWM for M =5,6;k = 1; u = 3 is listed (in Table 7) below. Also, compar-
ison between the absolute error for Example 4 of the present method with
the RLWM of [16, Example 3] is listed in Table 8.

Table 7: Approximate solution and the absolute error of [16, Example 3] using our
GLWM for M=5, 6; k =1; p=3

t | Exact Solution | Approximate solution | Approximate solution
M=5;k=1; u=3 M=6;k=1; u=3
0.1 | 0.09983341665 0.09983341629 0.09983341679
0.2 | 0.1986693308 0.1986693294 0.1986693306
0.3 | 0.2955202067 0.2955202132 0.2955202065
0.4 | 0.3894183423 0.3894183346 0.3894183434
0.5 | 0.4794255386 0.4794255315 0.4794255352
0.6 | 0.5646424734 0.5646429917 0.5646425129

Along with the absolute errors compared to the exact solution, we can

evaluate the approximation at the locations in the prescribed interval, 0 <
1
27
below.

t < for two values of y = 3, u = 4 and summarized in the table (Table 9)

Example 5. Consider the following third order nonlinear differential equa-

tion with proportional delay [27]:
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Table 8: Comparison of the absolute error for Example 4 of the present method with
the RLWM of [16, Example 3]

t | Present method | RLWM [13] | RLWM [16] RLWM [16]
GLWMM =5, M =6, M=5k=0 M=6,k=0
w=3k=1 =3 k=1

0.1 3.562e-10 1.3936e-10 | 8.963065387¢-09 | 3.389353381e-10

0.2 1.414e-9 1.846e-10 | 2.720358344¢-08 | 3.618011279¢-09

0.3 6.549e-9 1.6084e-10 | 2.394278514¢-08 | 3.060617093e-09

0.4 7.734e-9 1.1379e-9 | 6.937304025¢-08 | 7.998320783¢-09

0.5 7.082e-9 3.3891e-9 | 1.053035117e-07 | 7.465058682¢-09

0.6 5.183e-7 3.9459e-8 | 1.310158346¢-07 | 1.884611267e-08

Table 9: Comparison of the absolute error for Example 4 of our proposed method GLWM

in two cases p =3, u=4

t | Present method | Present method | Present method | Present method
GLWM GLWM GLWM GLWM
(M=5),u=3 (M =5),np=4 (M=6),n=3 (M =5),n=4
0.1 3.562e-10 2.158e-10 1.3936e-10 2.9452e-11
0.2 1.414e-9 5.474e-10 1.846e-10 6.4737e-11
0.3 6.549e-9 1.051e-9 1.6084e-10 1.5656e-10
04 7.734e-9 7.761e-9 1.1379e-9 2.8361e-10
0.5 7.082e-9 2.619e-7 3.3891e-9 3.3032e-8

Y (t) = —y(t) —y(t—0.3) +eH <<
y(O) =0 ) y/(o) = _17 y”(o) = 17

with the exact solution of the form y(t) = e~
We first apply the GLWM for M =9,k =1,u = 3.
For this choice of M,k,u, the function approximation for y(t) will take the

summation form,

/J‘kl

1 9
Zch,mwnm ZZ Com U (8) = CTU, (24)

n=1 m=0
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where Chox1 = [61,0 C1q1 €12 €1,3 C1,4 C15 Ci6 C1,7 C1,8 C1.9 ]T and
" H H w T
Dio(t) Ua(t) Pha(t) s ¢1,4(t)
Yioxi(t) = | P P
Ds(t) Wiglt) Wig(t) ¥ist) ¢he)
where the generalized Legendre wavelets are 1/)”17m(t), m= 0,1,2,...,9.

Thus, y(t) and y(t —0.3) can be approximated as

y(t) =c1,0 \f + 1 3\[(375 -1)+ 61,2@(3(31& —1)2-1)
+ec13 {(Bt —1)(5(3t —1)*> = 3)
+c 43ﬁ (35(3t — 1)* — 30(3t — 1)? + 3)
+ec1s \{ZT; (63(3t —1)° — 70(3t — 1)® + 15(3t — 1))
+c16 ‘gg (231(3t — 1)® — 315(3¢ — 1)* +105(3t — 1)* — 5)
+ 01773\3/2» (429(3t — 1) — 693(3t — 1)° + 315(3t — 1) — 35(3t — 1))
+c1g g(6435(3t — 1) —12012(3t — 1)° + 6930(3t — 1)*

V114

—1260(3t — 1)* +35) + c19 <256 (12155(3t — 1) — 25740(3t — 1)7

+18018(3t — 1)® — 4620(3t — 1) 4 315(3t — 1))),

y(t —0.3) =c10 \f +e 1%( 3(t—0.3) — 1)+ cm@(?,(:a(t —03)-1)2-1)
+ 61,3\<T4>2(3(t —0.3) = 1)(5(3(t — 0.3) — 1)* = 3)
+o 431‘26(35(3@ —0.3) — 1)* = 30(3(t — 0.3) — 1)2 + 3)
+ 15 \fjﬁ (63(3(t — 0.3) — 1)° — 70(3(t — 0.3) — 1)> + 15(3(t — 0.3) — 1))
+c16 \gjs (231(3(t — 0.3) — 1)° — 315(3(t — 0.3) — 1)*

+105(3(t —0.3) —1)> = 5)
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3v10

+er—s (429(3(t — 0.3) — 1)7

—693(3(t — 0.3) — 1)° + 315(3(t — 0.3) — 1)® — 35(3(t — 0.3) — 1) )
V102 8 6

+eLs e (6435(3(t — 0.3) — 1)® — 12012(3(¢t — 0.3) — 1)

+6930(3(t — 0.3) — 1) — 1260(3(¢ — 0.3) — 1)? + 35)

V114

(
12155(3(t — 0.3) — 1)? — 25740(3(t — 0.3) — 1)7+
256 )~

18018(3(t — 0.3) — 1)° — 4620(3(t — 0.3) — 1)3
+315(3(t — 0.3) — 1)

+c1,9

In order to approximate the first, second, and third derivatives of y(¢),

we use the 10 x 10 operational matrix of differentiation P in the form

0 0 0 0 0 0 0 0 0 0
3vV3 0 0 0 0 0 0 0 0 0
0 3vV15 0 0 0 0 0 0 0 0
3v7 0 3V3 0 0 0 0 0 0 0
b 0 3v27 0 3v63 0 0 0 0 0 0
3WVIT 0 355 0  3V99 0 0 0 o of’
0 3v39 0 3v91 0 3/143 0 0 0 0
3vVI5 0 3v75 0 3VI35 0 3V19% 0 0 0
0 3v/61 0 3119 0 3V18 0 3v/255 0 O
319 0 3V95 0 3V171 0 3v247 0 33230
P? =1.0e+ 03
0 0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 0 00
0.060 0 0 0 0 0 0 0 00
0 02062 0 0 0 0 0 0 00
0.2700 0 0.4226 0 0 0 0 0 00
i 0 07238 0 0.7108 0 0 0 0 00|’
0.6814 0 1.3061 0 1.0708 0 0 0 00
0 1.6301 0 2.0289 0 1.5029 0 0 00
1.3359 0 27382 0 28944 0 20069 0 00

0 29897 0 4.0479 0 39033 0 2582900

and

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 900-937



927 A numerical computation for solving delay and neutral differential ...

P3 =1.0e+05

0 0 0 0 0 0 0 000
0 0 0 0 0 0 0 000
0 0 0 0 0 0 0 000
0.0107 O 0 0 0 0 0 000
0 0.0491 O 0 0 0 0 000
i 0.0940 0 0.1261 O 0 0 0o o000 |’
0 03187 0 0.2550 O 0 0 000
0.3953 0 0.6945 0 0.4486 O 0 000
0 11453 0 12636 0 07200 0 000

1.1651 0 22579 0O 2.0655 0 1.0821000

as follows:

v (t) =(c1,13V3 4 ¢1,33V7 + ¢1,53V11 4 ¢1,73V15 + 61,93\/E)¢f,0
+(C1,23\/ﬁ + 01743\/ﬁ +c1,6 3v/39 + C1,83V5T)wf,1
+(C1,33\/£ + 61,53\/% + 01,73\/% + c1,93\/%)¢’f’2
+(c1,43V63 + ¢1,63V91 + q,s&/ﬁ)lﬁﬁg
+(c1.,5 3V99 + ¢1,73V135 + C1,93ﬁ)wi4

+(c1,63\/m + 01,83\/@)1#’1‘,5 + (01,73@ + c1,93\/2477)1l)'1"6
+(Cl,83\/ﬁ)wi7 + (01,93\/@)7#?’8

:(01,13\/§+ 61733\/?4- 61753\/ﬁ+ c1,7 3\/ﬁ + 01,93\/E)?
+(c1,2 3V15 + ¢1,43V27 + c1,6 3V39 + ¢1 83\/7)(£(3t -1))
Her33VE -+ e1 53V + 1.7 3VTE + 1 3VED) (L (3(31 — 12 — 1)

+(c1,43V63 + ¢1,63V91 + ¢1,83V119) (£(3t —1)(5(3t — 1)2 = 3))

+ (c1,53\/®+ c1.73v/135 + c1793\/ﬁ) (%(35(37& 1)t 303t — 1) + 3))
(01 63V143 + c1 83@) V66 (63(3t — 1)° — 70(3t — 1)® + 15(3t — 1))

+ (cl,73\/ﬁ + c1,93\/ﬁ) £ (231(3t — 1)% — 315(3t — 1)* + 105(3¢ — 1)? — 5)
(c1 83@) 3v10 (429(3t — 1)7 — 693(3t — 1)® + 315(3¢ — 1)® — 35(3t — 1))
(q 93\/37) F (6435(3t — 1)8 — 12012(3¢ — 1)°

+6930(3t — 1)* — 1260(3t —1)% +35)
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¥ (t)

y//l (t)

6
= (c1,227\/5 +¢1.4270 + ¢1,6189V/13 + c1,8324\/17) %
3v2
n (c1,345\/21 +e1,5126v/33 + ¢1,7243V/45 + c1,9396\/57> —(3t —1
V30
+ (141895 + ¢1,6162V/65 + ¢1,5297V/8 ) (T(S(?)t 12 1))

+ (€1,581V77 + ¢1,7198V105 + ¢1 9351\/F) (@(& —1)(Bt—1)% - 3))

+ (€1,7117V165 + 1 9270\/ﬁ> V66 (63(3t — 1)° — 70(3t — 1)® + 15(3t — 1))

+ (01 699VI1T7 + c1 8234@) (£(35(3t —1)% - 3003t —1)% + 3))
¥ (q 8135\/5) ® (231(3¢ — 1)° — 315(3¢ — 1)" + 105(3 — 1)* — 5)

+(a 9153@) 3\ﬁ (429(3t — 1)7 — 693(3t — 1)® + 315(3¢t — 1)® — 35(3t — 1))

=1.0e 4+ 05
(0.0107¢ 5 + 0.0940¢; 5 + 0.3953¢ 7 + 1.1651¢; ) 22
+(0.0491cy 4 + 0.3187Tcy 6 + 1.1453¢; ) (22 (3¢ — ))
+(0.1261¢y 5+ 0.6945¢, 7 + 2.2579¢1 o) (L0 (3(3t — 1)% — 1))
+(0.25501 6 + 1.2636¢1 8) (Y2 (3t — 1)(5(3t — 1)2 — 3))
+(0.4486¢1 7 4 2.0655¢1 9) ( £Y8(35(3t — 1)* — 30(3t — 1)% + 3))
+(0.7200¢, 5) Y6 (63(3 — 1) — T0(3t — 1)® + 15(3 — 1))
+(1.0821cy ) 3% (231(3t — 1)6 — 315(3 — 1)* + 105(3¢ — 1)2 — 5)

Using these approximations, (24) takes the form

1.0e + 05

(0.0107¢1 3 + 0.0940¢; 5 + 0.3953¢1 7 + 1.1651¢; 9) %0

+(0.0491cy 4 + 0.318Tcy 6 + 1.1453¢ ) (242 (3t — 1))
+(0.1261¢y 5+ 0.6945¢, 7+ 2.2579¢; o) (L0 (3(3t — 1)% — 1))
(0.2550¢1 6 + 1.2636¢1 g) (L2 (3t — 1)(5(3t — 1) — 3))
(0.4486¢1 7 + 2.0655¢1 o) (28 (35(3t — 1)4 — 30(3t — 1) + 3))
(0.7200¢1 5) 8 (63(3t — 1)° — T0(3t — 1)* + 15(3t — 1))
(1.0821c1,9) ¥ f (231(3t — 1)6 — 315(3 — 1)* + 105(3¢ — 1)2 — 5)

N
N
N
N

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 900-937




929 A numerical computation for solving delay and neutral differential ...

V6 3v2 V30
Lo + 01,17(375 -1)+ 61,27(3(375 —1)2-1)

+ c1,3@(3t —1)(5(3t —1)2 = 3)
+ c1,4¥(35(3t —1)* =303t —1)2+3)
+ cl,s‘%?" (63(3t — 1)5 — 70(3¢t — 1)® + 15(3t — 1))

V78
+e1,6-o— (231(3t — 1)% — 315(3t — 1)* + 105(3t — 1)? — 5)

=- 32
3v10
+enr (429(3t — 1)" — 693(3t — 1)® + 315(3¢ — 1)® — 35(3t — 1))
V102
+ens (6435(3t — 1)® — 12012(3¢ — 1)® + 6930(3t — 1)*

V114
—1260(3t — 1)? + 35) + c1,0 ( 556

(12155(3t — 1)? — 25740(3t — 1)7

+18018(3t — 1)® — 4620(3t — 1) + 315(3t — 1)))

01,0§ + c171¥(3(t —0.3)—1)+ cl,Q@(:a(:s(t —03)—1)2-1)

+ 01,3?(3(25 —0.3)—1)(5(3(t—0.3) —1)2 —3)

+ cl,4¥(35(3(t —0.3) = 1)* —30(3(t— 0.3) — 1)2 + 3)

+ c1,5‘{—6:f (63(3(t — 0.3) — 1)° — 70(3(t — 0.3) — 1) + 15(3(¢t — 0.3) — 1))
+ cl,e‘g—? (231(3(¢t — 0.3) — 1)® — 315(3(¢t — 0.3) — 1)*

- Vi
+105(3(t — 0.3) — 1)2 — 5) + c1,73320

(429(3(¢t — 0.3) — 1)7

—693(3(t — 0.3) — 1)® + 315(3(¢t — 0.3) — 1) — 35(3(t — 0.3) — 1))
V102

(&
-|—1,82

(6435(3( — 0.3) — 1)® — 12012(3(¢ — 0.3) — 1)°
+6930(3(t — 0.3) — 1)* — 1260(3(t — 0.3) — 1)? + 35)

12155(3(t — 0.3) — 1)? — 25740(3(¢t — 0.3) — 1)7+

V114
+ero | e | 18018(3(t —0.3) — 1) — 4620(3(¢ — 0.3) — 1)*+
315(3(¢t — 0.3) — 1)
+6(7t+0'3), (25)
Note that to determine the unknown coefficients

1,0, C1,1, C1,2, C1,3, C1,4, C1,5, C1,6, C1,7, C1,8, C1,9, We need ten equations.

Three equations are obtained using the initial conditions in (23) as follows:
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6 3 2\/ 22 246 8./66
c1,0%E — e11 32 40 o 2400 — 0 g A gy 200 ¢ SBYE0

2678 48/T5 128+/102 128114 _
te16%35 — €733 TC8 T 0 —CL97 955 = U,

(e1, 13V3 + 133VT + e153V11 + e173V15 + ¢ 93\/7) 26
— (c1,23V15 + €1,43V27 + ¢1,63v/39 + ¢1,83V/51)
+ (01’33\/>+ c1.53v55 + ¢1.73V75 + 01’93\/>) 2
— (€1,43V/63 + ¢1,63V/91 + ¢; §3V/119) (2T\/E>
+ (€1,53v99 + ¢1,73v/135 + ¢1,93V/171) (%)
(
=

w
£ 5
N——

%
o
N——

— (c1,63V143 + ¢1 g3V/IBT) BYEE 4 (¢ 13v/195 + ¢4 93v/247) L6178
¢1,53v/255) S510 1 (¢1,93v/323) 1250102 —

(¢1227V/5 + ¢1,4270 + ¢1,6189V/13 + ¢ 83241/17) LB

— (c1.845V/2T + €1,5126V/33 + ¢1,7243V/5 + €1,9396V/57) (242

+ (e14189V5 + ¢1,6162V/85 + 1,5297V5) (2420 )
— (e1,581V/TT + 1 7198v/105 + 1 9351/133) ( 42
+ (e1,699VTIT + €1,5234V/153) (288 — (e17117VI65 + €1,9270v/209) {58
+ (c1,8135v/221) 18YT8 _ (¢; 41531/285) 4810 — 1,

The reminder seven equations are obtained by inserting the smaller three
roots of the 1lth-order shifted Legendre polynomial, t; = 0.008698,tc =
0.04498, t3 = 0.1069,t4 = 0.1889,t5 = 0.2837,ts = 0.383,t; = 0.4778, in (25).

Solving this nonlinear 10 x 10 system gives

Ciox1 = [61,0 C1,1 €12 €1,3 C1,4 Ci15 C16 C1,7 C1,8 C1,9 ]T

= [0.59593988797141 —0.113848030223 0.00976752484854
—0.00054936985920 0.00002304551981  —0.00000077145558
0.00000002149144 —0.00000000051302 0.00000000001061

0.00000000000022 ]T

Hence, the approximate solution of Example 3 using our proposed GLW M

is obtained as
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y(t) = CcTw

= [0.59593988797141 —0.113848030223 0.00976752484854

—0.00054936985920 0.00002304551981 —0.00000077145558

0.00000002149144 —0.00000000051302 0.00000000001061 0.00000000000022 ]T
~ @ _
3¥2 (31— 1)
V30 (33t —1)2 — 1)
@ (3t — 1) (5(3t — 1)2 — 3)
% (35(3t — )% — 30(3t — 1)2 + 3)
* \{—6:6 (63(St —1)5 — 70(3t — 1)3 4+ 15(3t — 1) )
g (231(3t ~1)6 — 3153t — 1)4 + 1053t — 1)2 — 5 )

@ (429(3t —1)7 — 693(3t — 1) + 315(3t — 1)3 — 35(3t — 1) )

V102 (6435(3t —1)% —12012(3t — 1)6 4 6930(3t — 1)% — 1260(3t — 1)2 + 35)

V114
L 256

(12155(3t —1)9 — 25740(3t — 1)7 + 18018(3t — 1)® — 4620(3t — 1)3 + 315(3t — 1) ) ]

Along with the absolute errors compared to the exact solution, we can eval-
uate the approximation at the locations in the prescribed interval, 0 < ¢t < %

and summarized in the table (Table 10) below.

Table 10: Approximate solutions of [27, Example 3| using the RLWM and GLW M for
M=9

t Exact Solution Approximate Approximate
solution of solution of
RLWM GLWM
M=9k=0 M=9%k=1Lu=3
0.1 | 0.9048374180359596 | 0.9048374180282546 | 0.9048374180356493
0.2 | 0.8187307530779818 | 0.8187307530802117 | 0.8187307530782875
0.3 | 0.7408182206817179 | 0.740818220690352 | 0.7408182206816675
0.4 | 0.6703200460356393 | 0.6703200460269125 | 0.6703200460363143
0.5 | 0.6065306597126334 | 0.6065306597153067 | 0.6065306597129507
0.6 | 0.5488116360940264 | 0.5488116361078827 | 0.5488116360935682

In Table 11, absolute error comparisons for [27, Example 3] of the
present method with the RLWM, Hermite Polynomial Collocation Method,
H-CLSM, H-DLSM, Chebyshev Polynomial Collocation Method, C-CLSM
and C-DLSM are as follows:
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Table 11: Comparison of the absolute error for [27, Example 3] of the present method
with the RLWM, Hermite Polynomial Collocation Method, H-CLSM, H-DLSM, Cheby-
shev Polynomial Collocation Method, C-CLSM and C-DLSM.

t | Absolute | Absolute Absolute Absolute | Absolute Absolute Absolute | Absolute

error of error of error of error of error of error of error of error of
GLWM | RLWM Hermite H-CLSM | H-DLSM | Chebyshev | C-CLSM | C-DLSM
M =9, M =9, | Polynomial Polynomial
n=3, k=0 Collocation Collocation
=1 Method Method

0.2 | 3.06e-13 | 2.23e-12 6.20e-09 3.38e-10 | 1.38e-12 3.70e-07 3.05e-09 | 3.53e-12
0.4 | 6.75e-13 | 8.73e-12 5.76e-08 4.85e-09 | 7.33e-12 2.38e-06 9.42e-09 | 5.78e-11
0.6 | 4.58e-13 | 1.39e-11 1.79e-07 1.07e-08 | 1.77e-11 5.97e-06 2.68e-08 | 1.78e-10

5 Conclusion

As demonstrated in this study, the current method produces more accurate
findings than the other methods, especially the regular Legendre wavelets
method. This method has a substantially lower maximum absolute error than
the other numerical and semi-analytical ones for, simply solving, the delay
and neutral differential equations with proportion at delays of different orders
using our suggested GLW M, as demonstrated in this paper. We hope to see
the same accuracy in the author’s future research of fractional differential
equations based on the accurate results derived from these polynomials in

this work.
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