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Abstract

The goal of this study is to use our suggested generalized Legendre wavelet
method to solve delay and equations of neutral differential form with pro-
portionate delays of different orders. Delay differential equations have some
application in the mathematical and physical modelling of real-world prob-
lems such as human body control and multibody control systems, electric
circuits, dynamical behavior of a system in fluid mechanics, chemical en-
gineering, infectious diseases, bacteriophage infection’s spread, population
dynamics, epidemiology, physiology, immunology, and neural networks.
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901 A numerical computation for solving delay and neutral differential ...

The use of orthonormal polynomials is the key advantage of this method
because it reduces computational cost and runtime. Some examples are
provided to demonstrate the effectiveness and accuracy of the suggested
strategy. The method’s accuracy is reported in terms of absolute errors.
The numerical findings are compared to other numerical approaches in the
literature, particularly the regular Legendre wavelets method, and show
that the current method is quite effective in order to solve such sorts of
differential equations.

AMS subject classifications (2020): Primary 34K40; Secondary 65L05, 40C05.

Keywords: Generalized Legendre wavelets; orthonormal polynomials delay
differential equations; neutral differential equations; accuracy.

1 Introduction

Delay differential equations are important in the mathematical and physical
modelling of real-world problems such as human body control and multi-
body control systems, electric circuits, the dynamical behavior of a system in
fluid mechanics, chemical engineering [18, 33], infectious diseases, bacterio-
phage infection’s spread [9], population dynamics, epidemiology, physiology,
immunology, neural networks, and the application of Legendre wavelet for
solving differential pharmacology.

For solving nonlinear differential equations with proportional delays, there
are several numerical techniques, like the Runge–Kutta–Fehlberg methods
[25], Adomian decomposition method [8, 14, 26], Hermite wavelet-based
method [32], Aboodh transformation method [1], power series method [5],
decomposition method [34], differential transform method [22], Iterative vari-
ational approach [19], Pade’s series-based approach and power method [35],
spectral method [2], variable multistep methods [21], quasilinearization tech-
nique [28], polynomial least squares method [10], homotopy perturbation
method [31], first kind Bessel’s functions [39, 40], Legendre polynomials of
shifted form [41, 44], and the first Boubaker polynomial approach [12]. More-
over, solving equations of nonlinear ordinary differential type using colloca-
tion methods with the use of Bessel polynomials are studied in [38, 42, 43]. In
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El-Shazly and Ramadan 902

addition, numerous numerical approaches, such as the One-leg-method [36]
and Chebyshev polynomials [30], have been employed to approximate the
solutions of neutral differential equations. Gümgüm, Özdek,. and Özaltun
[16, 17] have presented Legendre wavelet solutions of both high order non-
linear ordinary delay differential equations and neutral differential equations
with proportional delays. Nisar et al. [24] presented the efficient and signifi-
cant solutions to a nonlinear fractional model. Zhang et al. [45] investigated
the multiple solitons, lump solitons, and interaction with two stripe soli-
ton solutions, for the fractional gCBS-BK equation. Amer and Olorode [3]
presented a numerical evaluation of a novel slot-drill enhanced oil recovery
technology for tight rocks.

In this paper, we use our suggested generalized Legendre wavelet ap-
proach (GLWM) [13] to solve delay and neutral differential equations with
proportionate delays of different orders in the following form:

3∑
p=0

Q∑
q=0

Rpq(t)y
(p)(t− ηpq(t)) +

2∑
r=0

r∑
s=0

Srs(t)y
(r)(δrst)y

(s)(γrst) = h(t),

Q ≤ 3, (1)

with the initial conditions

y(p)(0) = αp p = 0 , 1 , 2, (2)

where the given continuous functions Rpq(t), Srs(t), h (t) and the variable
delays ηpq(t) on 0 ≤ t < 1, δrs and γrs constants are assigned to indicate
proportional delays.

The mechanism of our suggested method is reducing computational cost
and runtime with the use of orthonormal polynomials. We provide vari-
ous examples to demonstrate the effectiveness and accuracy of the suggested
strategy. We reported the method’s accuracy in terms of absolute errors.
The numerical findings are compared to other numerical approaches in the
literature, particularly the regular Legendre wavelets method (RLWM), and
manifest that the current method is quite effective in order to solve such sorts
of differential equations.
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903 A numerical computation for solving delay and neutral differential ...

2 Definitions and preliminaries

2.1 Legendre wavelet and its properties

Considering a single function “mother wavelet” ψ(t), from which wavelets
represent a family of functions by dilating and transforming this single func-
tion. This family of continuous wavelets [15] has the following form:

ψa,b(t) = |a|−
1
2 ψ

(
t− b

a

)
, a, b ∈ R , a ̸= 0. (3)

The Legendre wavelets on the interval [0 , 1) is defined by

ψn,m(t) =


√
m+ 1

2 2
k
2Lm(2kt− n̂), n̂−1

2k
≤ t < n̂+1

2k
;

0 otherwise,
(4)

for which k is positive integer, n = 1 , 2 , . . . , 2k−1 and n̂ = 2n−1, the order
of the Legendre polynomial is denoted by m = 0 , 1 , 2 , . . . , M and the
normalized time is denoted by t. The Legendre polynomials acquired in the
above definition are defined as follows:

L0(t) = 1 ,

L1(t) = t ,

Lm+1(t) =
2m+ 1

m+ 1
t Lm(t)− m

m+ 1
Lm−1(t), m = 1, 2, 3, . . . ,

(5)

which are orthogonal over [−1, 1] with weighting function w(t) = 1, for more
details (see [4]). After shifting the Legendre polynomials by t = 2x − 1, the
shifted Legendre polynomials Lm(x) = L∗

m(2x − 1) that are orthogonal on
[0, 1) can be denoted as follows:

Lm(x) =

m∑
s=0

(−1)m+s (m+ s)!xs

(m− s)!(s!)2
.
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2.2 Generalized Legendre wavelet expansion

In this subsection, we offer a generalization for the Legendre wavelets method,
denoted by GLWM [13], for solving delay and neutral differential equations
with proportionate delays of different orders defined as in (1). The proposed
GLWM on the interval [0, 1) are defined by

ψ(µ)
n,m(t) =


√
m+ 1

2 µ
k
2Lm(µkt− n̂), n̂−1

µk ≤ t < n̂+1
µk ;

0 otherwise
(6)

for which k is positive integer, n = 1 , 2 , . . . , µk−1 , µ ≥ 3 and
n̂ = 2n − 1 and the order of the Legendre Polynomial is denoted by m =

0 , 1 , 2 , . . . , M and the normalized time is denoted by t.

3 Discussion and results

3.1 Function approximation

A function f(t) defined on [0, 1) may be expanded as infinite series of the
type seen below:

f(t) =

∞∑
n=1

∞∑
m=0

cn,m ψµ
n,m, (7)

where cn,m =< f, ψµ
n,m > =

∫ 1

0
f(t) ψµ

n,m(t) dt .

After trimming, (7) can be written as follows:

f(t) ≈
µk−1∑
n=1

M∑
m=0

cn,m ψµ
n,m(t) = CTΨ (t), (8)

where

C = [c1,0, c1,1, . . . , c1,M , c2,0, c2,1, . . . , c2,M , . . . , cµk−1,0cµk−1,1, . . . , cµk−1,M ]T

and
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905 A numerical computation for solving delay and neutral differential ...

Ψ(t) =[
ψµ
1,0ψ

µ
1,1 . . . ψ

µ
1,M . . . ψµ

2,0ψ
µ
2,1 . . . ψ

µ
2,M . . . ψµ

µk−1,0
ψµ
µk−1,1

. . . ψµ
µk−1,M

]T
.

3.2 Generalized Legendre wavelet operational matrix of
differentiation

The qth derivative of the vector Ψ(t), defined in (6) can be obtained by

dq

dtq
Ψ(t) = DqΨ(t) , (9)

where Dq is the qth power of the µk−1(M + 1) × µk−1(M + 1) operational
matrix of differentiation D, defined in [23] as follows:

D =


F 0 · · · 0

0 F · · ·
...

... . . . 0

0 · · · 0 F

 ,

where F is a (M + 1)× (M + 1) submatrix of the type

F = µk×

0 0 0 . . . 0 0
√
3 0 0 . . . 0 0

0
√
3
√
5 0 . . . 0 0

√
7 0

√
5
√
7 . . . 0 0

...
...

... . . .
...

...
√
2M + 1 0

√
5
√
2M + 1 . . .

√
2M − 1

√
2M + 1 0 }M is odd

0
√
3
√
2M + 1 0 . . .

√
2M − 1

√
2M + 1 0 }M is even


.

3.3 The use of the operational differentiation matrix

To address the problem presented in (1) and (2), we first find the approxi-
mated solution considering the truncated series in (8), utilizing generalized
Legendre wavelets as
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y(t) ≈
µk−1∑
n=1

M∑
m=0

cn,m ψµ
n,m(t) = CTΨ(t) , (10)

where the coefficients cn,m are to be determined. Using (9) to approximate
the pth derivative as

yp(t) = CT dp

dtp
Ψ(t) = CTDpΨ(t). (11)

Substituting (10) and (11) into (1) implies that

3∑
p=0

Q∑
q=0

Rpq(t)C
TDpΨ(t− ηpq(t))

+

2∑
r=0

r∑
s=0

Srs(t)C
TDrΨ (δrst) C

TDsΨ(γrst) = h(t) , Q ≤ 3.

(12)

We need µk−1(M +1) equations to determine the unbeknown coefficients
cn,m of the vector C. The first three equations are derived using the initial
conditions (2), (3), and (4) as

y(0) = CTD Ψ (0) ,

y(p) (0) = CTDp Ψ (0) , p = 1, 2 .

and µk−1(M + 1) − 3 equations are obtained by substituting the first
(µk−1(M + 1)) − 3 roots of shifted Legendre polynomial Pµk−1(M+1)(t) in
(12).

Then, using MATLAB, we can solve the obtained system of nonlinear
equations and the approximated solution in (10) is obtained.

3.4 Convergence criteria of the proposed GLWM

In this subsection, we discuss the theoretical analysis of the convergence of
our approach to solve (1).

We want to prove that y(t) =
∞∑

n=1

∞∑
m=0

cn,mψ
µ
n,m(t) defined in (10) using

the GLWM converges to y(t).
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907 A numerical computation for solving delay and neutral differential ...

Let L2(R) be the Hilbert space. We have shown that ψ
(µ)
n,m(t) =√

m+ 1
2µ

k
2Lm(µkt− n̂) forms an orthonormal basis [13].

Let y(t) =
M∑
i=0

hniψ
µ
ni(t) be a solution of (1) such that h1i = ⟨y(t), ψµ

1i(t)⟩

for n = 1 in which ⟨ . , . ⟩ denotes the inner product.

Let we denote ψµ
ni(t) = ψµ(t) and αj = ⟨y(t), ψµ(t)⟩

y(t) =

M∑
i=1

⟨y(t), ψµ
1i(t)⟩ ψ

µ
1i(t).

Consider the sequences of partial sums

Wn−1 =

n−1∑
j=1

αj ψ
µ(tj) and Wm−1 =

m−1∑
j=1

αj .ψ
µ(tj)

Then,

⟨y(t),Wn−1⟩ =

〈
y(t),

n−1∑
j=1

αj ψ
µ(tj)

〉
=

n−1∑
j=1

ᾱj ⟨y(t), ψµ(tj)⟩

=

n−1∑
j=1

ᾱj αj =

n−1∑
j=1

|αj |2 .

Moreover,

∥Wn−1 −Wm−1 ∥2 =

∥∥∥∥∥∥
n−1∑
j=m

αj ψ
µ(tj)

∥∥∥∥∥∥
2

=

〈
n−1∑
i=m

αi ψ
µ(ti) ,

n−1∑
j=m

αj ψ
µ(tj)

〉

=

n−1∑
i=m

n−1∑
j=m

αi ᾱj ⟨ψµ(ti) , ψ
µ(tj)⟩ =

n−1∑
i=m

| αi |2 .

As n→ ∞, by Bessel’s inequality, we get that
n−1∑
i=m

| αi |2 is convergent, it

yields that {Wn−1} is a Cauchy sequence and it converges to W (say).

Now, we have
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< W − y(t), ψµ(tj) > = < W,ψµ(tj) > − < y(t), ψµ(tj) >

= < lim
n→∞

Wn−1 , ψ
µ(tj) > − αj

= lim
n→∞

< Wn−1 , ψ
µ(tj) > − αj

= lim
n→∞

<

n−1∑
j=1

αj ψ
µ(tj) , ψ

µ(tj) > − αj

= αj − αj = 0,

which is satisfied only in the case if y(t) =W . Thus, y(t) =
∞∑
j=1

αj ψ
µ(tj).

3.5 Error bound

Suppose that the function y(t) defined in [0, 1] is m times continuously
differentiable function. Then there exists a mean error bound for the ap-

proximation of
µk−1∑
n=1

M∑
m=0

cn,m ψµ(t) = CTΨµ(t) to y(t) as follows [37]:

∥∥ y − CTψµ(t)
∥∥ ≤ 1

m!µmk
sup

t∈[0, 1]

∣∣∣y(m)(t)
∣∣∣ .

We divide the interval [0, 1] into subintervals
[
n̂−1
µk , n̂+1

µk

]
. So we can

approximate y(t) to the polynomial CTΨµ(t) of mth degree, taking into con-
sideration a minimum error for these subintervals. Therefore, we can utilize
the maximum error estimation for this polynomial that insets y(t), that is,

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 900–937



909 A numerical computation for solving delay and neutral differential ...∥∥ y − CTψµ(t)
∥∥2 =

∫ 1

0

[y(t)− CTψµ(t)] 2 dt

=

µk−1∑
n=1

∫ 2n
µk

2n−2
µk

[ y(t)− CTψµ(t)] 2 dt

≤
µk−1∑
n=1

∫ 2n
µk

2n−2
µk

[y(t)− y∗(t)] 2 dt

≤
µk−1∑
n=1

∫ 2n
µk

2n−2
µk

[
1

m!µmk
sup

t∈[0, 1]

∣∣∣y(m)(t)
∣∣∣]2 dt

≤
∫ 1

0

[
1

m!µmk
sup

t∈[0, 1]

∣∣∣y(m)(t)
∣∣∣]2 dt

=
1

m!µmk
sup

t∈[0, 1]

∣∣∣y(m)(t)
∣∣∣2 ,

where y∗(t) denotes the mth order interpolation of y(t). Taking the square
roots of both sides yields the desired outcome.

4 Numerical examples

In this section, we demonstrate the advantage and high accuracy of our pro-
posed GLWM by applying it to various conventional delay differential equa-
tions. All the numerical test examples of our program were carried out by
MATLAB R2015a.

Example 1. Assume the equation of the second-order neutral differential
form through proportional delays shown below [17]:

y′′(t) =
3

4
y(t) + y(

t

2
) + y′(

t

2
) +

1

2
y′′(

t

2
)− t2 − t+ 1, 0 ≤ t ≤ 1,

y(0) = 0 , y′(0) = 0.

(13)

The exact solution of this initial value problem is given by y(t) = t2.
We first apply the GLWM for M = 2, k = 1, µ = 3.
For this choice of M,k, µ, the function approximation for y(t) will take

the summation form,
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y(t) ≈
µk−1∑
n=1

M∑
m=0

cn , m ψ
µ

n,m(t) =

1∑
n=1

2∑
m=0

cn , m ψ
µ

n,m (t) = CTΨ , (14)

where C3×1 = [ c1,0 c1,1 c1,2 ]T andΨ3×1(t) =
[
ψ

µ

1,0(t) ψ
µ

1,1(t) ψ
µ

1,2(t)
]T
,

where the generalized Legendre wavelets ψµ

1,m(t) , m = 0, 1 , 2 in this
case, are given by

ψ
µ

1,0(t) =

{ √
2
√
3

2 , 0 ≤ t < 2
3 ,

0, otherwise,

ψ
µ

1,1(t) =

{
3
√
2

2 (3t− 1), 0 ≤ t < 2
3 ,

0, otherwise,

ψ
µ

1,2(t) =

{ √
15√
2
( 32 (3t− 1)2 − 1

2 ), 0 ≤ t < 2
3 ,

0, otherwise.

Thus, y(t) and y( t2 ) can be approximated as

y(t) = c1,0

√
2
√
3

2
+ c1,1

3
√
2

2
(3t− 1) + c1,2

√
15√
2

(
3

2
(3t− 1)2 − 1

2
) ,

y(
t

2
) = c1,0

√
2
√
3

2
+ c1,1

3
√
2

2
(3
t

2
−1) + c1,2

√
15√
2

(
3

2
(3
t

2
−1)2− 1

2
) .

To calculate the first and second derivatives of y(t), we use the 3 × 3

operational matrix of differentiationP and P 2 in the form

P =


0 0 0

3
√
3 0 0

0 3
√
15 0

 , P 2 =


0 0 0

0 0 0

9
√
45 0 0


as follows:

y′(t) = c1,13
√
3ψµ

1,0 + c1,23
√
15ψµ

1,1

= c1,13
√
3

√
2
√
3

2
+ c1,23

√
15

3
√
2

2
(3t− 1),

y′′(t) = c1,2 9
√
45 ψµ

1,0 = c1,2 9
√
45

√
2
√
3

2
,

and hence y′′( t2 ) = c1,2 9
√
45

√
2
√
3

2 .

Using these approximations, (13) takes the form
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911 A numerical computation for solving delay and neutral differential ...

c1,29
√
45

√
2
√
3

2
=

3

4
(c1,0

√
2
√
3

2
+ c1,1

3
√
2

2
(3t− 1) + c1,2

√
15

√
2
(
3

2
(3t− 1)2 −

1

2
)

+ (c1,0

√
2
√
3

2
+ c1,1

3
√
2

2
(3
t

2
− 1) + c1,2

√
15

√
2
(
3

2
(3
t

2
− 1)2 −

1

2
)

+ c1,13
√
3

√
2
√
3

2
+ c1,23

√
15

3
√
2

2
(3
t

2
− 1)

+
1

2
c1,2 9

√
45

√
2
√
3

2
− t2 − t + 1.

(15)

It should be noted that in order to find the unknown coefficients,
c1,0 c1,1 c1,2, we need three equations. Two equations are obtained from
the initial conditions in (13) as follows:

c1,0

√
2
√
3

2
− c1,1

3
√
2

2
+ c1,2

√
15√
2

= 0 ,

c1,1 3
√
3

√
2
√
3

2
− c1,2 3

√
15

3
√
2

2
= 0 .

We can gain the third equation by inserting the first root of third-order shifted
generalized Legendre polynomial, given by t = 0.07513, in (15). Solving this
3×3 nonlinear system gives

C3×1 = [c1,0 c1,1 c1,2]
T

= [0.12096245643373 0.104756560175784 0.027048027531119]
T
.

Hence, the approximate solution of [17, Example 1] using our proposed
GLWM is obtained as

y(t) = CTΨ

= [0.12096245643373 0.104756560175784 0.027048027531119]
T×

√
2
√
3

2
3
√
2

2 (3t− 1)
√
15√
2
( 32 (3t− 1)2 − 1

2 )

 .

Along with the absolute errors compared to the exact solution, the esti-
mates of the approximation can be evaluated at the locations in the prescribed
interval, 0 ≤ t < 2

3 and summarized in the table (Table 1) below.

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 900–937
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Table 1: Approximate solution and the absolute error of in [17, Example 1] using our
GLWM for M = 2; k = 1;µ = 3

t Exact solution Approximate solution Absolute error
0.1 0.01 0.009999999999990999 9.0015e-15
0.2 0.04 0.03999999999999143 8.5733e-15
0.3 0.09 0.08999999999999162 8.3786e-15
0.4 0.16 0.1599999999999916 8.4176e-15
0.5 0.25 0.2499999999999913 8.6902e-15
0.6 0.36 0.3599999999999908 9.1964e-15

Figure 1: Approximate solution against the exact solution for Example 1

In Table 2 below, absolute error comparisons between the proposed ap-
proach GLWM and the RLWM for the same M (M = 2) and other nu-
merical methods, namely, the Runge–Kutta method of two-stage order-one
case (RKM) [25], One-leg θ method with θ = 0.8 [36], variational iteration
method (VIM) with n = 6 [11], homotopy perturbation method (HPM) with
n = 6 [7], reproducing kernel Hilbert space method (RKHSM) with n = 100
[20], Legendre–Gauss collocation method (LCM) with n = 10 [6], homotopy
analysis method (HAM) with n = 6 [29] are provided. Also, we present
solutions on this interval for comparison because the numerical approaches
mentioned previously produced solutions in the same range. From Table 1,
Figure 1, and Table 2, we can presume that the current method is more ac-

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 900–937



913 A numerical computation for solving delay and neutral differential ...

curate, effective, and promising when compared to other numerical methods,
particularly with the normal Legendre wavelet method.

Table 2: Comparison of the absolute error of the suggested method with other numerical
methods

t Present method RLWM [17] One-leg θ RKM[25]
GLWM(M = 2) (M = 2) Method[36]

0.1 9.0015e-15 3.43e-11 6.10e-03 1.00e−03
0.2 8.5733e-15 7.79e-11 2.58e-02 2.02e−03
0.3 8.3786e-15 1.98e-10 6.47e-02 3.07e−03
0.4 8.4176e-15 3.26e-10 1.37e-01 4.17e−03
0.5 8.6902e-15 4.62e-10 2.81e-01 5.34e−03

t VIM RKHSM HPM HAM LCM
n = 6 [11] n = 100 [2] n = 6 [7] n = 6 [20] n = 10 [6]

0.1 1.67e−04 9.57e−06 1.67e−04 2.25e−08 6.59e−17
0.2 7.15e−04 1.95e−04 7.15e−04 9.81e−08 1.37e−17
0.3 1.73e−03 2.94e−04 1.72e−03 2.44e−07 5.67e−18
0.4 3.30e−03 3.93e−04 3.30e−03 4.90e−07 6.98e−17
0.5 5.55e−03 4.92e−04 5.55e−03 8.69e−07 2.13e−17

Example 2. Consider the following equation of the first order neutral dif-
ferential form through proportional delay [17]:

y′(t) = −y(t) + 0.1y(0.8t) + 0.5y′(0.8t) + (0.32t− 0.5)e−0.8t + e−t, 0 ≤ t ≤ 1

y(0) = 0.

(16)

The exact solution of this initial value problem is given by y(t) = te−t.
We first apply the GLWM for M = 4, k = 1, µ = 3.
For this choice of M,k, µ, the function approximation for y(t) will take

the summation form:

y(t) ≈
µk−1∑
n=1

M∑
m=0

cn,mψ
µ

n,m(t) =

1∑
n=1

4∑
m=0

cn,mψ
µ

n,m(t) = CTΨ, (17)
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where C5×1 = [c1,0 c1,1 c1,2 c1, 3 c1, 4]
T and

Ψ5×1(t) =
[
ψ

µ

1,0(t) ψ
µ

1,1(t) ψ
µ

1,2(t) ψ
µ

1,3(t) ψ
µ

1,4(t)
] T

,

where the generalized Legendre wavelets ψµ

1,m(t),m = 0, 1, 2, 3, 4, which in
this case, are given by

ψ
µ

1,0(t) =

{ √
6
2 , 0 ≤ t < 2

3 ,

0, otherwise,

ψ
µ

1,1(t) =

{
3
√
2

2 (3t− 1), 0 ≤ t < 2
3 ,

0, otherwise,

ψ
µ

1,2(t) =

{ √
30
4 (3(3t− 1)2 − 1), 0 ≤ t < 2

3 ,

0, otherwise,

ψ
µ

1,3(t) =

{ √
42
4 (3t− 1) (5(3t− 1)2 − 3), 0 ≤ t < 2

3 ,

0, otherwise,

ψ
µ

1,4(t) =

{
3
√
6

16 (35(3t− 1)4 − 30(3t− 1)2 + 3), 0 ≤ t < 2
3 ,

0, otherwise.

So, we can approximate y(t) and y(0.8t) as

y(t) =c1,0

√
6

2
+ c1,1

3
√
2

2
(3t− 1) + c1,2

√
30

4
(3(3t− 1)2 − 1)

+ c1,3

√
42

4
(3t− 1)(5(3t− 1)2 − 3)

+ c1,4
3
√
6

16
(35(3t− 1)4 − 30(3t− 1)2 + 3),

y(0.8t) =c1,0

√
6

2
+ c1,1

3
√
2

2
(3(0.8t)− 1) + c1,2

√
30

4
(3(3(0.8t)− 1)2 − 1)

+ c1,3

√
42

4
(3(0.8t)− 1)(5(3(0.8t)− 1)2 − 3)

+ c1,4
3
√
6

16
(35(3(0.8t)− 1)4 − 30(3(0.8t)− 1)2 + 3).

In order to approximate the first derivative of y(t), we use the 5 × 5

operational matrix of differentiation P in the form
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P =



0 0 0 0 0

3
√
3 0 0 0 0

0 3
√
15 0 0 0

3
√
7 0 3

√
35 0 0

0 3
√
27 0 3

√
63 0


,

as follows:

y′(t) =
(
c1,13

√
3 + c1,33

√
7
)
ψµ
1,0 +

(
c1,23

√
15 + c1,43

√
27
)
ψµ
1,1

+ c1,33
√
35ψµ

1,2 + c1,43
√
63ψµ

1,3.

Using these approximations, (16) takes the form

(c1,13
√
3 + c1,33

√
7)

√
6

2
+ (c1,23

√
15 + c1,43

√
27) (

3
√
2

2
(3t− 1))

+c1,33
√
35

(√
30

4
(3(3t− 1)2 − 1)

)
+ c1,43

√
63

(√
42

4
(3t− 1)(5(3t− 1)2 − 3)

)

= −


c1,0

√
6
2 + c1,1

3
√
2

2 (3t− 1) + c1,2
√
30
4 (3(3t− 1)2 − 1)

+c1,3
√
42
4 (3t− 1)(5(3t− 1)2 − 3)

+c1,4
3
√
6

16 (35(3t− 1)4 − 30(3t− 1)2 + 3)



+0.1


c1,0

√
6
2 + c1,1

3
√
2

2 (3(0.8t)− 1) + c1,2
√
30
4 (3(3(0.8t)− 1)2 − 1)

+c1,3
√
42
4 (3(0.8t)− 1)(5(3(0.8t)− 1)2 − 3)

+c1,4
3
√
6

16 (35(3(0.8t)− 1)4 − 30(3(0.8t)− 1)2 + 3)



+0.5


(
c1,13

√
3 + c1,33

√
7
) √

6
2 +

(
c1,23

√
15 + c1,43

√
27
) (

3
√
2

2 (3(0.8t)− 1)
)

+c1,33
√
35
(√

30
4 (3(3(0.8t)− 1)2 − 1)

)
+c1,43

√
63
(√

42
4 (3(0.8t)− 1) (5(3(0.8t)− 1)2 − 3)

)


+ (0.32t− 0.5)e−0.8t + e−t. (18)

Note that in order to determine the unknown coefficients
c1,0 c1,1 c1,2 c1,3 c1,4, we need five equations. One equation is ob-
tained from the initial conditions in (16) as follows:

c1,0

√
6

2
− c1,1

3
√
2

2
+ c1,2

√
30

2
− c1,3

√
42

2
+ c1,4

3
√
6

2
= 0.

The second, third, fourth, and fifth equations are obtained by inserting the
smaller four roots of the sixth-order shifted generalized Legendre polynomial,
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that are given by t1 = 0.03127, t2 = 0.1538, t3 = 0.3333, t4 = 0.5128 , in
(18).

Solving this nonlinear 5× 5 system gives

C5×1 = [ c1,0 c1,1 c1,2 c1,3 c1,4 ]T

= [0.17673294249913 0.07841472133705 0.01644085313212

0.00146577426114 0.00009124056578]
T
.

Hence, the approximate solution of Example 2 using our proposedGLWM

is obtained as

y(t) = CTΨ

= [0.17673294249913 0.07841472133705 0.01644085313212

0.00146577426114 0.00009124056578]
T

∗



√
6
2

3
√
2

2 (3t− 1)
√
30
4 (3(3t− 1)2 − 1)

√
42
4 (3t− 1) (5(3t− 1)2 − 3)

3
√
6

16 (35(3t− 1)4 − 30(3t− 1)2 + 3)


.

Along with the absolute errors compared to the exact solution, we can
evaluate the approximation at the locations in the prescribed interval, 0 ≤
t < 2

3 and summarized in the table (Table 3) below.

Table 3: Comparison of the absolute error for Example 2 of the suggested method with
other numerical methods

t suggested method RLWM [17] One-leg θ Two-stage Variational RKHSM HPM
GLWM (M = 4) Method[36] order-one iteration n = 100 [7] n = 6 [7]

(M = 4), µ = 3 Runge-Kutta method
method [25] n = 6 [11]

0.1 6.44e-07 1.19e−05 4.65e−03 8.68e−04 1.30e−03 1.42e−04 1.06e−03
0.2 3.78e-06 2.01e−05 1.45e−02 1.49e−03 2.14e−03 1.17e−04 1.35e−03
0.3 2.50e-06 2.40e−05 2.57e−02 1.90e−03 2.63e−03 9.45e−04 1.18e−03
0.4 3.33e-06 2.15e−06 3.60e−02 2.16e−03 2.84e−03 7.59e−04 7.61e−04
0.5 5.88e-06 2.76e−05 4.43e−02 2.28e−03 2.83e−03 6.03e−04 2.32e−04
0.6 1.35e-05 2.13e−05 5.03e−02 2.31e−03 2.67e−03 4.73e−04 2.98e−04

In Table 3 and Figure 2, absolute error comparisons between the proposed
approach GLWM and the RLWM for the same M (M = 2) and other
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Figure 2: Absolute error for Example 2 using the presented method against the other
methods listed in Table 3

numerical methods, Runge–Kutta method of two-stage order-one case (RKM)
[26], One-leg θ method with θ = 0.8 [36], Variational iteration method (VIM)
with n = 6 [11], Homotopy perturbation method (HPM) with n = 6 [7],
Reproducing Kernel Hilbert space method (RKHSM) with n = 100 [20],
Legendre–Gauss collocation method (LCM) with n = 10 [6], Homotopy
analysis method(HAM) with n = 6 [29] are provided.

We can presume that the current method is more effective and promising
when compared to other numerical solutions, particularly with the normal
Legendre wavelet method. Moreover, the absolute errors compared to the
exact solution, we can evaluate the approximation at the locations in the
prescribed interval, 0 ≤ t < 1

2 , for two values of µ = 3 , µ = 4 and
summarized in the next table, Table 4, given as.

As, one can see the absolute error is improved as we increase the values
of the parameter µ .

Example 3. Consider the following third order nonlinear equation with pro-
portional delay [16]:

y′′′(t) + 1 − 2y2(
t

2
) = 0 , 0 ≤ t < 1 .

y(0) = 0 , y′(0) = 1 , y′′(0) = 0,

(19)

with the exact solution of the type y(t) = sin (t).
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Table 4: Comparison of the absolute error for Example 2 of our proposed method GLWM
in two cases µ = 3 , µ = 4.

t Present method Present method
GLWM(M = 4) , µ = 3 GLWM(M = 4) , µ = 4

0.1 6.44e-07 7.52 e-07
0.2 3.78e-06 1.49e-08
0.3 2.50e-06 8.55e-07
0.4 3.33e-06 1.64e-06
0.5 5.88e-06 2.43e-05

We first apply the GLWM for M = 5, k = 1, µ = 3.

For this choice of M, k , µ, the function approximation for y(t) will
take the summation form:

y(t) ≈
µk−1∑
n=1

M∑
m=0

cn , m ψ
µ

n,m(t) =

1∑
n=1

5∑
m=0

cn , m ψ
µ

n,m (t) = CTΨ , (20)

where C6×1 = [ c1,0 c1,1 c1,2 c1, 3 c1, 4 c1, 5]
T and

Ψ6×1(t) =
[
ψ

µ

1,0(t) ψ
µ

1,1(t) ψ
µ

1,2(t) ψ
µ

1,3(t) ψ
µ

1,4(t) ψ
µ

1,5(t)
] T

,

where the generalized Legendre wavelets are ψµ

1,m(t) , m = 0, 1 , 2 , 3, 4, 5.

So, we can approximate y(t) and y(t/2) as

y(t) =c1,0

√
6

2
+ c1,1

3
√
2

2
(3t− 1) + c1,2

√
30

4
(3(3t− 1)2 − 1)

+ c1,3

√
42

4
(3t− 1) (5(3t− 1)2 − 3)

+ c1,4
3
√
6

16
(35(3t− 1)4 − 30(3t− 1)2 + 3)

+ c1,5

√
66

16

(
63(3t− 1)5 − 70(3t− 1)3 + 15(3t− 1)

)
,
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y(t/2) =c1,0

√
6

2
+ c1,1

3
√
2

2
(3(t/2)− 1) + c1,2

√
30

4
(3(3(t/2)− 1)2 − 1)

+ c1,3

√
42

4
(3(t/2)− 1)(5(3(t/2)− 1)2 − 3)

+ c1,4
3
√
6

16
(35(3(t/2)− 1)4 − 30(3(t/2)− 1)2 + 3)

+ c1,5

√
66

16

(
63(3(t/2)− 1)5 − 70(3(t/2)− 1)3 + 15(3(t/2)− 1)

)
.

To approximate the first, second, and third derivatives of y(t), we use the
6× 6 operational matrix of differentiation P in the form

P =



0 0 0 0 0 0

3
√
3 0 0 0 0 0

0 3
√
15 0 0 0 0

3
√
7 0 3

√
35 0 0 0

0 3
√
27 0 3

√
63 0 0

3
√
11 0 3

√
55 0 3

√
99 0


,

P 2 =



0 0 0 0 0 0

0 0 0 0 0 0

9
√
45 0 0 0 0 0

0 9
√
15
√
35 0 0 0 0

0 0 9
√
35

√
63 0 0 0

0 9
√
15
√
55 + 9

√
27
√
99 0 9

√
63
√
99 0 0


,

and

P 3 =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

27
√
35

√
45 0 0 0 0 0

0 27
√
15

√
35

√
63 0 0 0 0

27
√
45

√
55 + 27

√
81

√
99 + 27

√
7
√
63

√
99 0 27

√
35

√
63

√
99 0 0 0


,

as follows:
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y′(t) =
(
c1,13

√
3 + c1,33

√
7 + c1,53

√
11
)
ψµ
1,0 +

(
c1,23

√
15 + c1,43

√
27
)
ψµ
1,1

+
(
c1,33

√
35 + c1,53

√
55
)
ψµ
1,2 + c1,43

√
63 ψµ

1,3 + c1,5 3
√
99ψµ

1,4

=
(
c1,13

√
3 + c1,33

√
7 + c1,53

√
11
) √

6

2

+
(
c1,23

√
15 + c1,43

√
27
)(3

√
2

2
(3t− 1)

)

+
(
c1,33

√
35 + c1,53

√
55
)(√

30

4
(3(3t− 1)2 − 1)

)

+ c1,43
√
63

(√
42

4
(3t− 1)(5(3t− 1)2 − 3)

)

+ c1,53
√
99

(
3
√
6

16
(35(3t− 1)4 − 30(3t− 1)2 + 3)

)
,

y′′(t) =
(
c1,29

√
45
)
ψµ
1,0 +

(
c1,39

√
35

√
15 + c1,5

(
9
√
55

√
15 + 9

√
27

√
99
))

ψµ
1,1

+
(
c1,49

√
63
√
35
)
ψµ
1,2 + c1,59

√
99

√
63ψµ

1,3

=
(
c1,29

√
45
) √

6

2
+
(
c1,39

√
35
√
15 + c1,5

(
9
√
55
√
15 + 9

√
27

√
99
) )

×

(
3
√
2

2
(3t− 1)

)
+
(
c1,49

√
63

√
35
)(√

30

4
(3(3t− 1)2 − 1)

)

+ c1,59
√
99
√
63

(√
42

4
(3t− 1)(5(3t− 1)2 − 3)

)
,

y′′′(t) =
(
c1,327

√
35
√
45 + c1,5

(
27
√
55
√
45 + 27

√
81
√
99 + 27

√
7
√
63

√
99
))

ψµ
1,0

+
(
c1,427

√
63
√
35
√
15
)
ψµ
1,1 +

(
c1,527

√
63

√
35
√
99
)
ψµ
1,2

=
(
c1,327

√
35
√
45 + c1,5

(
27
√
55
√
45 + 27

√
81
√
99 + 27

√
7
√
63

√
99
)) √

6

2

+
(
c1,427

√
63
√
35
√
15
)(3

√
2

2
(3t− 1)

)

+
(
c1,527

√
63
√
35
√
99
) (√

30

4
(3(3t− 1)2 − 1)

)
.

Using these approximations, (19) takes the form
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c1,327

√
35
√
45 + c1,5

(
27
√
55
√
45 + 27

√
81
√
99 + 27

√
7
√
63

√
99
)) √

6

2

+
(
c1,427

√
63
√
35
√
15
)(3

√
2

2
(3t− 1)

)

+
(
c1,527

√
63
√
35
√
99
)(√

30

4
(3(3t− 1)2 − 1)

)
+ 1

− 2


c1,0

√
6
2 + c1,1

3
√
2

2 (3(t/2)− 1) + c1,2
√
30
4 (3(3(t/2)− 1)2 − 1)

+c1,3
√
42
4 (3(t/2)− 1)(5(3(t/2)− 1)2 − 3)

+c1,4
3
√
6

16 (35(3(t/2)− 1)4 − 30(3(t/2)− 1)2 + 3)

+c1,5
√
66
16

(
63(3(t/2)− 1)5 − 70(3(t/2)− 1)3 + 15(3(t/2)− 1)

)


2

= 0.

(21)

Note that in order to determine the unknown coefficients
c1,0 c1,1 c1,2 c1,3 c1,4 c1,5 , we need six equations. Three equa-
tions are obtained from the initial conditions in (19) as follows:

c1,0

√
6

2
− c1,1

3
√
2

2
+ c1,2

2
√
30

4
− c1,3

2
√
42

4
+ c1,4

24
√
6

16
− c1,5

8
√
66

16
= 0,

(
c1,13

√
3 + c1,33

√
7 + c1,53

√
11
) √

6

2
−
(
c1,23

√
15 + c1,43

√
27
)(3

√
2

2

)

+
(
c1,33

√
35 + c1,53

√
55
)(2

√
30

4

)
− c1,43

√
63

(
2
√
42

4

)

+ c1,53
√
99

(
24
√
6

16

)
= 1,

(
c1,29

√
45
) √

6

2
−
(
c1,39

√
35
√
15 + c1,5

(
9
√
55

√
15 + 9

√
27

√
99
))(3

√
2

2

)

+
(
c1,49

√
63
√
35
)(2

√
30

4

)
− c1,59

√
99
√
63

(
2
√
42

4

)
= 0.

The fourth, fifth, and sixth equations are obtained by inserting the smaller
three roots of the seventh order shifted generalized Legendre polynomial,
t1 = 0.02251, t2 = 0.1129, t3 = 0.2538, in (21).

Solving this nonlinear 6× 6 system gives
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C6×1 = [ c1,0 c1,1 c1,2 c1,3 c1,4 c1,5 ]T

= [0.26223389730166 0.14684295578193 −0.00438943865859

−0.00071526649488 0.00001058352043 0.00000106184998 ]
T
.

Hence, the approximate solution of Example 3 using our proposedGLWM

is obtained as

y(t) = CTΨ

= [0.26223389730166 0.14684295578193 −0.00438943865859

−0.00071526649488 0.00001058352043 0.00000106184998]T

∗



√
6

2
3
√
2

2
(3t− 1)

√
30
4

(3(3t− 1)2 − 1)
√
42
4

(3t− 1) (5(3t− 1)2 − 3)

3
√
6

16
(35(3t− 1)4 − 30(3t− 1)2 + 3)

√
66

16

(
63(3t− 1)5 − 70(3t− 1)3 + 15(3t− 1)

)


.

Along with the absolute errors compared to the exact solution, we can
evaluate the approximation at the locations in the prescribed interval, 0 ≤
t < 2

3 , and summarized in the table (Table 5) below.

Table 5: Numerical results and the absolute error for Example 3 for our proposed
method GLWM using fifth- and sixth-order polynomials (M = 5 , 6)

t Exact solution Approximate solution M = 5 Absolute Error Approximate solution M = 6 Absolute Error
Present method GLWM Present method GLWM

(M = 5, µ = 3, k = 1) (M = 6, µ = 3, k = 1)

0.1 0.09983341665 0.09983341651 1.369e-10 0.09983341665 1.969e-12
0.2 0.1986693308 0.198669332 1.2394e-09 0.1986693307 9.529e-11
0.3 0.2955202067 0.2955202026 4.0622e-09 0.2955202072 5.532e-10
0.4 0.3894183423 0.3894183507 8.4262e-09 0.3894183404 1.956e-9
0.5 0.4794255386 0.4794258702 3.3162e-07 0.4794255601 2.152e-8
0.6 0.5646424734 0.5646445308 2.0574e-06 0.5646427814 3.08e-7

In Table 6, absolute error comparisons between the proposed approach
GLWM and the RLWM and other numerical methods is shown.

Example 4. Assume the following equation of the second order nonlinear
differential form through proportional delay [16]:

y′′(t) + 2 y(t)− y2(t) + y(t3/8) = sin t− sin2 t+ sin(t3/8), 0 ≤ t ≤ 1,

y(0) = 0, y′(0) = 1,

(22)
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Table 6: Comparison of the absolute errors with other numerical methods

t Absolute Error Absolute Error Absolute Error Absolute Error Decomposition Adomian
for present method for present method for Legendre for Legendre Method decomposition

GLWM GLWM wavelets method wavelets method E13 [34] Method E9 [14]
(M = 5) (M = 6) RLWM RLWM

(µ = 3, k = 1) (µ = 3, k = 1) (M = 5) (M = 6)

0.1 1.369e-10 1.969e-12 2.54e-09 5.37e-10 0.0 1.02e-15
0.2 1.2394e-09 9.529e-11 3.24e-09 1.39e-09 0.0 5.28e-13
0.3 4.0622e-09 5.532e-10 2.11e-08 1.59e-09 0.0 2.02e-11
0.4 8.4262e-09 1.956e-9 1.44e-08 7.06e-09 0.0 2.69e-10
0.5 3.3162e-07 2.152e-8 1.21e-07 3.52e-09 2.61e-09 2.00e-09
0.6 2.0574e-06 3.08e-7 1.42e-07 3.27e-08 1.04e-08 1.03e-08

with the exact solution of the form y(t) = sin t. Comparison between
approximate solution and the absolute error of [16, Example 3] using our
GLWM for M = 5, 6; k = 1;µ = 3 is listed (in Table 7) below. Also, compar-
ison between the absolute error for Example 4 of the present method with
the RLWM of [16, Example 3] is listed in Table 8.

Table 7: Approximate solution and the absolute error of [16, Example 3] using our
GLWM for M=5, 6; k = 1; µ = 3

t Exact Solution Approximate solution Approximate solution
M=5; k = 1; µ = 3 M=6; k = 1; µ = 3

0.1 0.09983341665 0.09983341629 0.09983341679
0.2 0.1986693308 0.1986693294 0.1986693306
0.3 0.2955202067 0.2955202132 0.2955202065
0.4 0.3894183423 0.3894183346 0.3894183434
0.5 0.4794255386 0.4794255315 0.4794255352
0.6 0.5646424734 0.5646429917 0.5646425129

Along with the absolute errors compared to the exact solution, we can
evaluate the approximation at the locations in the prescribed interval, 0 ≤
t < 1

2 , for two values of µ = 3, µ = 4 and summarized in the table (Table 9)
below.

Example 5. Consider the following third order nonlinear differential equa-
tion with proportional delay [27]:
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Table 8: Comparison of the absolute error for Example 4 of the present method with
the RLWM of [16, Example 3]

t Present method RLWM [13] RLWM [16] RLWM [16]
GLWMM = 5, M = 6, M = 5, k = 0 M = 6, k = 0

µ = 3, k = 1 µ = 3, k = 1

0.1 3.562e-10 1.3936e-10 8.963065387e-09 3.389353381e-10
0.2 1.414e-9 1.846e-10 2.720358344e-08 3.618011279e-09
0.3 6.549e-9 1.6084e-10 2.394278514e-08 3.060617093e-09
0.4 7.734e-9 1.1379e-9 6.937304025e-08 7.998320783e-09
0.5 7.082e-9 3.3891e-9 1.053035117e-07 7.465058682e-09
0.6 5.183e-7 3.9459e-8 1.310158346e-07 1.884611267e-08

Table 9: Comparison of the absolute error for Example 4 of our proposed method GLWM
in two cases µ = 3 , µ = 4

t Present method Present method Present method Present method
GLWM GLWM GLWM GLWM

(M = 5), µ = 3 (M = 5), µ = 4 (M = 6), µ = 3 (M = 5), µ = 4

0.1 3.562e-10 2.158e-10 1.3936e-10 2.9452e-11
0.2 1.414e-9 5.474e-10 1.846e-10 6.4737e-11
0.3 6.549e-9 1.051e-9 1.6084e-10 1.5656e-10
0.4 7.734e-9 7.761e-9 1.1379e-9 2.8361e-10
0.5 7.082e-9 2.619e-7 3.3891e-9 3.3032e-8

y′′′(t) = −y(t)− y(t− 0.3) + e(−t+0.3), 0 ≤ t ≤ 1,

y(0) = 0 , y′(0) = −1, y′′(0) = 1,
(23)

with the exact solution of the form y(t) = e−t.
We first apply the GLWM for M = 9, k = 1, µ = 3.
For this choice ofM,k,µ, the function approximation for y(t) will take the

summation form,

y(t) ≈
µk−1∑
n=1

M∑
m=0

cn , m ψ
µ

n,m(t) =

1∑
n=1

9∑
m=0

cn , m ψ
µ

n,m (t) = CTΨ , (24)
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where C10×1 = [ c1,0 c1,1 c1,2 c1, 3 c1, 4 c1,5 c1,6 c1,7 c1,8 c1,9 ]T and

Ψ10×1(t) =

ψµ

1,0(t) ψ
µ

1,1(t) ψ
µ

1,2(t) ψ
µ

1,3(t) ψ
µ

1,4(t)

ψ
µ

1,5(t) ψ
µ

1,6(t) ψ
µ

1,7(t) ψ
µ

1,8(t) ψ
µ

1,9(t)

 T

,

where the generalized Legendre wavelets are ψµ

1,m(t),m = 0, 1, 2, . . . , 9.

Thus, y(t) and y(t− 0.3) can be approximated as

y(t) =c1,0

√
6

2
+ c1,1

3
√
2

2
(3t− 1) + c1,2

√
30

4
(3(3t− 1)2 − 1)

+ c1,3

√
42

4
(3t− 1)(5(3t− 1)2 − 3)

+ c1,4
3
√
6

16
(35(3t− 1)4 − 30(3t− 1)2 + 3)

+ c1,5

√
66

16

(
63(3t− 1)5 − 70(3t− 1)3 + 15(3t− 1)

)
+ c1,6

√
78

32

(
231(3t− 1)6 − 315(3t− 1)4 + 105(3t− 1)2 − 5

)
+ c1,7

3
√
10

32

(
429(3t− 1)7 − 693(3t− 1)5 + 315(3t− 1)3 − 35(3t− 1)

)
+ c1,8

√
102

256
(6435(3t− 1)8 − 12012(3t− 1)6 + 6930(3t− 1)4

− 1260(3t− 1)2 + 35) + c1,9

(√
114

256

(
12155(3t− 1)9 − 25740(3t− 1)7

+18018(3t− 1)5 − 4620(3t− 1)3 + 315(3t− 1)
))
,

y(t− 0.3) =c1,0

√
6

2
+ c1,1

3
√
2

2
(3(t− 0.3)− 1) + c1,2

√
30

4
(3(3(t− 0.3)− 1)2 − 1)

+ c1,3

√
42

4
(3(t− 0.3)− 1)(5(3(t− 0.3)− 1)2 − 3)

+ c1,4
3
√
6

16
(35(3(t− 0.3)− 1)4 − 30(3(t− 0.3)− 1)2 + 3)

+ c1,5

√
66

16

(
63(3(t− 0.3)− 1)5 − 70(3(t− 0.3)− 1)3 + 15(3(t− 0.3)− 1)

)
+ c1,6

√
78

32

(
231(3(t− 0.3)− 1)6 − 315(3(t− 0.3)− 1)4

+105(3(t− 0.3)− 1)2 − 5
)
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+ c1,7
3
√
10

32

(
429(3(t− 0.3)− 1)7

−693(3(t− 0.3)− 1)5 + 315(3(t− 0.3)− 1)3 − 35(3(t− 0.3)− 1)
)

+ c1,8

√
102

256

(
6435(3(t− 0.3)− 1)8 − 12012(3(t− 0.3)− 1)6

+6930(3(t− 0.3)− 1)4 − 1260(3(t− 0.3)− 1)2 + 35
)

+ c1,9


√
114

256


12155(3(t− 0.3)− 1)9 − 25740(3(t− 0.3)− 1)7+

18018(3(t− 0.3)− 1)5 − 4620(3(t− 0.3)− 1)3

+315(3(t− 0.3)− 1)


 ,

In order to approximate the first, second, and third derivatives of y(t),
we use the 10× 10 operational matrix of differentiation P in the form

P =



0 0 0 0 0 0 0 0 0 0

3
√
3 0 0 0 0 0 0 0 0 0

0 3
√
15 0 0 0 0 0 0 0 0

3
√
7 0 3

√
35 0 0 0 0 0 0 0

0 3
√
27 0 3

√
63 0 0 0 0 0 0

3
√
11 0 3

√
55 0 3

√
99 0 0 0 0 0

0 3
√
39 0 3

√
91 0 3

√
143 0 0 0 0

3
√
15 0 3

√
75 0 3

√
135 0 3

√
195 0 0 0

0 3
√
51 0 3

√
119 0 3

√
187 0 3

√
255 0 0

3
√
19 0 3

√
95 0 3

√
171 0 3

√
247 0 3

√
323 0



,

P 2 = 1.0e+ 03

∗



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0.060 0 0 0 0 0 0 0 0 0

0 0.2062 0 0 0 0 0 0 0 0

0.2700 0 0.4226 0 0 0 0 0 0 0

0 0.7238 0 0.7108 0 0 0 0 0 0

0.6814 0 1.3061 0 1.0708 0 0 0 0 0

0 1.6301 0 2.0289 0 1.5029 0 0 0 0

1.3359 0 2.7382 0 2.8944 0 2.0069 0 0 0

0 2.9897 0 4.0479 0 3.9033 0 2.5829 0 0



,

and
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P 3 = 1.0e+ 05

∗



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0.0107 0 0 0 0 0 0 0 0 0

0 0.0491 0 0 0 0 0 0 0 0

0.0940 0 0.1261 0 0 0 0 0 0 0

0 0.3187 0 0.2550 0 0 0 0 0 0

0.3953 0 0.6945 0 0.4486 0 0 0 0 0

0 1.1453 0 1.2636 0 0.7200 0 0 0 0

1.1651 0 2.2579 0 2.0655 0 1.0821 0 0 0



,

as follows:

y′(t) =(c1,13
√
3 + c1,33

√
7 + c1,53

√
11 + c1,73

√
15 + c1,93

√
19)ψµ

1,0

+(c1,23
√
15 + c1,43

√
27 + c1,6 3

√
39 + c1,83

√
51)ψµ

1,1

+(c1,33
√
35 + c1,53

√
55 + c1,73

√
75 + c1,93

√
95)ψµ

1,2

+(c1,43
√
63 + c1,63

√
91 + c1,83

√
119)ψµ

1,3

+(c1,5 3
√
99 + c1,73

√
135 + c1,93

√
171)ψµ

1,4

+(c1,63
√
143 + c1,83

√
187)ψµ

1,5 + (c1,73
√
195 + c1,93

√
247)ψµ

1,6

+(c1,83
√
255)ψµ

1,7 + (c1,93
√
323)ψµ

1,8

=(c1,13
√
3 + c1,33

√
7 + c1,53

√
11 + c1,7 3

√
15 + c1,93

√
19)

√
6

2

+(c1,2 3
√
15 + c1,43

√
27 + c1,6 3

√
39 + c1,83

√
51)(

3
√
2

2
(3t− 1))

+(c1,33
√
35 + c1,53

√
55 + c1,7 3

√
75 + c1,93

√
95)(

√
30

4
(3(3t− 1)2 − 1))

+(c1,43
√
63 + c1,63

√
91 + c1,83

√
119) (

√
42

4
(3t− 1)(5(3t− 1)2 − 3))

+
(
c1,53

√
99 + c1,73

√
135 + c1,93

√
171
)(3

√
6

16
(35(3t− 1)4 − 30(3t− 1)2 + 3)

)
+
(
c1,63

√
143 + c1,83

√
187
) √

66

16

(
63(3t− 1)5 − 70(3t− 1)3 + 15(3t− 1)

)
+
(
c1,73

√
195 + c1,93

√
247
) √

78

32

(
231(3t− 1)6 − 315(3t− 1)4 + 105(3t− 1)2 − 5

)
+
(
c1,83

√
255
) 3

√
10

32

(
429(3t− 1)7 − 693(3t− 1)5 + 315(3t− 1)3 − 35(3t− 1)

)
+
(
c1,93

√
323
) √

102

256

(
6435(3t− 1)8 − 12012(3t− 1)6

+6930(3t− 1)4 − 1260(3t− 1)2 + 35
)
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y′′(t) =
(
c1,227

√
5 + c1,4270 + c1,6189

√
13 + c1,8324

√
17
) √

6

2

+
(
c1,345

√
21 + c1,5126

√
33 + c1,7243

√
45 + c1,9396

√
57
)(3

√
2

2
(3t− 1)

)
+
(
c1,4189

√
5 + c1,6162

√
65 + c1,8297

√
85
)(√

30

4
(3(3t− 1)2 − 1)

)
+
(
c1,581

√
77 + c1,7198

√
105 + c1,9351

√
133
)(√

42

4
(3t− 1)(5(3t− 1)2 − 3)

)
+
(
c1,699

√
117 + c1,8234

√
153
)(3

√
6

16
(35(3t− 1)4 − 30(3t− 1)2 + 3)

)
+
(
c1,7117

√
165 + c1,9270

√
209
) √

66

16

(
63(3t− 1)5 − 70(3t− 1)3 + 15(3t− 1)

)
+
(
c1,8135

√
221
) √

78

32

(
231(3t− 1)6 − 315(3t− 1)4 + 105(3t− 1)2 − 5

)
+
(
c1,9153

√
285
) 3

√
10

32

(
429(3t− 1)7 − 693(3t− 1)5 + 315(3t− 1)3 − 35(3t− 1)

)

y′′′(t) =1.0e+ 05

∗



(0.0107c1,3 + 0.0940c1,5 + 0.3953c1,7 + 1.1651c1,9)
√
6
2

+(0.0491c1,4 + 0.3187c1,6 + 1.1453c1,8)
(

3
√
2

2 (3t− 1)
)

+(0.1261c1,5 + 0.6945c1,7 + 2.2579c1,9)
(√

30
4 (3(3t− 1)2 − 1)

)
+(0.2550c1,6 + 1.2636c1,8)

(√
42
4 (3t− 1)(5(3t− 1)2 − 3)

)
+(0.4486c1,7 + 2.0655c1,9)

(
3
√
6

16 (35(3t− 1)4 − 30(3t− 1)2 + 3)
)

+(0.7200c1,8)
√
66
16

(
63(3t− 1)5 − 70(3t− 1)3 + 15(3t− 1)

)
+(1.0821c1,9)

√
78
32

(
231(3t− 1)6 − 315(3t− 1)4 + 105(3t− 1)2 − 5

)


Using these approximations, (24) takes the form

1.0e+ 05

∗



(0.0107c1,3 + 0.0940c1,5 + 0.3953c1,7 + 1.1651c1,9)
√
6
2

+(0.0491c1,4 + 0.3187c1,6 + 1.1453c1,8)
(

3
√
2

2 (3t− 1)
)

+(0.1261c1,5 + 0.6945c1,7 + 2.2579c1,9)
(√

30
4 (3(3t− 1)2 − 1)

)
+(0.2550c1,6 + 1.2636c1,8)

(√
42
4 (3t− 1)(5(3t− 1)2 − 3)

)
+(0.4486c1,7 + 2.0655c1,9)

(
3
√
6

16 (35(3t− 1)4 − 30(3t− 1)2 + 3)
)

+(0.7200c1,8)
√
66
16

(
63(3t− 1)5 − 70(3t− 1)3 + 15(3t− 1)

)
+(1.0821c1,9)

√
78
32

(
231(3t− 1)6 − 315(3t− 1)4 + 105(3t− 1)2 − 5

)
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= −



c1,0

√
6

2
+ c1,1

3
√
2

2
(3t− 1) + c1,2

√
30

4
(3(3t− 1)2 − 1)

+ c1,3

√
42

4
(3t− 1)(5(3t− 1)2 − 3)

+ c1,4
3
√
6

16
(35(3t− 1)4 − 30(3t− 1)2 + 3)

+ c1,5

√
66

16

(
63(3t− 1)5 − 70(3t− 1)3 + 15(3t− 1)

)
+ c1,6

√
78

32

(
231(3t− 1)6 − 315(3t− 1)4 + 105(3t− 1)2 − 5

)
+ c1,7

3
√
10

32

(
429(3t− 1)7 − 693(3t− 1)5 + 315(3t− 1)3 − 35(3t− 1)

)
+ c1,8

√
102

256

(
6435(3t− 1)8 − 12012(3t− 1)6 + 6930(3t− 1)4

−1260(3t− 1)2 + 35
)
+ c1,9

(√
114

256

(
12155(3t− 1)9 − 25740(3t− 1)7

+18018(3t− 1)5 − 4620(3t− 1)3 + 315(3t− 1)
))



−



c1,0

√
6

2
+ c1,1

3
√
2

2
(3(t− 0.3)− 1) + c1,2

√
30

4
(3(3(t− 0.3)− 1)2 − 1)

+ c1,3

√
42

4
(3(t− 0.3)− 1)(5(3(t− 0.3)− 1)2 − 3)

+ c1,4
3
√
6

16
(35(3(t− 0.3)− 1)4 − 30(3(t− 0.3)− 1)2 + 3)

+ c1,5

√
66

16

(
63(3(t− 0.3)− 1)5 − 70(3(t− 0.3)− 1)3 + 15(3(t− 0.3)− 1)

)
+ c1,6

√
78

32

(
231(3(t− 0.3)− 1)6 − 315(3(t− 0.3)− 1)4

+105(3(t− 0.3)− 1)2 − 5
)
+ c1,7

3
√
10

32

(
429(3(t− 0.3)− 1)7

−693(3(t− 0.3)− 1)5 + 315(3(t− 0.3)− 1)3 − 35(3(t− 0.3)− 1)
)

+ c1,8

√
102

256

(
6435(3(t− 0.3)− 1)8 − 12012(3(t− 0.3)− 1)6

+6930(3(t− 0.3)− 1)4 − 1260(3(t− 0.3)− 1)2 + 35
)

+ c1,9

√
114

256


12155(3(t− 0.3)− 1)9 − 25740(3(t− 0.3)− 1)7+

18018(3(t− 0.3)− 1)5 − 4620(3(t− 0.3)− 1)3+

315(3(t− 0.3)− 1)





+e(−t+0.3), (25)

Note that to determine the unknown coefficients
c1,0, c1,1, c1,2, c1, 3, c1, 4, c1,5, c1,6, c1,7, c1,8, c1,9, we need ten equations.

Three equations are obtained using the initial conditions in (23) as follows:
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c1,0
√
6
2 − c1,1

3
√
2

2 + c1,2
2
√
30
4 − c1,3

2
√
42
4 + c1,4

24
√
6

16 − c1,5
8
√
66

16

+c1,6
26

√
78

32 − c1,7
48

√
10

32 + c1,8
128

√
102

256 − c1,9
128

√
114

256 = 0,

(
c1,13

√
3 + c1,33

√
7 + c1,53

√
11 + c1,73

√
15 + c1,93

√
19
) √

6
2

−
(
c1,23

√
15 + c1,43

√
27 + c1,63

√
39 + c1,83

√
51
) (

3
√
2

2

)
+
(
c1,33

√
35 + c1,53

√
55 + c1,73

√
75 + c1,93

√
95
) (

2
√
30
4

)
−
(
c1,43

√
63 + c1,63

√
91 + c1,83

√
119
) (

2
√
42
4

)
+
(
c1,53

√
99 + c1,73

√
135 + c1,93

√
171
) (

24
√
6

16

)
−
(
c1,63

√
143 + c1,83

√
187
)

8
√
66

16 +
(
c1,73

√
195 + c1,93

√
247
)

16
√
78

32

−
(
c1,83

√
255
)

48
√
10

32 +
(
c1,93

√
323
)

128
√
102

256 = −1,

(
c1,227

√
5 + c1,4270 + c1,6189

√
13 + c1,8324

√
17
) √

6
2

−
(
c1,345

√
21 + c1,5126

√
33 + c1,7243

√
45 + c1,9396

√
57
) (

3
√
2

2

)
+
(
c1,4189

√
5 + c1,6162

√
65 + c1,8297

√
85
) (

2
√
30
4

)
−
(
c1,581

√
77 + c1,7198

√
105 + c1,9351

√
133
) (

2
√
42
4

)
+
(
c1,699

√
117 + c1,8234

√
153
) (

24
√
6

16

)
−
(
c1,7117

√
165 + c1,9270

√
209
)

8
√
66

16

+
(
c1,8135

√
221
)

16
√
78

32 −
(
c1,9153

√
285
)

48
√
10

32 = 1.

The reminder seven equations are obtained by inserting the smaller three
roots of the 11th-order shifted Legendre polynomial, t1 = 0.008698,t2 =

0.04498, t3 = 0.1069, t4 = 0.1889,t5 = 0.2837,t6 = 0.383,t7 = 0.4778, in (25).

Solving this nonlinear 10× 10 system gives

C10×1 = [ c1,0 c1,1 c1,2 c1, 3 c1, 4 c1,5 c1,6 c1,7 c1,8 c1,9 ]T

= [ 0.59593988797141 −0.113848030223 0.00976752484854

−0.00054936985920 0.00002304551981 −0.00000077145558

0.00000002149144 −0.00000000051302 0.00000000001061

0.00000000000022 ]
T

Hence, the approximate solution of Example 3 using our proposedGLWM

is obtained as
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y(t) = CTΨ

= [ 0.59593988797141 −0.113848030223 0.00976752484854

−0.00054936985920 0.00002304551981 −0.00000077145558

0.00000002149144 −0.00000000051302 0.00000000001061 0.00000000000022 ]T

∗



√
6

2
3
√

2
2

(3t − 1)√
30
4

(3(3t − 1)2 − 1)√
42
4

(3t − 1) (5(3t − 1)2 − 3)

3
√

6
16

(35(3t − 1)4 − 30(3t − 1)2 + 3)√
66

16

(
63(3t − 1)5 − 70(3t − 1)3 + 15(3t − 1)

)
√

78
32

(
231(3t − 1)6 − 315(3t − 1)4 + 105(3t − 1)2 − 5

)
3
√

10
32

(
429(3t − 1)7 − 693(3t − 1)5 + 315(3t − 1)3 − 35(3t − 1)

)
√

102
256

(
6435(3t − 1)8 − 12012(3t − 1)6 + 6930(3t − 1)4 − 1260(3t − 1)2 + 35

)
√

114
256

(
12155(3t − 1)9 − 25740(3t − 1)7 + 18018(3t − 1)5 − 4620(3t − 1)3 + 315(3t − 1)

)


.

Along with the absolute errors compared to the exact solution, we can eval-
uate the approximation at the locations in the prescribed interval, 0 ≤ t < 2

3

and summarized in the table (Table 10) below.

Table 10: Approximate solutions of [27, Example 3] using the RLWM and GLWM for
M = 9

t Exact Solution Approximate Approximate
solution of solution of
RLWM GLWM

M = 9; k = 0 M = 9; k = 1;µ = 3

0.1 0.9048374180359596 0.9048374180282546 0.9048374180356493
0.2 0.8187307530779818 0.8187307530802117 0.8187307530782875
0.3 0.7408182206817179 0.740818220690352 0.7408182206816675
0.4 0.6703200460356393 0.6703200460269125 0.6703200460363143
0.5 0.6065306597126334 0.6065306597153067 0.6065306597129507
0.6 0.5488116360940264 0.5488116361078827 0.5488116360935682

In Table 11, absolute error comparisons for [27, Example 3] of the
present method with the RLWM, Hermite Polynomial Collocation Method,
H-CLSM, H-DLSM, Chebyshev Polynomial Collocation Method, C-CLSM
and C-DLSM are as follows:
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Table 11: Comparison of the absolute error for [27, Example 3] of the present method
with the RLWM, Hermite Polynomial Collocation Method, H-CLSM, H-DLSM, Cheby-
shev Polynomial Collocation Method, C-CLSM and C-DLSM.

t Absolute Absolute Absolute Absolute Absolute Absolute Absolute Absolute
error of error of error of error of error of error of error of error of
GLWM RLWM Hermite H-CLSM H-DLSM Chebyshev C-CLSM C-DLSM
M = 9, M = 9, Polynomial Polynomial
µ = 3, k = 0 Collocation Collocation
k = 1 Method Method

0.2 3.06e-13 2.23e-12 6.20e-09 3.38e-10 1.38e-12 3.70e-07 3.05e-09 3.53e-12
0.4 6.75e-13 8.73e-12 5.76e-08 4.85e-09 7.33e-12 2.38e-06 9.42e-09 5.78e-11
0.6 4.58e-13 1.39e-11 1.79e-07 1.07e-08 1.77e-11 5.97e-06 2.68e-08 1.78e-10

5 Conclusion

As demonstrated in this study, the current method produces more accurate
findings than the other methods, especially the regular Legendre wavelets
method. This method has a substantially lower maximum absolute error than
the other numerical and semi-analytical ones for, simply solving, the delay
and neutral differential equations with proportion at delays of different orders
using our suggested GLWM , as demonstrated in this paper. We hope to see
the same accuracy in the author’s future research of fractional differential
equations based on the accurate results derived from these polynomials in
this work.
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