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Abstract

The Barzilai–Borwein method offers efficient step sizes for large-scale un-
constrained optimization problems. However, it may not guarantee global
convergence for nonquadratic objective functions. Simulated annealing-
based on Barzilai–Borwein (SABB) method addresses this issue by in-
corporating a simulated annealing rule. This work proposes a novel
step-size strategy for the SABB method, referred to as the SABBm
method. Furthermore, we introduce two stabilized variants: SABBstab and
SABBmstab. SABBstab combines a simulated annealing rule with a sta-
bilization step to ensure convergence. SABBmstab builds upon SABBstab,
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incorporating the modified step size derived from the SABBm method.
The effectiveness and competitiveness of the proposed methods are demon-
strated through numerical experiments on CUTEr benchmark problems.

AMS subject classifications (2020): Primary 65K05; Secondary 90C06, 90C30.

Keywords: Unconstrained optimization; Barzilai–Borwein method; Simu-
lated annealing method; Stabilized BB method.

1 Introduction

Researchers have shown considerable interest in unconstrained optimization
problems due to their significant theoretical importance and practical ap-
plicability in the field of optimization. Its applications span various fields,
including engineering, physics, finance, machine learning, and more. Further-
more, it is applicable for addressing a range of problems, including parameter
estimation, function fitting, optimization of cost functions, and various oth-
ers. The general form of an unconstrained optimization problem is

min
x∈Rn

f(x), (1)

where f : Rn → R is continuously differentiable. The iterative formula in the
classical steepest-descent method [6] for the problem (1) is of the form

xk+1 = xk + αkdk, (2)

where the search direction dk ∈ Rn is determined as the negative gradient of
f at xk as

dk = −∇f(xk), (3)

and the step size αk is determined by

αk = argmin
α

f(xk + αdk). (4)

The above method is simple. However, it performs poorly as it exhibits linear
convergence and is influenced by ill-conditioning [1]. Barzilai and Borwein
[3] introduced two novel step sizes to be utilized together with the direction
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of the negative gradient. Equation (2) requires less computation than (3),
and the algorithm was also less sensitive to ill-conditioning. The step size αk

of the Barzilai–Borwein (BB) method [3] is given by

αk =
s⊤k−1sk−1

s⊤k−1yk−1
(5)

or
α̃k =

s⊤k−1yk−1

y⊤k−1yk−1
, (6)

where sk−1 = xk − xk−1, yk−1 = ∇fk − ∇fk−1. This approach has
an R-superlinear convergence rate for a two-dimensional strictly convex
quadratic objective function, and it outperforms the linearly convergent clas-
sical steepest-descent technique [6]. Subsequently, Raydan [20] established
the global convergence of this method for n-dimensional strictly convex
quadratic objective functions. The R-linear convergence rate was demon-
strated by Dai and Liao [7]. On the other hand, Fletcher [11] contended
that R-linear convergence is only anticipated in general cases. It is further
confirmed that the BB method does not guarantee global convergence when
the objective function is nonquadratic unless it is integrated with certain
globalizing schemes.

The first nonmonotone line search framework for Newton’s methods was
presented by Grippo, Lampariello, and Lucidi [13], which has been applied
in a number of later papers on nonmonotone line search techniques (see
[4, 14, 16, 26]). Furthermore, nonmonotone line search approaches are also
used by certain spectral gradient methods for optimization problems (see
[23, 25]). Although these techniques are often effective, they do have cer-
tain drawbacks. Specifically, in the nonmonotone line search technique, the
maximum value discards any good function value generated in an iteration.
Furthermore, as shown in [13, 22], the selection of integer M(M > 0) can
have a significant impact on the numerical performance of nonmonotonic line
search algorithms. Dai and Zhang [8] created an adaptive nonmonotone line
search to overcome these two shortcomings, which is utilized in conjunction
with the two-point gradient approach for optimization problems. A novel
nonmonotone line search technique was later proposed by Zhang and Hager
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[24], which is shown by numerical experiments to perform better than both
monotone and traditional nonmonotone strategies.

Kirkpatrick, Gelatt, and Vecchi [15] first used the Simulated Annealing
(SA) method initially introduced by Metropolis et al. [17], for addressing
combinatorial optimization problems. Numerous authors have thoroughly
examined the later SA approach for both discrete and continuous optimiza-
tion issues. The SA approach is popular among researchers because it is
capable of avoiding trapping in local minima. However, for large-scale prob-
lems, it is not acceptable because of the enormous computing cost.

Numerous hybrid algorithms that combine the SA method with other op-
timization techniques have been published, owing to their theoretical guaran-
tee of convergence, enhanced performance in numerous real-world situations,
and ease of implementation. Dong, Li, and Peng [10] presented a hybrid
method that combines the BB method and the SA method. This nonmono-
tonic technique is called the Simulated Annealing-Based Barzilai–Borwein
(SABB) method. Global convergence is also established under certain mod-
erate assumptions in their research.

Numerous researchers have observed that the BB method might produce
steps that deviate iterations too far from the optimal solution. Furthermore,
it fails to converge even for strongly convex functions. The stabilized BB
method, as proposed by Burdakov, Dai, and Huang [5], is a stabilized ver-
sion of the BB method. The approach involves constraining the distance
between each pair of consecutive iterates, a strategy that frequently reduces
the number of BB iterations. In [5], the global convergence of this approach
is also demonstrated for strongly convex functions with Lipschitz gradients.
Barzilai and Borwein [3], followed by Raydan [20], demonstrated global con-
vergence for the case of a strictly convex quadratic function, irrespective of
the number of variables involved.

While SABB outperforms other similar algorithms, such as the adaptive
two-point step-size gradient algorithm by Dai and Zhang [8] and the Barzilai–
Borwein gradient method (GBB) by Raydan [21], it can generate too long
steps, which may lead to the discarding of significant intermediate iterates.
Motivated by this challenge, we introduce some novel variants of the SABB
method.
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In this paper, we first briefly discuss some existing methods to solve un-
constrained optimization problems in Section 1. Then, in Section 2, we pro-
pose a modified version of the SABB method referred to as the SABBm
method and two stabilized versions of the SABB method referred to as
SABBstab and SABBmstab, respectively. In Section 3, we present the nu-
merical results obtained through rigorous experimentation and analysis. This
section provides valuable insights into the effectiveness and efficiency of the
proposed variants. Finally, Section 4 provides a concise summary of the con-
clusions derived from our extensive research findings. Within this section, we
deliberate on the significance of each variant and its implications concerning
unconstrained optimization problems.

1.1 Simulated annealing-based Barzilai–Borwein
(SABB) method

When applied to nonquadratic objective functions, the original BB technique
does not provide global convergence. To tackle this problem, the BB method
was combined with the SA approach and introduced as the SABB method by
the authors [10]. In order to approve the BB step, the method incorporates
an SA criterion. If the BB step is deemed unacceptable, then an Armijo
line search method is employed. Under certain mild conditions, the global
convergence of the SABB technique is established. The BB step of the SABB
method given by Dong, Li, and Peng [10] is

αk = max
{
αmin,min

{
αmax,

s⊤k−1sk−1

s⊤k−1y
k−1

}}
, (7)

where sk−1 = xk − xk−1, yk−1 = ∇fk − ∇fk−1 and αmin, αmax > 0 are two
fixed parameters.
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1.2 Stabilized BB (BBstab) method

Occasionally, the BB approach produces excessively long steps, causing the
iterates to deviate too far from the optimal solution. The objective function
might not converge even if it is strongly convex. In that situation, a basic
modification can make it convergent, and the stabilized version preserves the
rapid local convergence of the BB method as the number of stabilization steps
is established to be finite. The step size of the stabilized BB method given
by Burdakov, Dai, and Huang [5] is

αk = min{αBB
k , αStab

k } (8)

where
αBB
k =

s⊤k−1sk−1

s⊤k−1yk−1
(9)

with sk−1 = xk − xk−1, yk−1 = ∇fk −∇fk−1 = gk − gk−1, and

αStab
k =

D

∥gk−1∥
, (10)

where D > 0 is a parameter to be chosen in a particular way.

2 Variants of the SABB method

In this section, we introduce our proposed variants of the SABB method.
The step-size selection strategy within SABB is critical for achieving efficient
convergence towards the minimum. Therefore, the proposed SABB variants
are distinguished by their step-size selection criteria.

2.1 Modified SABB (SABBm) method

Mu and Liu [18] employed a BB method to solve the unconstrained optimiza-
tion subproblem arising within the Augmented Lagrangian Method (ALM)
for large-scale binary quadratic programming. This choice leverages the BB
method’s low computational cost and effectiveness in achieving near-optimal
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solutions, making the resulting ALM approach a viable option for these large-
scale problems. Here, we propose a new step size for the SABB method,
which is a modified version of the step size given in [18]. The step size of our
method has an additional parameter exp(d), where d ∈ (0, 1). The inclusion
of exp(d) and ξlmin in the SABB step size is motivated by their demonstrated
effectiveness. They enable the modified step size to achieve the same results
in fewer iterations and with reduced computation time. Here we introduce a
new step for the SABB technique, which is presented as

αSABBm
k =

 exp(d)ξlminα0 if k = 0,

exp(d)ξlmin min
{
αmax,max

{
αmin,

∥sk∥2
2

s⊤k yk

}}
if k ≥ 1,

(11)

where αmin, αmax > 0 are two fixed parameters, sk = xk+1−xk, yk = ∇fk+1−
∇fk, ξ is the given parameter, the chosen parameters d, σ ∈ (0, 1), and lmin

is the smallest nonnegative integer l satisfying

f(xk + ξlαk∇fk) ≤ f(xk) + σξl∇⊤fkαk∇fk, (12)

where
αk = −min

{
αmax,max

{
αmin,

∥sk∥22
s⊤k yk

}}
.

The approach used in (12) to obtain the value of lmin is inspired by the
nonmonotone line search framework developed by Grippo, Lampariello, and
Lucidi [13]. We now propose the SABBm as follows:

2.1.1 Convergence of SABBm method

To establish global convergence, we require the following remarks and as-
sumptions.

Remark 1. Armijo line search: let mk be the smallest integer that satisfies
f(xk − δm∇fk) ≤ fk − cδm∥∇fk∥2 where δ ∈ (0, 1). Then αSABBm

k+1 = δmk .

Assumption 1. The set Z0 = {x ∈ Rn : f(x) ≤ f(x0) + (1 − γ)−1T0η} is
bounded and closed.

Lemma 1. The step size αSABBm
k in the SABBm method satisfies the con-

dition αSABBm
k ≥ α, for all k ≥ 0, where α ≥ 0 is a constant.
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Algorithm 5: SABBm method
1: Give an initial point x0 ∈ Rn. Let ϵ > 0, 0 < αmin < αmax < ∞,

α0 ∈ (αmin, αmax), T0 > 0, c, γ, ξ, d, σ ∈ (0, 1), η ∈ Z+. Set k := 0 and
αSABBm
0 = exp(d)ξlminα0

2: If ∥∇fk∥ < ϵ, then stop
3: Compute zk = xk − αSABBm

k ∇fk

and ∆fk = f(zk)− (fk − cαSABBm
k ∥∇fk∥2)

4: Let pk = e
−∆fk

Tk and pick a random number rk ∈
(
e−η, e−

1
η

)
.

5: If pk ≥ rk, let xk+1 = zk and go to step 7.
6: Otherwise, let αSABBm

k be a step size determined by the Armijo line
search and xk+1 = xk − αSABBm

k ∇fk.
7: Compute αSABBm

k+1 using (11).
8: Let Tk+1 = γTk; k = k + 1 and go to step 2.

Proof. There are two cases for the step size of the SABBm method: one
is by the Armijo line search, while the other is by (11). In the case of
the Armijo line search method from [19], by the property of termination in
finite steps, there exists an integer N > 0 such that αSABBm

k > δN , for all
k ≥ 0. In the second case, from (11), it is clear that αSABB

k m > αmin. Let
α = min{δN , αmin}. The result is obtained, and this concludes the proof.

Lemma 2. If Assumption 1 holds, then the SABBm method is well defined,
and the sequence generated by the SABBm method is {xk} ⊂ Z0.

Proof. In Algorithm 5, we consider pk = e
−∆fk

Tk , and if pk ≥ rk, then ∆fk ≤
−Tk ln rk, which implies

f(zk) ≤ fk − cαSABBm
k ∥∇fk∥2 − Tk ln rk.

Let

µk =

 1 if pk ≥ rk,

0 otherwise.

Then, the functional value sequence {fk} generated by SABBm satisfies

fk+1 ≤ fk − cαSABBm
k ∥∇fk∥2 − µkTk ln rk. (13)
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Since e−η < rk < e−
1
η and

(
e−η, e−

1
η

)
⊂ (0, 1), we have ln rk < − 1

η < 0.
Again since, 0 ≤ µk ∈ {0, 1} and Tk > 0, we have −µkTk ln rk ≥ 0. Hence,
if the step size αSABBm

k is determined by the Armijo line search method, we
get

fk+1 ≤ fk − cαSABBm
k ∥∇fk∥2. (14)

Thus, one can conclude that (14) implies (13). Therefore, based on the
termination property within a finite number of steps of the Armijo line search
[19], the method is well defined.
By (13), we get

fk+1 ≤ fk − cαSABBm
k ∥∇fk∥2 − µkTk ln rk

≤ fk − µkTk ln rk
≤ fk − Tk ln rk(as µk = 1 if pk ≥ rk; otherwise µk = 0)

= f0 −
k∑

i=1

Ti ln ri

= f0 −
k∑

i=1

γiT0 ln ri

≤ f0 − T0η

k∑
i=1

γi

< f0 + (1− γ)−1T0η

for all k ≥ 0. Therefore, {xk} ⊂ Z0.

Here is the proof of the global convergence of the SABBm method.

Theorem 1. Under Assumption 1, limk→∞ ∥∇f(xk)∥ = 0, where the se-
quence {xk} is generated by the SABBm method.

Proof. By Lemma 2, we have {xk} ⊂ Z0. Since Z0 is compact, the sequence
{xk} is convergent. By (13), for k ≥ 0

fk+1 ≤ fk − cαSABBm
k ∥∇fk∥2 − µkTk ln rk

≤ fk − cαSABBm
k ∥∇fk∥2 − Tk ln rk,

where −Tk ln rk > 0 and µk ∈ {0, 1}. Combining this with Lemma 1, we get
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cα∥∇fk∥2 ≤ cαSABBm
k ∥∇fk∥2 ≤ fk − fk+1 − Tk ln rk. (15)

Summarizing (15) from k = 0 to K, we get

cα

K∑
k=0

∥∇fk∥2 ≤ f0 − fK+1 −
K∑

k=0

Tk ln rk. (16)

By Assumption 1 and the continuity of f(x) on Z0, f(x) ≥ β holds for all
x ∈ Z0, where β < ∞ is a real number. Therefore, by taking limits on (16)
as K → ∞, we obtain

∞∑
k=0

∥∇fk∥2 =
∑
k≥0

∥∇fk∥2

≤
f0 − fK+1 −

∑
k≥0 Tk ln rk

cα

=
f0 − fK+1 −

∑
k≥0 γ

kT0 ln rk
cα

≤
f0 − fK+1 + T0η

∑
k≥0 γ

k

cα

≤ f0 − fK+1 + (1− γ)−1ηT0

cα

≤ (f0 − β + (1− γ)−1ηT0)/cα.

2.2 Stabilized SABB (SABBstab) method

The method proposed here combines the SABB method from [10] with the
BBstabmethod from [5], resulting in a modified version of the BBstabmethod
[5]. Two-step size values, namely αSABB

k and αstab
k , are computed using (7)

and (10), respectively, and their minimum value is used as the required step
size αSABBstab

k . Note that it utilizes two distinct initial values x0 and x1

instead of that of SABB and SABBm. We now present the SABBstab algo-
rithm.
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Algorithm 6: SABBstab method
1: Give two initial points x0, x1 ∈ Rn such that x0 ̸= x1 and a scalar

∆ > 0. Let ϵ > 0, c ∈ (0, 1), 0 < αmin < αmax < ∞,
α1 ∈ [αmin, αmax], T0 > 0, γ ∈ (0, 1), η ∈ Z+. Set k := 1

2: If ∥∇fk∥ < ϵ, then stop
3: Compute zk = xk − αk∇fk and ∆fk = f(zk)− (fk − cαk∥∇fk∥2)
4: Let pk = e

−∆fk
Tk and pick a random number rk ∈

(
e−η, e−

1
η

)
.

5: If pk ≥ rk let xk+1 = zk and go to Step 6. Otherwise, let αBB
k be a step

size determined by the Armijo line search and xk+1 = xk − αBB
k ∇fk.

6: Compute αBB
k+1 = max

{
αmin,min

{
αmax,

s⊤k sk
s⊤k yk

}}
, where

sk = xk+1 − xk, yk = ∇fk+1 −∇fk and Compute αstab
k+1 = ∆

∥∇fk∥ .
7: Compute αk+1 = min{αBB

k+1, α
stab
k+1}

8: Let Tk+1 = γTk; k = k + 1 and go to first Step 3.

2.2.1 Convergence of SABBstab Method

Assumption 2. There exist positive constants Λ1 ≤ Λ2, and the function
f : Rn → R1 is twice continuously differentiable such that

Λ1∥∇v∥2 ≤ v⊤∇2f(x)v ≤ Λ2∥v∥2 for all x, v ∈ Rn.

Assumption 3. For some ρ > 0 and L ≥ 0, the following property holds:∥∥∇2f(x)−∇2f(x∗)
∥∥ ≤ L∥x− x∗∥ for all x ∈ Bρ(x

∗),

where L is a Lipschitz constant, ρ is a radius, and Bρ(x
∗) = {x ∈ Rn :

∥x− x∗∥ ≤ ρ}.

If Assumptions 1, 2, and 3 hold, then our proposed method SABBstab is
well defined by the Lemma 2. Note that in Algorithm 6, if αk+1 = αstab

k+1, then
it is convergent, according to [5, Theorem 3.2] method, and if αk+1 = αBB

k+1,
then it is convergent, according to [10, Theorem 1].
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2.3 Modified stabilized SABB (SABBmstab) method

In this section, we present a stabilized version of the SABBm method termed
SABBmstab, which is our main proposal. Similar to the previous method,
this approach also utilizes two different initial values, x0 and x1. In this
method, we propose to choose

αk = min{αSABB
k m,αstab

k }.

We now present the SABBmstab algorithm below.

Algorithm 7: SABBmstab method
1: Give initial points x0, x1 ∈ Rn such that x0 ̸= x1 and a scalar ∆ > 0.

Let ϵ > 0, c ∈ (0, 1), 0 < αmin < αmax < ∞,
α1 ∈ [αmin, αmax], T0 > 0, γ ∈ (0, 1), η ∈ Z+. Set k := 1

2: If ∥∇fk∥ < ϵ, then stop
3: Compute zk = xk − αk∇fk and ∆fk = f(zk)− (fk − cαk∥∇fk∥2)
4: Let pk = e

−∆fk
Tk and pick a random number rk ∈

(
e−η, e−

1
η

)
.

5: If pk ≥ rk let xk+1 = zk and go to step 6. Otherwise, let αBB
k be a step

size determined by the Armijo line search and xk+1 = xk − αk∇fk.
6: Compute αk+1 = min{αSABBm

k+1 , αstab
k+1}, where αSABBm

k+1 is computed
from (11) and αstab

k+1 = ∆
∥∇fk∥ .

7: Let Tk+1 = γTk; k = k + 1 and go to Step 2.

Note that in the SABBmstab method, we only replace the step size of
the SABBstab with the step given in (11). Since SABBstab is convergent,
SABBmstab method is also convergent.

3 Numerical experiments

In this section, we perform numerical experiments to showcase the effective-
ness of all variants of the SABB method. In our entire study, we discuss two
types of algorithms. The performances of the proposed methods SABBm,
SABBstab, and SABBmstab are compared with the performance of the SABB
method described in the research [10]. For all our experiments, we imple-
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mented the algorithms using RStudio. The computations were performed
on a laptop equipped with an Intel(R) Core(TM) i3 CPU at 3.20 GHz and
4GB of memory. We focus on demonstrating the performance differences be-
tween stabilized and nonstabilized variants of SABB. The algorithms SABB
and SABBm are terminated when the number of iterations exceeds 3000, or
∥∇fk∥ ≤ 10−6. In the stabilized version, we compute two step sizes in each
iteration and choose their minimum. The step-size computation becomes a
time-consuming task; therefore, we terminate the algorithms SABBstab and
SABBmstab when the iterations exceed 105, or ∥∇fk∥ ≤ 10−6. In all four
methods, if the above termination criteria fail, then we claim that the method
fails, and we reflect it in Table 2 as “F”.

We observe that the selection of α0, αmin, and αmax plays a crucial role
in the computation. Similarly, for the SABBstab and SABBmstab methods,
along with these three values, the selection of the second initial value x1

plays a crucial role in the convergence of these methods. For these two
methods, we need the value of ∆ also, which we compute using the formula
∆ = ∥xk − xk−1∥ for k = 1, 2, . . . , n. To identify suitable parameters for our
methods, we solved instances of different dimensions available in the CUTEr
library and observed that the accuracy in our computation is much better
when we set 2−30 ≤ αmin ≤ αmax ≤ 220, α0 = 2−10(αmin + αmax), γ =

0.99, T0 = 1000, c = 10−4, and η = 20.
The test functions reflected in Table 1 are taken from the CUTEr library

[2, 12]. Table 2 presents the numerical results, where IP (n) denotes the
problem serial number with the dimension of the problem. We have taken
the dimension from 2 to 500. In the columns under the methods such as
SABB, SABBm, SABBstab, and SABBmstab, three computations are men-
tioned, such as feval, iter, and cput, which represent the number of function
evaluations, the number of iterations, and CPU time (measured in seconds),
respectively.
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Table 1: Test functions

IP Function Name IP Function Name

1 Extended Freudenstein and Roth Function: 40 Extended BD1 function (Block Diagonal):
2 Extended Trigonometric Function: 41 Extended Maratos Function:
3 Extended Rosenbrock Function: 42 Perturbed quadratic diagonal Function:
4 Generalized Rosenbrock Function: 43 Extended Wood Function:
5 Extended White and Holst function: 44 Quadratic QF1 Function:
6 TRIDIA function (CUTE): 45 Extended quadratic penalty QP1 Function:
7 Extended Beale function: 46 Extended quadratic penalty QP2 Function:
8 Extended Penalty function: 47 Quadratic QF2 Function:
9 ARGLINB function (CUTE): 48 Extended quadratic exponential EP1 function:
10 FLETCHCR function (CUTE): 49 POWER function (CUTE):
11 ARWHEAD function (CUTE): 50 ENGVAL1 function (CUTE):
12 EG2 function (CUTE): 51 EDENSCH function (CUTE):
13 Partial Perturbed Quadratic function (CUTE): 52 CUBE function (CUTE):
14 Almost Perturbed Quadratic function: 53 Extended quadratic exponential EP1 function:
15 NONDIA function (CUTE): 54 Perturbed Tridiagonal Quadratic function:
16 Staircase 1 function: 55 Staircase 2 function:
17 LIARWHD function (CUTE): 56 DQDRTC function (CUTE):
18 Extended Freudenstein and Roth Function: 57 Perturbed Tridiagonal Quadratic function:
19 BDQRTIC function (CUTE): 58 BIGGSB1 Function (CUTE):
20 NONDQUAR function (CUTE): 59 Extended DENSCHNB Function (CUTE):
21 Broyden Tridiagonal function (CUTE): 60 Generalized Quartic Function:
22 ARGLINC function (CUTE): 61 Diagonal 8 Function:
23 BDEXP function (CUTE): 62 Full Hessian FH3 Function:
24 NONSCOMP function (CUTE): 63 SINCOS Function:
25 QUARTC function (CUTE): 64 HIMMELH Function (CUTE):
26 Extended DENSCHNF Function (CUTE): 65 Raydan 1 Function:
27 DIXON3DQ Function (CUTE): 66 Raydan 2 Function:
28 COSINE Function (CUTE): 67 DIXMAANA Function:
29 Diagonal 7 Function: 68 DIXMAANB Function:
30 Diagonal 9 Function: 69 DIXMAANC Function:
31 HIMMELBG Function (CUTE): 70 DIXMAAND Function:
32 Diagonal 1 Function: 71 DIXMAANF Function:
33 Diagonal 2 Function: 72 DIXMAANH Function:
34 Diagonal 3 Function: 73 Extended TET Function (Three Exponential Terms):
35 Generalized Tridiagonal 1 Function: 74 Diagonal 4 Function:
36 Extended Tridiagonal 1 Function: 75 Diagonal 5 Function:
37 Generalized PSC1 Function: 76 Extended Himmelblau Function:
38 Extended PSC1 Function: 77 Generalized White and Holst Function:
39 Full Hessian FH2 Function:
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Table 2: Test results

IP(n) SABB SABBm SABBstab SABBmstab
feval iter cput feval iter cput feval iter cput feval iter cput

1(2) 573 142 0.1159 53 12 0.0131 545 136 0.1844 48 12 0.0153
2(2) 873 217 0.3042 97 23 0.0291 681 170 0.4070 72 18 0.0565
3(2) 12005 3000 4.4121 3001 749 0.9078 38297 9574 25.9366 5172 1293 3.4904
4(2) 12005 3000 5.3538 3001 749 1.3600 38297 9574 25.1429 5172 1293 3.1331
5(2) 12005 3000 5.9533 3653 912 1.7136 39965 9991 28.1861 5396 1349 3.7478
6(2) 641 159 0.1028 521 129 0.0807 665 166 0.1515 540 135 0.1224
7(2) 3489 871 0.9035 3229 806 0.7592 400001 100000 5.4008 400000 100000 2.1504
8(2) 1157 288 0.2649 941 234 0.2008 1189 297 0.9345 972 243 0.3556
9(2) 20 4 0.0168 24 5 0.0161 33 8 0.0491 32 8 0.0130

10(10) 1906 503 3.2912 1886 498 3.0315 5 1 0.0181 4 1 0.0150
11(10) 104 25 0.2370 116 28 0.2753 385 96 2.1929 308 77 0.9040
12(10) 12005 3000 10.8701 12005 3000 10.1288 53605 13401 1.6342 43408 10852 1.3426
13(10) 249 61 0.9032 201 49 0.6771 213 53 1.0810 168 42 0.8606
14(10) 529 131 0.5164 429 106 0.3814 441 110 0.6078 356 89 0.5343
15(10) 6789 1696 4.3888 6209 1551 3.9080 51641 12910 2.5466 50620 12655 1.8658
16(10) 2244 560 2.7465 2503 625 3.2653 4813 1203 7.0123 56936 14234 1.7390
17(10) 1593 397 0.7971 1561 389 0.8241 3641 910 2.1399 3568 892 2.0244
18(40) 383 96 1.6555 445 112 2.2936 F F F F F F
19(40) 606 152 3.4532 797 200 4.4500 4001 1000 5.0125 1700 425 1.5056
20(40) 12001 3000 55.9570 11999 3000 1.2298 8001 2000 3.1065 8000 2000 3.4526
21(40) 171 42 1.8844 167 41 1.8661 F F F F F F
22(40) 1324 332 56.2828 11999 3000 10.4524 1957 489 35.0812 1840 460 23.7643
23(40) 12005 3000 2.2816 12005 3000 2.3259 32001 8000 15.1335 32000 8000 13.5988
24(40) 11972 3000 20.2500 11982 3000 21.5313 8001 2000 2.2935 8000 2000 2.0169
25(40) 1377 343 3.5877 1373 342 3.2536 8001 2000 2.1647 8000 2000 1.7061
26(40) 104 25 0.3547 108 26 0.3713 4001 1000 2.4536 264 66 10.2070
27(40) 1467 368 3.5020 1398 351 3.0541 5 1 0.0238 4 1 0.0369
28(40) 225 55 0.6246 165 40 0.4936 4001 1000 1.8497 4000 1000 1.9239
29(40) 44 10 0.1541 44 10 0.1378 4001 1000 1.5144 1628 407 41.7341
30(40) 11997 3000 29.1681 11982 3000 28.9967 4001 1000 1.2257 4000 1000 1.1827
31(40) 12005 3000 32.1075 12005 3000 32.4967 32001 8000 8.7434 32000 8000 8.7530
32(40) 12003 3000 6.6654 340 84 11.8590 F F F F F F
33(40) 224 55 8.7581 236 58 3.8310 4001 1000 3.0450 4000 1000 3.0237
34(40) 12003 3000 2.8101 228 56 2.8166 621 155 30.4833 820 205 38.2410
35(40) 113 27 3.0366 109 26 2.4956 F F F F F F
36(40) 1209 301 20.4789 1425 355 23.4677 40001 10000 11.3231 40000 10000 12.7731
37(40) 12003 3000 8.3764 12003 3000 8.2833 40001 10000 25.0045 40000 10000 25.0573
38(40) 57 13 1.4227 57 13 1.4582 1249 312 1.7140 1248 312 1.7120
39(40) 953 240 12.6938 1377 346 18.4661 F F F F F F
40(40) 300 74 5.5401 304 75 5.8676 F F F F F F
41(40) 64 15 0.9178 64 15 0.9510 F F F F F F
42(40) 196 48 2.1041 288 71 2.6848 7201 1800 31.1102 7188 1797 27.9218
43(40) 3456 885 51.5988 6748 1731 1.6669 4001 1000 3.2047 4000 1000 2.1038
44(40) 247 61 1.9867 291 72 1.9010 817 204 8.7129 812 203 8.4563
45(40) 112 27 1.3176 96 23 1.0800 1469 367 32.8439 1464 366 33.5307
46(40) 247 62 3.4999 477 121 6.5672 5 1 0.1461 4 1 0.1123
47(40) 334 83 3.0507 335 83 2.9854 4001 1000 49.9540 4000 1000 49.8391
48(40) 313 77 5.7917 325 80 5.8702 7085 1771 28.6868 7072 1768 27.9670
49(50) 6503 1630 12.5130 7159 1796 11.1532 5 1 0.0179 4 1 0.0170
50(50) 2461 614 7.5193 1125 280 3.3699 797 199 3.6244 780 195 3.6969
51(50) 433 107 1.8298 421 104 1.7742 749 187 4.4861 736 184 4.4655
52(50) 11996 3000 28.3663 11998 3000 28.9950 5 1 0.0229 4 1 0.0181
53(50) 41 9 1.8297 41 9 1.0646 37 9 1.9401 36 9 1.2722
54(50) 436 108 24.9522 412 102 27.8671 1981 495 4.1695 1976 494 1.6517
55(50) 2346 588 6.9273 2375 595 7.4707 5 1 1.0590 4 1 0.7714
56(50) 158 39 10.1396 169 42 6.9630 9013 2253 2.7833 9012 2253 3.6513
57(50) 327 81 11.9068 327 81 7.0950 1341 335 1.1654 1340 335 1.2965
58(50) 1286 322 40.9906 1223 306 25.9469 5 1 0.0379 4 1 0.0302

59(100) 657 163 5.8164 533 132 4.3743 657 164 8.2231 532 133 6.4424
60(100) 561 139 7.0155 453 112 4.9969 397 99 7.3207 320 80 6.3334
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Table 2 Continued...

61(200) 357 88 17.6759 289 71 10.9239 405 101 32.2711 328 82 22.8033
62(200) 25 5 1.5282 80 19 4.6503 21 5 1.7963 48 12 3.9969
63(200) 569 141 33.5531 401 99 22.7348 1413 353 2.1739 1156 289 1.6964
64(200) 621 154 24.6155 505 125 20.2527 645 161 39.3083 524 131 31.9428
65(200) 12005 3000 5.3382 12005 3000 5.5383 2533 633 1.6214 2100 525 1.1722
66(200) 1449 361 39.0737 1057 263 28.5491 893 223 35.2179 732 183 28.7968
67(300) 45 10 16.0129 45 10 16.3452 261 65 19.8307 260 65 21.2720
68(300) 37 8 12.1318 37 8 12.1640 493 123 43.9275 492 123 1.1385
69(300) 37 8 11.2262 37 8 11.6436 929 232 7.1460 928 232 7.2529
70(300) 72 17 23.1260 72 17 23.8315 1881 470 15.0397 1876 469 15.0572
71(300) 968 241 35.4163 981 244 35.2606 4001 1000 41.7712 4000 1000 39.0339
72(300) 589 147 24.1729 683 171 27.5352 F F F F F F
73(500) 109 26 1.0931 121 29 49.6553 77 19 46.0448 76 19 35.9698
74(500) 33 7 4.4168 56 13 4.8235 5 1 0.7420 4 1 0.5555
75(500) 40 9 13.7751 40 9 8.7212 5 1 1.0040 4 1 0.6785
76(500) 136 33 26.7670 136 33 17.6005 2893 723 12.9185 2884 721 9.4026
77(500) 61 14 1.0407 61 14 52.2529 4525 1131 1.0296 4516 1129 24.5784

In Table 3, we present the number of problems for which the method
achieves the least iter, the least cput, and the least feval, respectively. The
observations from Table 3 lead to the conclusion that the SABBm method
exhibits superior performance compared to SABB, and SABBmstab outper-
forms SABBstab in the stabilized version. We also observe that for problems
10, 14, 27, 46, 49, 52, 55, 58, 74, and 75, the stabilized versions SABBmstab and
SABBstab exhibit superior performance in terms of iterations, function eval-
uations, and time.

Table 3: Least table

Metric SABB SABBm SABBstab SABBmstab

feval 31 33 1 23
iter 34 36 14 19
cput 17 30 8 22

We employed the performance profile of Dolan and Moré [9] to compare
the performance of the proposed methods. We construct the performance
profile graphs for three key metrics: function evaluations (feval), number
of iterations (iter), and CPU time (cput). Figure 1 illustrates the function
evaluations performance profile. Figure 2 depicts the performance profile
for number of iterations, and Figure 3 shows the performance profile of CPU
time. Across all three metrics (Figures 1–3), SABBm is almost the top curve,
indicating its superior efficiency compared to the other methods.
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Figure 1: Performance profile for functional evaluations.

Figure 2: Performance profile for number of iterations.
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Figure 3: Performance profile for CPU time.

4 Conclusion

This study proposes three novel variants of the SABB algorithm for solving
unconstrained optimization problems. These variants hybridize the BBStab
and SABB approaches. The performance of the proposed methods is eval-
uated on a set of 77 benchmark problems from the CUTEr library (details
in Table 2). The results reveal that SABBm emerges as the most efficient
algorithm in terms of function evaluations, iterations, and CPU time. How-
ever, SABBstab and SABBmstab outperform SABBm in a small subset of
problems regarding the number of iterations and computational time.
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