
Iranian Journal of Numerical Analysis and Optimization
Vol. 14, No. 3, 2024, pp 681–707
https://doi.org/10.22067/ijnao.2024.86692.1384
https://ijnao.um.ac.ir/

Research Article

An improved imperialist competitive
algorithm for solving an inverse form of

the Huxley equation

H. Dana Mazraeh, K. Parand*, H. Farahani and S.R. Kheradpisheh

*Corresponding author

Received 04 February 2024; revised 28 April 2024; accepted 01 May 2024

Hassan Dana Mazraeh
Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid
Beheshti University, G.C. Tehran, Iran. e-mail: h_danamazraeh@sbu.ac.ir

Kourosh Parand
Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid
Beheshti University, G.C. Tehran, Iran.
Department of Cognitive Modeling, Institute for Cognitive and Brain Sciences, Shahid
Beheshti University, G.C. Tehran, Iran. e-mail: k_parand@sbu.ac.ir

Hadi Farahani
Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid
Beheshti University, G.C. Tehran, Iran. e-mail: h_farahani@sbu.ac.ir

Saeed Reza Kheradpisheh
Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid
Beheshti University, G.C. Tehran, Iran. e-mail: s_kheradpisheh@sbu.ac.ir

How to cite this article
Dana Mazraeh, H., Parand, K., Farahani, H. and Kheradpisheh, S.R., An im-
proved imperialist competitive algorithm for solving an inverse form of the Hux-
ley equation. Iran. J. Numer. Anal. Optim., 2024; 14(3): 681-707.
https://doi.org/10.22067/ijnao.2024.86692.1384

681

https://doi.org/10.22067/ijnao.2024.86692.1384
https://ijnao.um.ac.ir/
https://doi.org/10.22067/ijnao.2024.86692.1384


Dana Mazraeh, Parand, Farahani and Kheradpisheh 682

Abstract

In this paper, we present an improved imperialist competitive algorithm for
solving an inverse form of the Huxley equation, which is a nonlinear partial
differential equation. To show the effectiveness of our proposed algorithm,
we conduct a comparative analysis with the original imperialist competitive
algorithm and a genetic algorithm. The improvement suggested in this
study makes the original imperialist competitive algorithm a more powerful
method for function approximation. The numerical results show that the
improved imperialist competitive algorithm is an efficient algorithm for
determining the unknown boundary conditions of the Huxley equation and
solving the inverse form of nonlinear partial differential equations.

AMS subject classifications (2020): Primary 68W50; Secondary 35A25, 35R30.

Keywords: Huxley equation; Imperialist competitive algorithm; Partial dif-
ferential equations; Meta-heuristic algorithms; Genetic algorithm.

1 Introduction

The Huxley equation, classified as a nonlinear partial differential equation
(NPDE), has the capacity to model a diverse range of phenomena, includ-
ing biological population dynamics [9] and the propagation of nerves [30].
Its significance lies in its ability to capture the intricate dynamics and in-
terrelationships within these systems, providing valuable insights into their
behavior and characteristics. The choice of the Huxley equation as our focus
has a dual rationale. First, as previously mentioned, this equation finds nu-
merous practical applications. Second, the selection of this equation, being
an NPDE, serves to demonstrate the capability of our proposed algorithm in
handling a wide range of inverse forms of NPDEs. Within the realm of partial
differential equations (PDEs), an equation is considered “inverse” when one
or more of the initial or boundary conditions are missed. In solving inverse
forms of PDEs, we utilize data collected from sensors, often referred to as
“over-specified conditions,” to compensate for the missing condition(s). The
primary challenge in solving inverse forms of PDEs lies in the identification
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of the missing condition(s). In this paper, we specifically address a scenario
in which one of the boundary conditions, denoted as q(t), is missing.

The main purpose of this paper is to present an improved imperialistic
competitive algorithm (IICA) for determining the missing boundary condi-
tion, q(t). The reason why the imperialistic competitive algorithm (ICA) was
chosen is that this algorithm has demonstrated a remarkable capability for
solving equations [2, 19, 12]. In this paper, improvements are made to the
original ICA to enhance its suitability for estimating a function. Since the
ICA is a meta-heuristic algorithm, the results of the IICA and the original
ICA are compared to a genetic algorithm (GA), which is one of the well-
known and leading algorithms in the realm of meta-heuristic algorithms. In
recent years, meta-heuristic algorithms have shown a significant capability
in solving inverse forms of linear and nonlinear PDEs and other challeng-
ing problems. Also, the convergence of these algorithms has been studied
well [6, 3, 21, 20, 29, 17, 22, 28, 10, 24]. Therefore, investigating the capa-
bilities of the new methods and improved algorithms might yield valuable
advancements in this field.

The rest of this paper is organized as follows. To calculate the fitness
function (cost function) of the algorithms, we need to solve the direct form
of the Huxley equation. In section 2, we present the main form of the Huxley
equation and the discretization of the Huxley equation using the Crank–
Nicolson method [26], which is a finite difference method. This discretization
is employed to solve the direct form of the Huxley equation and evaluate the
fitness value of a candidate solution accordingly. In section 3, we present the
improved ICA in detail, explaining how our improvement makes the original
ICA a more powerful method for estimating a function. Since the GA has
been widely used and is famous, section 4 provides a brief description of
a real-valued GA. In section 5, we present the numerical experiments of the
IICA, ICA, and GA and discuss the results. Finally, in section 6, we conclude
the paper and state its main outcomes.
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2 The Huxley equation and its discretization

In this section, we first present the formulation of the Huxley equation in
subsection 2.1, followed by the discretization of this equation in subsection
2.2, which is utilized to construct the fitness function.

2.1 The Huxley equation

The general form of the Huxley equation is as follows:

∂U

∂t
=

∂2U

∂x2
+ U(1− U δ)(U δ − γ), (1a)

with initial and boundary conditions:

U(x, 0) = f(x), (1b)

U(0, t) = p(t), (1c)

U(1, t) = q(t), (1d)

where δ is a positive integer, and γ ∈ (0, 1). In this paper, we consider
0 ≤ t ≤ 1 and 0 ≤ x ≤ 1.

Additionally, the over-specified condition (data coming from a sensor) is
as follows:

U(a, t) = s(tj), tj = k × j, j = 1, 2, 3, . . . ,M. (2)

Here, a represents the location of the sensor, k is the discretization step size
of time, s(tj) is the value measured by the sensor at time tj , and x = a.

2.2 Discretization of the Huxley equation

In this study, we use an implicit finite difference approximation (Crank–
Nicolson) method, to discretize (1). As a result, we obtain the following
discretized representation for the Huxley equation:
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−r1Ui−1,j+1 + (2 + 2r1)Ui,j+1 − r1Ui+1,j+1

=r1Ui−1,j + (2− r2 − 2r1)Ui,j + r1Ui+1,j + 2r2Ui,j
2 − r2Ui,j

3,

i = 1, . . . , N − 1, j = 0, . . . , N − 1, (3a)

Ui,0 = f(ih), j = 0, i = 1, . . . , N − 1, (3b)

U0,j = p(jk), i = 0, j = 0, 1, . . . , N − 1, (3c)

UN,j = q(jk), Nh = 1, j = 0, 1, . . . , N − 1, (3d)

where x = ih, i = 0, 1, . . . , N − 1 and h is the step size of the discretization
of x, t = jk, j = 0, 1, . . . , N − 1, and k is the step size of the discretization
of t, r1 = k/h2 and r2 = 2k.

Using (3), we obtain the following linear algebraic system of equations:

2 + 2r1 −r1 0 0 0 0 0

−r1 2 + 2r1 −r1 0 0 0 0
...

...
...

...
...

...
...

0 0 0 0 −r1 2 + 2r1 −r1

0 0 0 0 0 −r1 2 + 2r1





U1,j+1

U2,j+1

...
UN−2,j+1

UN−1,j+1



=



2− r2 − 2r1 r1 0 0 0 0 0

r1 2− r2 − 2r1 r1 0 0 0 0
...

...
...
...
...

...
...

0 0 0 0 r1 2− r2 − 2r1 r1

0 0 0 0 0 r1 2− r2 − 2r1





U1,j

U2,j

...
UN−2,j

UN−1,j



+ r1



U0,j + U0,j+1

0
...
0

UN,j + UN,j+1


+



2r2U1,j
2 − r2U1,j

3

2r2U2,j
2 − r2U2,j

3

...
2r2UN−2,j

2 − r2UN−2,j
3

2r2UN−1,j
2 − r2UN−1,j

3


where x = ih, i = 0, 1, . . . , N − 1 and h is the step size of the discretization
of x, t = jk, j = 0, 1, . . . , N − 1, and k is the step size of the discretization
of t, r1 = k/h2 and r2 = 2k.

In this study, the IICA, ICA, and GA are used to approximate the un-
known function q(t) in (1). Specifically, q(t) is treated as a candidate solu-
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tion represented as a real-valued vector (coefficients of a polynomial), which
is then input into the fitness function for assessment. To evaluate the fit-
ness of a candidate solution, system (3) is solved, and the numerical values
of U(xi, tj) are computed. Subsequently, the vector ŝ(tj) = U(x = a, tj)

is compared to the vector s(tj) as described in (2). To perform this com-
parison, the mean squared error is calculated. Smaller values of the mean
squared error between ŝ(tj) and s(tj) indicate a better approximation of the
unknown function q(t). The pseudo-code of the fitness function in this study
is as follows:

Algorithm 1: Pseudo-code of the fitness function
Data: Input values: Coefficients of a polynomial approximating q(t)

Result: Fitness value of the input values
Function Fitness(Coefficients of a polynomial approximating q(t)):

Calculate U(xi, tj) using System (3)
return 1∑m

j=1(U(a,tj)−stj )
2 ;

In Algorithm 1, as the approximation of q(t) converges towards the ex-
act q(t), the denominator decreases. Consequently, the value of the fitness
function increases.

3 Improved imperialistic competitive algorithm (IICA)

The ICA is a powerful meta-heuristic algorithm that has been successfully
applied to a wide range of problems in science and engineering. Additionally,
in recent years, several authors have attempted to present improved versions
of the algorithm to enhance its effectiveness for optimization problems [7,
8, 35, 1, 34, 31, 33, 25, 32, 18, 13, 23]. This research paper represents the
first attempt to enhance the original ICA, transforming it into a powerful
method for function estimation in differential equations. In this section, we
first present the original ICA briefly in Subsection 3.1. Then, in Subsection
3.2, we present the improved version of the ICA, which is a powerful method
for function approximation in solving differential equations.

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 681–707
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3.1 Original ICA

The ICA is a robust and versatile meta-heuristic optimization technique that
has gained great attention in the fields of science and engineering. This
algorithm was developed to tackle a wide range of complex problems. The
ICA was inspired by the dynamics of imperialistic competition in societies.
This algorithm emulates the concept of countries competing for dominance
and resources, where each candidate solution to an optimization problem
is treated as an independent “country.” These countries try to spread their
dominance through various interactions, such as assimilation and colonization
[4]. The main steps of the original ICA are as follows:

1. initialization: First, initialize a population of candidate solutions (coun-
tries) randomly. Each country is considered as follows:

countryi = {a1, a2, . . . , am}.

Here, countryi is the ith candidate solution with size m. In fact, aj , 1 ≤
j ≤ m indicate the coefficients of a polynomial as follows:

y(x) = amxm−1 + am−1x
m−2 + · · ·+ a2x

1 + a1.

Next, evaluate the fitness of each candidate solution. Then, select the
top Nimpires countries as the imperialists. Finally, form the empires by
dividing the remaining countries (colonies) among the imperialists in
proportion to the fitness of the imperialists.

2. Assimilation: In every empire, the colonies move towards their imperi-
alist using a randomly adjusted vector, which is scaled by a proximity
factor. This stage emulates the impact of imperialism on the colonies
and attempts to improve the fitness of each colony. The assimilation
operator works to bring the colonies of an empire closer to the charac-
teristics of the imperialist state within the search space. It like guides
the colonies to adopt the traits of the imperialist, somewhat similar to
how cultural assimilation happens where colonies start to resemble the
imperialist in certain ways.
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3. Exchanging positions of the imperialist and a colony: A colony may
find a better position than the imperialist as it moves closer to it. In
this situation, the imperialist and the colony swap their positions and
the algorithm continues. The exchange process involves the transfer of
colonies between imperialists based on the fitness value. This exchange
aims to improve the overall quality of both imperialists and colonies.

4. Imperialistic competition:

At first, the total power of an empire is evaluated using the following
equation:

T.C. n = Fitness (imperialistn)+ξmean {Fitness (colonies of empiren)}
(4)

Here T.Cn is the total fitness of the nth empire, and ξ is a positive
number that is considered to be less than 1. The strength of an empire
mostly depends on how strong its imperialist country is. However, the
colonies within that empire also have some influence, although it is not
very significant. The author suggests that by adjusting a factor called ξ,
we can change how much the colonies contribute to the empire’s overall
power. They recommend setting ξ at 0.1 for a balanced approach.

Then, the imperialistic competition begins. All empires attempt to
acquire colonies belonging to other empires and take control of them.
This competitive, imperialistic process results in the gradual weakening
of less powerful empires and the strengthening of more dominant ones.
This competition is modeled by assigning one of the weakest colonies
from the weakest empires to a dominant empire. The dominant empire
is the one that wins the competition, which is based on the T.C values
of the empires.

5. Eliminating the powerless empires: An empire that has no power will
be destroyed in the imperialistic competition and its colonies will be
distributed among other empires. Different criteria can be used to
model the destruction mechanism and determine when an empire has
no power. In the original ICA, an empire collapses when it loses all of
its colonies.

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 681–707



689 IICA for an inverse form of the Huxley equation

Steps 3.1 through 3.1 are repeated until the stop criterion is met. These steps
are illustrated in Figure 1. Furthermore, Figure 2 illustrates the flowchart of
the original ICA.

Figure 1: The main steps of the original ICA.

3.2 Improved imperialistic competitive algorithm
(IICA)

Our improvements to the original ICA are as follows:

1. Smoothness: This improvement arises from the fact that in many meth-
ods, the unknown function that needs to be found is assumed to be
smooth [14]. In our paper, we assume that the unknown function q(t)

is a polynomial of degree n. The IICA, ICA, and GA attempt to approx-
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Figure 2: The flowchart of the original ICA.

imate the coefficients of the unknown function q(t) such that the fitness
value of the approximated q(t) is maximized. During the middle iter-
ations of the algorithm execution, the values of the coefficients of q(t)
may vary too much between two successive values, which might cause
a big jump between q(tk) and q(tk+1). Consequently, we introduce a
step in which a procedure is executed to make the successive values of
the unknown vector q(tj) much smoother. To apply this smoothness
procedure to any elements of the coefficients vector q(t), the following
steps are performed:

• Calculate the mean of ck and ck+2 as follows:

m =
ck + ck+2

2
.

• Then, move the value of ck+1 toward m as follows:

ck+1 =
ck+1 + α×m

1 + α
, (5)

where cj is a coefficient of the candidate solution approximating the
unknown q(t) and α ∈ IR is a hyper-parameter, which should be tuned
efficiently. Note that, at the beginning of the algorithm, we have the
value q(t0) = q(0) = f(0) because the initial condition is known. Ad-
ditionally, for the last element of the candidate solution, we use the
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691 IICA for an inverse form of the Huxley equation

preceding value of m. The effect of the smoothness step is demon-
strated through an example in Appendix A.

2. Correction: In many applications of meta-heuristic algorithms, there
exists a search space for the values of the unknown vector, typi-
cally within the range [LB,UB], where LB and UB stand for lower
bound and upper bound respectively. In our algorithm, following the
smoothness and assimilation steps, some values may surpass the inter-
val [LB,UB]. Consequently, it becomes essential to reposition these
values within the valid interval. This procedure is executed as follows:

ck = ck − β,

where β represents the amount by which cj has exceeded [LB,UB]. For
example, let us consider UB = 20, and suppose that cj has reached a
value of 25 after the smoothness and assimilation steps. Following the
correction step, cj will be adjusted to 15.

The whole procedure of the IICA is as follows:

1. Initialization: Generate randomly an initial population and create em-
pires.

2. Assimilation: In every empire, the colonies move towards their imperi-
alism using a randomly adjusted vector.

3. Smoothness: The smoothness procedure is applied to the candidate
solutions.

4. Correction: The correction step is applied to the candidate solutions to
keep them inside the valid interval.

5. Evaluation: Evaluate the fitness of the candidate solutions.

6. Exchanging position: The imperialist and the colony swap their posi-
tions if the colony is better than the imperialist.

7. Evaluation of empires’ total power: The total power of the empires is
evaluated.

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 681–707
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8. Imperialistic competition: The imperialistic competition is done.

9. Collapse: Empires without colonies collapse.

10. Repeat Step 3.2 to Step 3.2, until the predefined number of iterations
is not satisfied.

In fact, these two additional steps apply regularization to the coefficients of a
polynomial that approximates the unknown q(t), similar to the regularization
that is done in the machine learning realm [14]. Figure 3 illustrates the steps
of the improved ICA. We repeat steps 2 through 7 until the stop criterion is
met. Furthermore, Figure 4 illustrates the flowchart of the improved ICA.

Table 1 presents the parameters of a real-valued GA used in this paper.

Table 1: Parameters of the IICA

Representation Real valued vectors
Length of countries Degree of a polynomial
Range of entries [−1, 1]

Initialization Random
Number of population 50 and 200
Number of empires 5 and 20
α 0.1
Collapse criteria Having no colony
Termination condition Number of generation

4 GA for the solution to inverse forms of Huxley
equation

The GA, which was mainly developed by Holland [15], is a search method
based on the Darwinian principles of biological evolution. This algorithm
has been successfully used for various optimization problems. The GA is a
stochastic optimization method that uses a population of chromosomes, each
representing a possible solution. By applying a genetic operator, each chro-
mosome improves gradually and becomes the basis for the next generation.
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Figure 3: The steps of the improved ICA.

The process continues until the desired number of generations is reached or
the predefined fitness value is achieved.

The procedure of a GA is as follows:

1. Generate at random an initial population of chromosomes.

2. Evaluate the fitness of each chromosome in the population.

3. Select some chromosomes as parents.

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 681–707
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Figure 4: The flowchart of the improved ICA.

4. Apply recombination operation on parents.

5. Apply mutation operation on offspring.

6. Evaluate the fitness of offspring.

7. Update the population.

8. Repeat Step 4 to Step 4, until the predefined number of iterations is
not satisfied.

Figure 5 presents the flowchart of the GA used in this paper.

Table 2 presents the parameters of a real-valued GA used in this paper.
To solve an inverse form of the Huxley equation using the GA presented in

this section, we consider each candidate solution (chromosome) a real-valued
vector as follows:

Chromosomei = {a1, a2, . . . , am},

where Chromosomei is the ith candidate solution with size m in the pop-
ulation. Entries aj , 1 ≤ j ≤ m indicate the coefficients of a polynomial as
follows:

y(x) = amxm−1 + am−1x
m−2 + · · ·+ a2x

1 + a1. (6)

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 681–707
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Figure 5: The flowchart of the GA used in this paper.

Table 2: Parameters of the GA

Representation Real valued vectors
Length of chromosomes Degree of a polynomial
Recombination One point crossover
Recombination probability 100%
Mutation Adding a random value
Mutation probability 1/n

Parent selection Roulette wheel
Survivor selection Replace the worst
Number of offspring 1
Initialization Random
Termination condition Number of generation

Each candidate solution such as (6) is considered as the missing condition
q(t) of the Huxley equation.

In our GA, we initially generate a random population of a specific size and
evaluate their fitness. Then, as indicated in Figure 5, the main loop iterates
the number of iterations times. In each iteration, two candidate solutions
are selected as parents based on the roulette wheel selection method [11].
The recombination step, using one-point crossover, is applied to the selected

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 681–707
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parents, and a new offspring is created. Subsequently, the mutation step is
applied to the offspring by adding a small random value to a randomly chosen
entry. The population is then updated by replacing the worst individual with
the offspring.

5 Numerical examples

An inverse form of the Huxley equation, when 0 < x < 1, 0 < t < tM , is as
follows [5]:

Ut(x, t) = Uxx(x, t) + U(x, t)(1− U(x, t))(U(x, t)− 1),

0 < x < 1, 0 < t < T, (7a)

U(x, 0) =
1

2
+

1

2
tanh( 1

2
√
2
x), (7b)

U(0, t) =
1

2
+

1

2
tanh(−t

4
), (7c)

U(1, t) = q(t), (7d)

and the over-specified condition

s(tj) = U(0.5, tj), tj = k × j, j = 1, 2, . . . , N, (7e)

where k is the discretization step size time (t), and the function q(t) is missing.
In this equation, the exact U(x, t) and q(t) are 1

2 +
1
2 tanh(

1
2
√
2
(x− t√

2
)) and

1
2 + 1

2 tanh(
1

2
√
2
(1− t√

2
)), respectively.

The primary goal of this paper is to solve an inverse form of the Huxley
equation by estimating its missing condition, denoted as q(t). To assess the
accuracy of the estimated function q̂(t), we employ the mean absolute error
(MAE) criterion. We calculated the MAE value over the interval [0, 1] with
a step size of h = 0.01 for each algorithm to demonstrate its precision. Table
3 presents the MAE values comparing the estimated q̂(t) and the exact q(t)
for the implementations of IICA, ICA, and GA. The population size is set at
50 for all algorithms, α (the parameter for the smoothness step in Eq. (5))
is fixed at 0.1, and the initial number of empires for both IICA and ICA is
5. It is important to note that, as meta-heuristic algorithms are part of the
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stochastic algorithm class, we ran the algorithms three times and reported
the best result out of all the outcomes in this paper.

Table 3: The MAE in [0, 1] with the step size 0.01 between the exact q(t) and the
estimated function q̂(t) found by the IICA, ICA, and GA algorithms. These calculations
were based on a population size of 50, an α value of 0.1, and 5 empires

Num.of.Iter. MAE of the GA MAE of the ICA MAE of the IICA

100 0.05801 0.01227 0.00636
150 0.02166 0.01171 0.00444
200 0.01402 0.00608 0.00367
250 0.03842 0.00656 0.00417
300 0.04420 0.00392 0.00301
350 0.02635 0.00600 0.00221
400 0.01275 0.00351 0.00175
450 0.00825 0.00301 0.00186
500 0.00337 0.00255 0.00172

Figure 6 displays both the exact function q(t) and the numerically ap-
proximated q̂(t) as determined by the IICA, which used 500 iterations, a
population size of 50, an α value of 0.1, and 5 empires. The figure shows that
the MAE across the interval [0, 1], with a step size of h = 0.01, is 0.00172.
Furthermore, in this section, we will expand our examination to see how in-
creasing the population size and the initial number of empires affects the
performance of the IICA.

Figure 7 shows the discrepancy between the exact function q(t) and its
numerical approximation q̂(t), as derived by the IICA. This was achieved
after 500 iterations, with a population size of 50, an α value of 0.1, and 5
initial empires.

We present the convergence patterns of the IICA, ICA, and GA as de-
picted in Figure 8, which is derived from Table 3. The figure clearly shows
that the IICA converges more rapidly than the ICA, and the ICA, in turn,
converges quicker than the GA. The figure also indicates that while the GAs
performance varies within the interval, the ICA and IICA demonstrate a
consistent improvement as the number of iterations increases.
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Figure 6: The exact q(t) and the approximated (numeric) q̂(t) found by the IICA with
iterations 500, population size 50, α = 0.1, and the number of empires 5.

Figure 7: The difference between the exact q(t) and approximated (numeric) q̂(t) found
by the IICA with iterations 500, population size 50, α = 0.1, and the number of empires
5.

Table 4 displays the MAE in [0, 1] with the step size 0.01 comparisons
for the exact function q(t) against the approximated q̂(t) found by the IICA,
ICA, and GA algorithms. These results were obtained with a population size
of 200, an α value of 0.1, and an initial empire count of 20 for both the IICA
and ICA. The table clearly indicates that the precision of the IICA and ICA
improves with larger populations and more empires, whereas these changes
do not significantly impact the performance of the GA.

Figure 9 showcases the exact q(t) alongside the numerically approximated
q̂(t) found by the IICA through 500 iterations, a population size of 200, an
α of 0.1, and 20 empires. The figure indicates an MAE within the interval
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Figure 8: The convergence of the IICA, ICA, and GA extracted from Table 3.

Table 4: The MAE between the approximated q̂(t) and the exact q(t) by the implemen-
tation of the IICA, ICA and GA for population size 200, α = 0.1, and the number of
empires 20

Num.of.Iter. MAE of the GA MAE of the ICA MAE of the IICA

100 0.05280 0.00511 0.00302
150 0.06424 0.00320 0.00282
200 0.02392 0.00309 0.00139
250 0.03457 0.00320 0.00107
300 0.02326 0.00231 0.00104
350 0.03192 0.00203 0.00149
400 0.03222 0.00209 0.00094
450 0.03447 0.00147 0.00110
500 0.02410 0.00156 0.00083

[0, 1], at a step size of 0.01, of 0.00083, which signifies a precise solution in
the domain of inverse form of NPDEs.

Figure 10 presents the comparison between the exact q(t) and its numeri-
cal approximation q̂(t) as produced by the IICA, following 500 iterations, with
a population size of 200, an α of 0.1, and 20 empires. The figure demonstrates
that the absolute error is generally on the order of O(10−4) across most of
the interval. Between approximately 0.2 and 0.5, the error increases to the
order of O(10−3). While there are fluctuations throughout the interval, the
MAE consistently remains at the order of O(10−4).
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Figure 9: The exact q(t) and approximated (numeric) q̂(t) found by the IICA with
iterations 500, population size 200, α = 0.1, and the number of empires 20.

Figure 10: The difference between the exact q(t) and approximated (numeric) q(t) found
by the IICA with iterations 500, population size 200, α = 0.1, and the number of empires
20.

For illustrative purposes, we present the convergence of the IICA, ICA,
and GA extracted from Table 4 in Figure 11. As evident from the figure,
the convergence rate of the IICA surpasses that of the ICA and the GA. The
error value curve of the IICA consistently lies below those of the original
ICA and the GA. The performance of the GA fluctuates between 200 and
500 iterations, while both the ICA and the IICA steadily improve with an
increasing number of iterations.

5.1 Discussion

According to our experiments, the best result is achieved when α is set to
0.1 (the parameter for the smoothness step in (5)). Additionally, based on
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Figure 11: The convergence of the IICA, ICA, and GA extracted from Table 4.

the experiments, when the population size is less than 50, the accuracy of
the results is low, and increasing the population size beyond 200 does not
considerably improve accuracy. Therefore, we have reported these two val-
ues for the population size. Furthermore, according to the results, in general,
the performance of the original ICA is better than that of the GA, and the
performance of the IICA is better than both of them. Therefore, we focused
on the IICA to plot figures and analyze its performance. A good solution
using the IICA is obtained when the population size is 200, the size of the
initial empires is 20, and the algorithm is iterated 500 times. In this case, the
accuracy of the result is on the order of O(10−4), which is good accuracy in
the realm of the inverse form of NPDEs. Additionally, [LB,UB] is [−1, 1] for
all experiments. Due to the nature of the IICA algorithm, the population size
has a significant impact on its accuracy. This is the reason why we focused
on this parameter. Figures 6 and 9 show the exact q(t) and the numeric q̂(t)

found by the IICA for population sizes 50 and 200, respectively. In these
figures, it is evident that generally, at the beginning and end of the interval,
the accuracy is better than in the middle of the interval. Moreover, for the
population size 200 in Figure 9, the figures exactly match, indicating that
the proposed improvement has reached a high accuracy. Figures 7 and 10
present the error study found by our proposed algorithm (IICA) for the pop-
ulation sizes 50 and 200, respectively. As can be seen from these figures, the
overall accuracy is better for the population size 200 than for the population
size 50. Figures 8 and 11 present the convergence of the IICA, the ICA, and
the GA with iterations from 100 to 500 for the population sizes 50 and 200,
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respectively. It is clear from the figures that our proposed algorithm (IICA)
converges better than other algorithms with different population sizes. In
fact, the error curve of the IICA is almost always below that of the ICA and
the GA. The slope of the convergence curve for the IICA and ICA does not
change significantly around the number of iterations of 500. Furthermore,
these figures show that the original algorithm converges faster than the GA
for a function approximation problem when the unknown function is consid-
ered a polynomial. As can be seen from Tables 3 and 4, increasing the size of
the population does not help the GA reach a better solution, and this algo-
rithm does not converge to a high accuracy when the number of iterations is
increased to the population size of 200. On the other hand, the convergence
of the IICA and ICA improves when the size of the population is increased
from 50 to 200.

6 Conclusion

The improvements presented in this paper make the original ICA a much
more powerful method for solving differential equations and function approx-
imation. Since, in general, in real-world applications, the unknown functions
are smooth, the smoothness procedure introduced in this paper helps the
algorithm reach a high accuracy in function approximation tasks faster. Fur-
thermore, this paper presents the application of meta-heuristic algorithms
in solving inverse forms of NPDEs, which are categorized as ill-posed and
challenging problems. The numerical results demonstrate that the IICA can
effectively and proficiently solve inverse forms of nonlinear PDEs. Given the
prevalence of inverse problems in applied fields, this method holds the poten-
tial for solving real-world challenges, which could lead to reduced execution
times and enhanced accuracy. In this paper, we considered polynomials as
basis functions to approximate the unknown function. In future research, an-
other set of functions, such as orthogonal functions (e.g., Jacobi polynomials,
Legendre polynomials, Chebyshev polynomials, and Gegenbauer polynomi-
als), could be considered as the basis functions. Additionally, future research
may involve the parallel implementation of the IICA. Moreover, other meta-
heuristic algorithms could be employed to tackle this class of problems, al-

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 681–707



703 IICA for an inverse form of the Huxley equation

lowing for comparative analyses of their outcomes in relation to the results
obtained in this study.

Appendix A

Figure 12 illustrates the impact of the smoothness procedure on the vec-
tor x = [3,−7, 15,−6,−17, 18,−19, 9, 13,−4] when α = 0.5. After ap-
plying the smoothness procedure, the resulting vector is denoted as x′ =

[0.94,−2, 8.7,−5.4,−9.2, 7.3,−9.95, 6.5, 9.1,−2.2].

Figure 12: The impact of the smoothness procedure on a vector.
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