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Abstract

An improvised collocation scheme is applied for the numerical treatment of
the nonlinear generalized Burgers–Fisher’s (gBF) equation using splines of
degree three. In the proposed methodology, some subsequent rectifications
are done in the spline interpolant, which resulted in the magnification of the
order of convergence along the space direction. A finite difference approach
is followed to integrate the time direction. Von Neumann methodology is
opted to discuss the stability of the method. The error bounds and conver-
gence study show that the technique has (s4 +∆t2) order of convergence.
The correspondence between the approximate and analytical solutions is
shown by graphs, plotted using MATLAB and by evaluating absolute error.
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1 Introduction

Lu et al. [17] found that the generalized Burgers–Fisher’s (gBF) problem is an
extension of generalized Fisher’s equation, which is as mentioned hereunder:

vt = βvxx + f(v, vx), x ∈ (a, b), t ∈ (t0, T ). (1)

Equation (1) can be expressed in the operator form as mentioned below:

L ≡ βvxx − vt + f(v, vx), (2)

with the initial condition as:

v = v0, in [a, b]× {t0}, (3)

and the boundary conditions as:

Bv = Ω, on ∂Φx × [t0, T ], (4)

where f(v, vx) = −αvσvx + γv(1 − vσ), Φx = (a, b), B is the boundary
operator defined as Bv = a1(x, t)v(x, t) + a2(x, t)vx(x, t). Here v represents
the traveling wave phenomena with σ > 0 and T > t0. Also α, β, and γ

correspond to the convection, diffusion, and reaction coefficients, respectively.
With σ = 1, (1) becomes the Burgers–Fisher’s equation given below:

vt + αvvx = βvxx + γv(1− v), x ∈ (a, b), t ∈ (t0, T ). (5)

This is known as the Burgers–Fisher’s equation because it has convective
phenomena from the Burgers’ problem, diffusion transport along with re-
action characteristics from the Fisher’s equation. Thus, it is a blending of
convection, diffusion, and reaction mechanisms. The proposed problem was
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used by Sachdev [26] in self-similarity. When γ = 0, (5) becomes the Burg-
ers’ problem, which was used by Lighthill [16] in the investigation of sound
waves in a viscous medium. When α = 0, (5) reduces to the modified Fisher’s
problem, which was used by Murray [23] in mathematical biology.

Since two nonlinear terms occur in (5), therefore analytical methods such
as Laplace, Fourier, and other classical approaches to integrate the system
become invalid. Due to this, the traveling wave solution of the gBF equation
was found by Fan [7] using the extended tanh-function and the Riccati equa-
tion. Mickens and Gumel [19] studied the properties of the Burgers–Fisher’s
problem and worked on its numerical solution using the nonstandard finite
difference technique. Kaya and Sayed [15] obtained an explicit series solution
of the gBF equation without any transformation and compared it with the nu-
merical solution obtained using the Adomian decomposition technique. This
technique was extended by Ismail, Raslan, and Abd Rabboh [12] to analyze
the Burgers–Fisher’s and Burgers–Huxley’s equation. Javidi [13] solved this
equation using a combination of pseudospectral Chebyshev and Runge-Kutta
fourth-order methods. A variational iteration scheme based on Lagrange mul-
tipliers to construct correction functions for the gBF problem was adapted
by Moghimi and Hejazi [21]. Wazwaz [38] derived the sets of traveling wave
solutions as well as kinks and periodic solutions of the gBF equation using
the tanh-coth method. The spectral domain decomposition technique with
Chebyshev polynomials for spatial derivatives and RK4 for time integration
was used by Golbabai and Javidi [10]. Zhu and Kang [40] applied the B-spline
quasi-interpolation technique and opted for forward difference for temporal
discretization to solve the Burgers–Fisher’s equation. A finite difference tech-
nique of sixth-order for space, and the third-order Runge–Kutta method for
temporal domain was applied by Sari, Gürarslan, and Dağ [30] for the gBF
equation.

Bratsos [2] implemented the finite difference technique of order four for
space discretization and a predictor-corrector technique for solving the re-
sulting nonlinear system. Sari [29] adapted the polynomial-based differential
quadrature technique for space and the SSP-RK scheme of third-order for
time to solve the gBF equation. Tatari, Sepehrian, and Alibakhshi [35] used
the collocation method with the radial basis function to solve the system of
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nonlinear equations by the predictor-corrector method. Zhao et al. [39] used
the Legendre–Galerkin formulation for space discretization with Chebyshev–
Gauss–Lobatto node points and leapfrog scheme for temporal discretization.
Mohammadi [22] used an explicit exponential spline difference scheme for the
gBF equation and analyzed convergence, error, and stability properties with
the energy method. The limitation of the work was the large computational
time. A modified spline collocation technique with the SSPRK-54 scheme
was applied by Mittal and Tripathi [20] to analyze the gBF problem. Malik
et al. [18] adapted a heuristic genetic algorithm scheme for the gBF equation
based on an exp-function hybridization technique.

Chandraker, Awasthi, and Jayaraj [4] applied two implicit finite difference
schemes to solve the Burgers–Fisher problem; one was semi-implicit and the
other was based on the modified Crank–Nicolson method. Al-Rozbayani and
Al-Hayalie [1] applied three different finite difference schemes to solve the
Burgers–Fisher’s equation. One is an explicit method, the other is an expo-
nential method and the third one is the Du Fort–Frankel method. Hepson
[11] implemented an extended B-spline collocation technique to solve the
gBF equation. Saeed and Gilani [27] proposed a combination of the CAS
wavelet method with a quasi-linearization scheme to solve the gBF equation.
Sangwan and Kaur [28] applied a piecewise uniform Shishkin mesh with ex-
ponentially fitted splines and for temporal discretization, the implicit Euler
method was adopted. The quasilinearization was used to deal with the non-
linear terms. Bratsos and Khaliq [3] adapted an exponential time differencing
technique in which a nonlinear system was solved by a second-order modified
predictor-corrector scheme.

In this study, we employ an extrapolated collocation algorithm to in-
vestigate the gBF equation. This method, previously utilized by Shallu,
Kumari, and Kukreja [34, 31, 32], has been successfully applied to solve
second-order self-adjoint equations, modified Burgers’ equations, as well as
RLW and MRLW equations. We enhance the methodology by utilizing im-
proved cubic B-splines for spatial discretization and employing a weighted
finite difference method for temporal discretization. These adjustments lead
to a notable enhancement in the convergence order in the spatial domain.

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 736–761



Shallu and Kukreja 740

The structure of the paper is as follows: In Section 2, we detail the con-
struction and implementation of the improved B-spline collocation method-
ology for addressing the given problem. Subsequently, we conduct a con-
vergence analysis in the spatial domain. In Section 3, we proceed with the
discretization of the temporal domain. Section 4 involves the utilization of
the von Neumann method to assess the stability of our proposed approach.
In Section 5, we present solved examples to demonstrate the effectiveness of
our technique and its superiority over existing data. Finally, in Section 6, we
provide a summary of our findings.

2 New cubic B-Spline collocation technique

Consider the uniform subdivision of the Πx space domain with s = (b−a)/M

as the step length of the space domain and M + 1 is the number of nodal
points. The structure of cubic splines Cp,3(x) is given in [24]. The numerical
solution can be written as follows:

W (x, t) =

M+1∑
p=−1

dp(t)Cp(x). (6)

2.1 Corrections in the second-order derivative

Assume that the spline interpolant W (x, t) fulfills the given constraints:

(I) the interpolatory constraints, for p = 0, 1, . . . ,M :

W (xp, t) = v(xp, t), (7)

(II) at the end nodal points, for p = 0 and M :

Wxx(xp, t) = vxx(xp, t)−
s2

12
vxxxx(xp, t). (8)

Theorem 1. The following relations hold among the cubic spline interpolant
(CSI) W (x, t) and the exact solution v(x, t), where v(x, t) satisfy (7) and (8)
for p = 0, 1, . . . ,M :
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741 Highly accurate collocation methodology ...

Wxx(xp, t) = vxx(xp, t)−
s2

12
vxxxx(xp, t) +O(s4),

Wx(xp, t) = vx(xp, t) +O(s4).

In addition,
∥ W (j) − v(j) ∥∞= O(s4−j), j = 0, 1, 2,

where W (j) and v(j) represent the jth derivative with respect to ‘‘x”.

Proof. See [5].

Lemma 1. For v(x, t) ∈ C6[a, b], the below mentioned relations hold:

For p = 0 :

vxxxx(x0, t) =
Wxx(x0, t)− 5Wxx(x1, t) + 4Wxx(x2, t)−Wxx(x3, t)

x2
+O(s2).

For p = 1, 2, . . . ,M − 1 :

vxxxx(xp, t) =
Wxx(xp−1, t)− 2Wxx(xp, t) +Wxx(xp+1, t)

x2
+O(s2).

For p = M :

vxxxx(xM , t)

=
Wxx(xM , t)− 5Wxx(xM−1, t) + 4Wxx(xM−2, t)−Wxx(xM−3, t)

x2
+O(s2).

Proof. See [5].

Corollary 1. For v(x, t) ∈ C6[a, b], the below given relations hold:

For p = 0, 1, . . . ,M :

vx(xp, t) = Wx(xp, t) +O(s4),

For p = 0 :

vxx(x0, t) =
14Wxx(x0, t)− 5Wxx(x1, t) + 4Wxx(x2, t)−Wxx(x3, t)

12
+O(s4),

For p = 1, 2, . . . ,M − 1 :

vxx(xp, t) =
Wxx(xp−1, t) + 10Wxx(xp, t) +Wxx(xp+1, t)

12
+O(x4),

For p = M :

vxx(xM , t)
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=
14Wxx(xM , t)− 5Wxx(xM−1, t) + 4Wxx(xM−2, t)−Wxx(xM−3, t)

12

+O(s4).

Proof. See [5].

2.2 System of equations

At the nodal points, (1) can be expressed as follows:

vt(xp, t) = βvxx(xp, t) + f(v(xp, t), vx(xp, t)), xp ∈ [a, b],

B(v(xp, t)) = Ω(v(xp, t)), xp ∈ ∂Φx.

Substituting the values of v(xp, t), vx(xp, t), and vxx(xp, t) in the above equa-
tions and using Corollary 1, we have

∂

∂t
W (x0, t) =

β

12
[14Wxx(x0, t)− 5Wxx(x1, t) + 4Wxx(x2, t)−Wxx(x3, t)]

+ f(W (x0, t),Wx(x0, t)) +O(s4),

(9)
∂

∂t
W (xp, t) =

β

12
[Wxx(xp−1, t) + 10Wxx(xp, t) +Wxx(xp+1, t)]

+ f(W (xp, t),Wx(xp, t)) +O(s4), p = 1, 2, . . . ,M − 1, (10)
∂

∂t
W (xM , t) =

β

12
[14Wxx(xM , t)− 5Wxx(xM−1, t) + 4Wxx(xM−2, t)

−Wxx(xM−3, t)] + f(W (xM , t),Wx(xM , t)) +O(s4). (11)

and the boundary constraints:

a1(xp, t)W (xp, t) + a2(xp, t)Wx(xp, t) = Ω(xp, t) +O(s4), p = 0,M. (12)

The above relations form a nonlinear vector initial value problem of first-order
with (3) as initial constraint.
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2.3 Spatial convergence analysis

Let L̂ and B̂ be the perturbation operators of L and B. Then, the below
given connections hold:

For p = 1, 2, . . . ,M − 1:

L̂W (xp, t) ≡ L[W (xp, t),Wx(xp, t),Wxx(xp, t)

+
1

12
[Wxx(xp, t)− 2Wxx(xp, t) +Wxx(xp, t)],

L̂W (x0, t) ≡ L[W (x0, t),Wx(x0, t),Wxx(x0, t)

+
1

12
[2Wxx(x0, t)− 5Wxx(x1, t) + 4Wxx(x2, t)−Wxx(x3, t)],

L̂W (xM , t) ≡ L[W (xM , t),Wx(xM , t),Wxx(xM , t)

+
1

12
[2Wxx(xM , t)− 5Wxx(xM−1, t) + 4Wxx(xM−2, t)

−Wxx(xM−3, t)]. (13)

B̂W (xp, t) = BW (xp, t), p = 0,M.

Thus it is deduced that, for the unique CSI that satisfies (7)–(8), the following
mentioned connections hold at the nodal points:

L̂W (xp, t) = O(s4), p = 0, 1, . . . ,M ; B̂W (xp, t) = O(h4), p = 0,M.

The purpose is to find a cubic spline solution v̂(x, t), such that

L̂v̂(xp, t) = 0, p = 0, 1, . . . ,M ; B̂v̂(xp, t) = 0, p = 0,M. (14)

Next, Green’s function is applied for the establishment of error bounds.

Lemma 2. The coefficient matrix of vxx = g(x, t) having homogeneous
boundary constraints has inverse with finite norm.

Proof. Using the steps of formation, the coefficient matrix ג of the equation
vxx = g(x, t) is as mentioned below by using (13):

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 736–761
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ג =
1

12



14 −5 4 −1 0 . . . 0

1 10 1 0 0 . . . 0

0 1 10 1 0 . . . 0
...

...
...

...
... . . .

...
0 . . . 0 1 10 1 0

0 . . . 0 0 1 10 1

0 . . . 0 −1 4 −5 14


Due to the diagonal dominance behavior of matrix, it is invertible. Moreover,

∞∥1−ג∥ ≤ max
0≤p≤M

1

∆pג
,

where
∆pג =| ppג | −

∑
j ̸=p

| pjג |> 0 for p = 0, 1, . . . ,M.

So,
∞∥1−ג∥ ≤ 1

min0≤p≤M ∆p(ג)
=

12

14− (5 + 4 + 1)
= 3.

Now, onwards W (j), v(j), and v̂(j) are the jth differentiation with respect to
space variable. Let ג̂ denote the coefficient matrix of W (1)(x, t) in (9)–(12),
that is, ג̂ = diag(− 5

h , 0,
5
h ), which is invertible with finite norm. Since the

boundary value problem of the form (1) with the boundary constraints (4)
can be transformed into the Fredholm integral equation of order two. Let
v(2) = z and v̂(2) = w such that z and w fulfill the boundary constraints (4).
Then v and v̂ can be rebuilt by Green’s function as

v(j)(x, t) =

∫ b

a

∂jG(x, t, r)
∂xj

z(r, t)dr, j = 0, 1,

v̂(j)(x, t) =

∫ b

a

∂jG(x, t, r)
∂xj

w(r, t)dr, j = 0, 1.

Let δ(x, t) be any continuously differentiable function. The operators that are
necessary for the establishment of the convergence analysis are given below:

A : C[a, b] −→ C[a, b] such that Aδ =
1

β
(G0δt − f(x, t,G0δ,G1δ)),

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 736–761
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where Gjδ =
∫ b

a
∂jG(x,t,r)
∂xjδ(r,t)dr , j = 0, 1 are the operators from [a, b] to [a, b].

Let D represent the piecewise linear interpolation operator at the points
{(xp, t)}Mp=0. Let S be the following projection operator:

S : C[a, b] −→ RM+1 such that Sδ = [δ(x0, t), δ(x1, t), . . . , δ(xM , t)]T .

E : C[a, b] −→ C[a, b], such that Eδ = [E0δ, E1δ, . . . , EMδ]T ,

where Epδ = 1
β (G0δt−f(x, t,G0δ, EpSG1δ)), in which Ep denotes the pth row

of the coefficient matrix of vx(x, t). Using above definitions, (1) and (14) can
be written as follows:

(I −A)z = 0,

Sג) − E)w = 0. (15)

Since ג is an invertible, so

(S − 1E)w−ג = 0.

Since w is a linear polynomial, therefore DSw = w and

(I −D1−גE)w = 0. (16)

Lemma 3. For the uniform partition of [a, b], ∥ D1−גEδ − Aδ ∥∞→ 0 as
s → 0.

Proof. Th proof holds as follows:

∥ D1−גEδ −Aδ ∥∞ ≤∥ D1−גEδ −DSAδ ∥∞ + ∥ DSAδ −Aδ ∥∞

≤∥ D ∥∞∥ 1−ג ∥∞∥ Eδ − SAδג ∥∞ + ∥ DSAδ −Aδ ∥∞

≤∥ Eδ − SAδג ∥∞ +O(s2).

Theorem 2 (see [6]). Contemplate the curve C = (x, t, v, vx) ∈ R4, where
(x, t) ∈ [a, b] × [t0, T ], and let v(x, t) ∈ C6[a, b] represent the solution of the
given equation (1) with the boundary constraint (4), let f(u, y) be adequately
smooth near v, and let the hereunder linear problem,

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 736–761
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vxx − ∂

∂y

1

β
(ut − f(u, y))vx − ∂

∂u
(ut − f(u, y))v = 0

with the boundary constraints (4) be distinctively solvable and acquire
Green’s function G(x, t, r). Then, there exist ϵ, η > 0 (constants) such that

(I) there is no other solution ŵ of equation (1) with boundary constraint
(4) satisfying ∥ vxx − ŵxx ∥< η,

(II) for s < ϵ, (16) has a unique spline approximate solution W (x, .) in the
same neighborhood of v.

(III) the Newton’s method converges in the neighborhood of v for s < ϵ

quadratically, which is used to solve (16).

Theorem 3. Let the presumption of Theorem 2 agree. Then the below given
error bound exists:

∥ v(j)(x, ·)− v̂(j(x, .) ∥∞ = O(s4−j), j = 0, 1, 2.

| v(j)(x, ·)− v̂(j)(x, ·) |xp
= O(s4), j = 0, 1.

| v(2)(x, ·)− v̂(2)(x, ·) |xp
= O(s2).

Proof. Consider the equation W (2) = µ̂, ∧BW = O(s4). Then there exists a
linear polynomial w̄ by using Theorem 2, such that

∧Bw̄ = ∧BW = O(s4), ∥ w̄(j) ∥∞= O(s4), j = 0, 1.

Since (W (2) − w̄(2)) = µ̂, ∧B(W − w̄) = 0 has a unique solution. Therefore
using Theorem 2, we have

(I −D1−גE)(W (2) − w̄(2)) = O(s4). (17)

Deducting (16) from (17), we have

(I −D1−גE)(W (2) − w̄(2) − v̂(2)) = O(s4).

Since (I −D1−גE) is bounded,

∥ W (2) − w̄(2) − v̂(2) ∥∞= O(s4).

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 736–761
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The equation (W − w̄ − v̂)(2) = η̄, ∧B(W −⪯⊒− ∧⊑) = 0 has unique solution,
hence it assures the existence of Green’s function such that,

| (W − w̄ − v̂)(j) |=
∫ b

a

∂jG(x, t, r)
∂xj

(W (2) − w̄(2) − v̂(2))dr, j = 0, 1.

Thus,
∥ (W − w̄ − v̂)(j) ∥∞= O(s4), j = 0, 1.

So,

∥ (W−v̂)(j) ∥∞≤∥ (W−w̄−v̂)(j) ∥∞ + ∥ w̄(j) ∥∞= O(s4), j = 0, 1, 2. (18)

Using Theorem 1, (18), and the triangular inequality implies

∥ (v − v̂)(j) ∥∞≤∥ (v −W )(j) ∥∞ + ∥ (W − v̂)(j) ∥∞= O(s4−j), j = 0, 1, 2.

3 Time discretization

Substitute the approximate values of v, vx, and vxx in (1), which leads to an
initial value problem system as follows:

Q1
d

dt
C(t) = 1

h2
Q2BC(t) + F(t, C(t)) t ∈ (t0, T ), (19)

with the initial constraint
Q1C(t0) = v0, (20)

whereQ1 = tri[1, 4, 1] is a three diagonal matrix, C(t) = [d0(t), d1(t), . . . , dM (t)]T ,
F(t, C(t)) is a column vector with the elements f(t,Q1jC(t),Q3jC(t)), v0 =

[v(x0, t0), v(x1, t0), . . . , v(xM , t0)]
T , where B = diag[β], Q3 = 1

3h tri[−1, 0, 1]

and the matrix Q2 is as follows:

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 736–761
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Q2 =
1

2



14 −33 28 −14 6 −1 0 . . . 0

1 8 −18 8 1 0 0 . . . 0

0 1 8 −18 8 1 0 . . . 0
...

...
...

...
...

...
... . . .

...
0 . . . 0 1 8 −18 8 1 0

0 . . . 0 0 1 8 −18 8 1

0 . . . 0 −1 6 −14 28 −33 14


Consider the uniform division of the time domain as Γt ≡ {ti}mi=0 of [t0, T ]
with the temporal step size ∆t = tn+1−tn. Use the weighted finite difference
method to discretize (19) as used in [9], with Θ as a parameter and identity
matrix I, we have

Q1I
σt

∆t(1−Θσt)
Cn =

1

h2
Q2BCn + F(t, Cn), n = 1, 2, . . . ,[

Q1I −
∆t

h2
(1−Θ)Q2BI

]
Cn −∆t(1−Θ)Fn

=

[
Q1I +

∆t

h2
ΘQ2BI

]
Cn−1 +∆tΘFn−1, n = 1, 2, . . . , (21)

with the following initial constraint:

Q1C0 = v0.

Using the initial constraint, obtain the value of C0, and using (21), the value
of C can be computed at every successive time level.

Lemma 4. Let v(·, t) ∈ C3[t0, T ] be the exact solution of (1). For Θ = 1
2 ,

the time integration methodology has order two, and for Θ ∈
(
1
2 , 1

]
, it has

order one of convergence.

Proof. The proof is given in [14, Theorem 2].

Hence, the method is fourth-order convergent in the space and second-
order convergent in the time direction for Θ = 1

2 .

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 736–761



749 Highly accurate collocation methodology ...

4 Stability analysis

Von Neumann technique is used to analyze the stability technique. Take v as
a local constant P = max(v) and integrate the time domain using a weighted
finite difference methodology with Θ = 1

2 . We get

vn+1
p − vnp

∆t
+ αP σ

[
(vx)

n+1
p + (vx)

n
p

2

]

= β
(vxx)

n+1
p + (vxx)

n
p

2
+ γ(1− Pσ)

[
vn+1
p + vnp

2

]
.

Expressing the (n+ 1)th level in terms of nth time level terms, we have(
1

∆t
+

γ(Pσ − 1)

2

)
vn+1
p +

αP σ

2
(vx)

n+1
p − β

2
(vxx)

n+1
p

=

(
1

∆t
− γ(Pσ − 1)

2

)
vnp − αp

2
(vx)

n
p +

β

2
(vxx)

n
p . (22)

Let

e1 =
1

∆t
+

γ(Pσ − 1)

2
; q1 =

αP σ

2
; e2 =

1

∆t
− γ(Pσ − 1)

2
; q2 = −αP σ

2
.

With the above substitution, (22) becomes

e1v
n+1
p + q1(vx)

n+1
p − β

2
(vxx)

n+1
p = e2v

n
p + q2(vx)

n
p +

β

2
(vxx)

n
p .

Substituting the values v, vx, and vxx and using the improvised cubic B-
splines imply

e1(d
n+1
p−1 + 4dn+1

p + dn+1
p+1 )−

3q1
h

(dn+1
p−1 − dn+1

p+1 )

− β

4h2
(dn+1

p−2 + 8dn+1
p−1 − 18dn+1

p + 8dn+1
p+1 + dn+1

p+2 )

= e2(d
n
p−1 + 4dnp + dnp+1)−

3q2
h

(dnp−1 − dnp+1) (23)

+
β

4h2
(dnp−2 + 8dnp−1 − 18dnp + 8dnp+1 + dnp+2). (24)

After simplifying, (24) becomes

− β

4s2
dn+1
p−2 +

(
e1 −

3q1
s

− 2β

s2

)
dn+1
p−1 +

(
4e1 +

9β

2s2

)
dn+1
p
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+

(
e1 +

3q1
s

− 2β

s2

)
dn+1
p+1 − β

4s2
dn+1
p+2

=
β

4s2
dnp−2 +

(
e2 −

3q2
s

+
2β

s2

)
dnp−1 +

(
4e2 −

9β

2s2

)
dnp

+

(
e2 +

3q2
s

+
2β

s2

)
dnp+1 +

β

4s2
dnp+2.

Moreover,

u1d
n+1
p−2 + u2d

n+1
p−1 + u3d

n+1
p + u4d

n+1
p+1 + u1d

n+1
p+2

= −u1d
n
p−2 + u5d

n
p−1 + u6d

n
p + u7d

n
p+1 − u1d

n
p+2,

where

u1 = − β

4s2
; u2 = e1 −

3q1
s

− 2β

s2
; u3 = 4e1 +

9β

2s2
; u4 = e1 +

3q1
s

− 2β

s2
;

u5 = e2 −
3q2
s

+
2β

s2
; u6 = 4e2 −

9β

2s2
; u7 = e2 +

3q2
s

+
2β

s2
.

Put dnp = Eηnexp(ipφs), where i is the iota, E is the amplitude, and φ is the
mode number. We have

η =
−u1exp(−2iφs) + u5exp(−iφs) + u6 + u7exp(iφs)− u1exp(2iφs)
u1exp(−2iφs) + u2exp(−iφs) + u3 + u4exp(iφs) + u1exp(2iφs)

=
−2u1cos(2φs) + u6 + (u5 + u7)cos(φs) + i(u7 − u5)sin(φs)
2u1cos(2φs) + u3 + (u2 + u4)cos(φs) + i(u4 − u2)sin(φs)

=
A1 + iB1

A2 + iB2
,

where

A1 =
β

2s2
cos(2φs) +

(
2e2 +

4β

s2

)
cos(φs) + 4e2 −

9β

2s2
;

B1 =
6q2
s

sin(φs);

A2 = − β

2s2
cos(2φs) +

(
2e1 −

4β

s2

)
cos(φs) + 4e1 +

9β

2s2
;

B2 =
6q1
s

sin(φs).

We prove |η| ≤ 1, that is, A2
1 + B2

1 ≤ A2
2 + B2

2 for the stability of the
technique. As q1 = −q2 therefore B2

1 = B2
2 . Next, to prove that A2 ≥ A1,

that is, A2 −A1 ≥ 0, we have

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 736–761



751 Highly accurate collocation methodology ...

A2 −A1 = −β
cos(2φs)

s2
+

(
2(e1 − e2)−

8β

s2

)
cos(φs) + 4(e1 − e2) +

9β

s2
;

= −2β

s2
cos2(φs) +

(
2(e1 − e2)−

8β

s2

)
cos(φs) + 4(e1 − e2) +

10β

s2
.

(25)

For minimum possible value of A2 − A1, take cos(φs) = 1. So, A2 − A1 =

6(e1 − e2) ≥ 0. Hence the technique is unconditionally stable.

5 Numerical examples

In this portion, the gBF problem is analyzed numerically for distinct values
of α, β, γ, and σ. The numerical results are represented using tabular form
as well as figures and are contrasted with the outcomes in literature as well
as with its solitary wave solution. The difference in the results is shown by
calculating absolute error defined as

ϵ = |(vexact)mp − (vnum)mp |; p = 0, 1, 2, . . . ,M,

where (vexact)
m
p and (vnum)mp are the exact and improved B-spline solutions

of degree three, respectively, at the node point xp.

The solitary wave solution of (1) is given by Wazwaz [37] as follows:

v(x, t) =

[
1

2
+

1

2
tanh

[
−ασ

2β(σ + 1)

(
x−

(
α

σ + 1
+

βγ(σ + 1)

α

)
t

)]] 1
σ

, (26)

with the below given initial constraints:

v(x, 0) =

[
1

2
+

1

2
tanh

[
−ασx

2β(σ + 1)

]] 1
σ

,

and the boundary constraints,

v(0, t) =

[
1

2
+

1

2
tanh

[
ασ

2β(σ + 1)

(
α

σ + 1
+

βγ(σ + 1)

α

)
t

]] 1
σ

,

v(1, t) =

[
1

2
+

1

2
tanh

[
−ασ

2β(σ + 1)

(
1−

(
α

σ + 1
+

βγ(σ + 1)

α

)
t

)]] 1
σ

.
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Example 1. Consider the gBF equation (1) in the domain [0, 1] with α =

0.001, β = 1, and γ = 0.001 as follows:

vt + 0.001vσvx = vxx + 0.001v(1− vσ).

The solitary wave solution is given in (26). Table 1 represents the con-
trast of absolute error with s = 0.1 and ∆t = 0.0001 for t = 0.001, 0.01, 100,
and σ = 1, 4. The contrast shows that results are superior to the Adomian
decomposition scheme [12], compact finite difference method [30], and expo-
nential time differencing method [3]. The CPU time required to compute the
absolute error at t = 0.001 is 0.043872 sec, at t = 0.01, it is 0.053391 sec,
and at t = 100, it is 6.489983 sec. Figure 1 shows the resemblance between
a solitary wave and the approximate solution at distinct times, and Figure 2
represents the three-dimensional surface plot of the approximate solution.

Example 2. Consider the gBF equation (1) in the domain [0, 1] with α = 1,
β = 1, and γ = 1 as follows:

vt + vσvx = vxx + v(1− vσ).

Table 2 gives the absolute error at distinct times with s = 0.1 and ∆t =

0.0001 for σ = 2, 8. This table demonstrates that results are highly accurate
as compared to many existing techniques [12, 30, 3]. The CPU time required
to compute the absolute error at t = 0.0005 is 0.037888 sec, and at t = 0.001,
it is 0.043125 sec. The solitary wave behavior and the numerical solution are
also represented by graphs. Figure 3 gives the comparison between solitary
wave and approximate solution at distinct times and depicts the similarity
between them. Figure 4 represents the three-dimensional surface plot of the
approximate solution.

Example 3. Consider the gBF equation (1) in the domain [0, 1] with β = 1,
α = 1, and γ = 0 as follows:

vt + vσvx = vxx.

The absolute error at distinct times and different spatial domain points
with h = 0.1 and ∆t = 0.0001 for σ = 1, 2, 3 is given in Table 3. Results
are found to be more superior as compared to [12, 3]. The CPU time re-
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quired to compute the absolute error at t = 0.001 is 0.042149 sec, and at
t = 2.0, it is 6.187059 sec. Figure 5 gives the comparison between solitary
wave and approximate solution at distinct times and depicts the similarity
between them. Figure 6 represents the three-dimensional surface plot of the
approximate solution.

Example 4. Consider the gBF equation (1) in the domain [0, 1] with α = 0.1,
β = 1, and γ = −0.0025 as follows:

vt + 0.1vσvx = vxx − 0.0025v(1− vσ).

Table 4 shows the absolute error with space step size s = 0.1 and time
step size ∆t = 0.0001 for σ = 2, 4, and 8. From the comparison it is clear
that the results with the proposed methodology are superior to many other
existing techniques used in [30], [3]. The CPU time required to compute
the absolute error at t = 0.1 is 0.627901 sec, at t = 0.5, it is 0.237965 sec,
and at t = 2.0, it is 6.489983 sec. Figure 7 demonstrates the resemblance
between solitary wave and numerical solution at distinct times, and Figure 8
represents the three-dimensional surface plot of the approximate solution.

6 Conclusion

The gBF problem has been investigated using an innovative approach em-
ploying a three-degree spline collocation methodology. Through enhance-
ments made to standard splines, we have achieved significantly improved
accuracy in the approximate solution, accompanied by a notable reduction
in absolute error. Our improvised methodology demonstrates a convergence
order of four in the spatial domain and two in the temporal domain. These
results surpass the performance of various established techniques, includ-
ing the compact finite difference technique, exponential time differencing
method, and Adomian decomposition scheme, among others. Furthermore,
our method showcases computational efficiency across a range of relevant
examples.
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Table 1: Absolute error comparison of Example 1 with α = 0.001, s = 0.1 and ∆t =

0.0001, γ = 0.001

σ = 1 σ = 4

t x ICSCM [12] [30] [3] [36] ICSCM [30] [3] [36]
0.001 0.1 5.21E-15 1.940e-6 1.010e-7 1.150e-8 2.50e-8 1.77e-15 1.75e-8 7.71e-9 4.20e-8

0.5 1.66E-16 1.940e-6 1.040e-7 3.070e-13 2.50e-8 3.33e-16 1.75e-8 2.07e-13 4.20e-8
0.9 5.55E-17 1.940e-6 1.010e-7 1.150e-8 2.50e-8 1.11e-16 1.75e-8 7.71e-9 4.20e-8

0.010 0.1 3.25E-14 1.940e-5 7.530e-7 6.020e-8 2.50e-8 5.66e-15 1.27e-6 4.05e-8 4.20e-8
0.5 1.11E-16 1.940e-5 1.040e-6 8.960e-13 2.50e-8 6.66e-16 1.75e-6 5.56e-13 4.20e-8
0.9 5.55E-17 1.940e-5 7.530e-7 6.020e-8 2.50e-8 1.11e-16 1.27e-6 4.05e-8 4.20e-8

100 0.1 1.52E-14 - 7.530e-7 1.010e-7 2.50e-8 4.42e-14 - 5.73e-8 4.20e-8
0.5 2.59E-14 - 1.040e-6 1.500e-11 2.50e-8 1.03e-14 - 3.51e-12 4.20e-8
0.9 5.55E-15 - 7.530e-7 1.010e-7 2.50e-8 1.66e-15 - 5.73e-8 4.20e-8

Table 2: Absolute error comparison of Example 2 with α = 1, s = 0.1, γ = 1, and
∆t = 0.0001

σ = 2 σ = 8

t x ICSCM [12] [30] [3] [36] ICSCM [30] [3] [36]
0.0005 0.1 5.15e-11 1.40e-3 7.62e-5 5.67e-6 3.98e-5 2.4139e-9 1.02e-4 2.44e-6 5.16e-5

0.5 1.35e-12 1.35e-3 9.14e-5 5.75e-9 4.15e-5 5.5742e-12 1.37e-4 1.82e-10 6.08e-5
0.9 2.08e-11 1.28e-3 1.02e-4 5.95e-6 4.22e-5 1.6251e-9 1.69e-4 3.15e-6 6.91e-5

0.0010 0.1 1.03e-11 2.80e-3 1.50e-4 1.08e-5 3.97e-5 3.4743e-10 2.00e-4 4.65e-6 5.15e-5
0.5 2.05e-12 2.69e-3 1.83e-4 1.15e-8 4.11e-5 2.8770e-11 2.74e-4 4.02e-10 6.09e-5
0.9 2.40e-12 2.55e-3 2.00e-4 1.14e-5 4.16e-5 2.3789e-10 3.31e-4 6.00e-6 6.94e-5
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Table 3: Absolute error comparison of Example 3 with α = 1, s = 0.1, γ = 0, and
∆t = 0.0001

σ t x ICSCM Ismail [12] Bratsos [3] t ICSCM Bratsos [3]

1 2 0.1 2.5046e-10 6.43e-5 9.82e-5 20 8.6084e-12 2.65e-6
0.5 3.7073e-10 6.07e-5 1.45e-5 1.4161e-11 1.45e-7
0.9 3.2483e-10 4.75e-5 9.29e-5 1.3391e-11 4.05e-6

2 2 0.1 1.1286e-10 1.19e-5 8.34e-5 20 1.1906e-12 2.96e-6
0.5 6.8167e-10 1.50e-5 4.19e-6 5.1861e-11 7.14e-7
0.9 1.2681e-10 1.44e-5 9.48e-5 1.2913e-11 5.66e-6

3 0.001 0.1 1.1582e-9 4.44e-4 9.10e-6 10 5.0684e-10 2.46e-5
0.5 8.0534e-12 1.85e-3 6.75e-9 6.6355e-10 5.11e-6
0.9 6.8473e-10 9.05e-4 1.09e-5 5.5408e-10 4.35e-5

Table 4: Absolute error comparison of Example 4 with α = 0.1, s = 0.1, γ = −0.0025,
and ∆t = 0.0001

σ = 2 σ = 4 σ = 8

t x ICSCM [30] [3] ICSCM [30] [3] ICSCM [30] [3]
0.1 0.1 5.040e-14 1.210e-5 9.470e-6 4.787e-13 1.340e-5 6.760e-6 3.140e-12 1.470e-5 4.090e-6

0.5 1.221e-15 2.900e-5 2.740e-8 6.994e-15 3.490e-5 1.030e-8 6.362e-14 3.830e-5 1.840e-8
0.9 3.197e-14 1.540e-5 9.570e-6 4.969e-13 1.390e-5 6.920e-8 3.041e-12 1.530e-5 4.240e-6

0.5 0.1 4.252e-14 1.670e-5 9.580e-6 5.746e-13 2.000e-5 6.830e-6 3.148e-12 2.200e-5 4.140e-6
0.5 2.109e-15 4.690e-5 5.180e-8 2.420e-14 5.640e-5 1.930e-8 2.331e-14 6.220e-5 3.470e-8
0.9 3.442e-14 1.710e-5 9.660e-6 5.044e-13 2.070e-5 7.010e-6 3.068e-12 2.280e-5 4.300e-6

2.0 0.1 6.051e-14 - 9.590e-6 5.369e-13 - 6.860e-6 3.116e-12 - 4.200e-6
0.5 3.553e-15 - 5.260e-8 5.329e-15 - 1.890e-8 3.919e-14 - 3.450e-8
0.9 3.186e-14 - 9.670e-6 4.998e-13 - 7.040e-6 3.069e-12 - 4.350e-6
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Figure 1: Solution of Example 1 at dis-
tinct times with s = 0.1, ∆t = 0.0001,
and σ = 8.
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Figure 2: Three-dimensional representation
of numerical solution of Example 1 with s =

0.01, ∆t = 0.001, and σ = 8.
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Figure 3: Solution of Example 2 at dis-
tinct times with s = 0.1, ∆t = 0.0001,
and σ = 8.
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Figure 4: Three-dimensional representation
of numerical solution of Example 2 with s =

0.01, ∆t = 0.001, and σ = 8.
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Figure 5: Solution of Example 3 at dis-
tinct times with s = 0.1, ∆t = 0.0001,
and σ = 8.
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Figure 6: Three-dimensional representation
of numerical solution of Example 3 with s =

0.01, ∆t = 0.001, and σ = 8.
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Figure 7: Solution of Example 4 at dis-
tinct times with s = 0.1, ∆t = 0.0001,
and σ = 8.
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Figure 8: Three-dimensional representation
of numerical solution of Example 4 with s =

0.01, ∆t = 0.001, and σ = 8.
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